1
|
Wang Y, Lv L, Song Y, Wei X, Zhou H, Liu Q, Xu K, Yan D, Zhang C, Liu S, Jin J, Mei H, Niu T, Liang A, Gu R, Ren J, Feng Y, Jin W, Zhou Y, Deng Y, Wang J. Inaticabtagene autoleucel in adult relapsed or refractory B-cell acute lymphoblastic leukemia. Blood Adv 2025; 9:836-843. [PMID: 39626300 PMCID: PMC11872425 DOI: 10.1182/bloodadvances.2024014182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/06/2024] [Indexed: 03/05/2025] Open
Abstract
ABSTRACT Before November 2023, CD19 chimeric antigen receptor (CAR) T-cell therapies had not been approved in China for patients with relapsed or refractory B-cell acute lymphoblastic leukemia (R/R B-ALL), leaving a significant unmet need. In response, inaticabtagene autoleucel (Inati-cel), a novel CD19 CAR T-cell therapy with a distinct single-chain variable fragment (HI19α), was developed and showed promising efficacy in preliminary clinical research. We conducted a phase 2, single-arm, multicenter study of Inati-cel in adult CD19+ R/R B-ALL in China. The primary end point was the overall remission rate (ORR) at the end of month 3. Forty-eight patients who underwent Inati-cel infusion were evaluated for both efficacy and safety. Among them, 34 patients achieved and maintained remission beyond 3 months, with a 3-month ORR of 70.8% (95% confidence interval [CI], 55.9-83.1). The best ORR was 85.4%, with all responders reaching minimal residual disease negativity. With a median follow-up of 23.7 months, the median duration of remission was 20.7 months (95% CI, 6.4 to not reached), and the median overall survival was not reached (95% CI, 13.0 months to not reached). Additionally, grade ≥3 cytokine release syndrome and neurologic events occurred in 12.5% and 6.2% of patients, respectively. The 2-year follow-up data suggest that Inati-cel demonstrates encouraging and durable responses with manageable safety profiles in R/R B-ALL. Based on the data from this pivotal trial, Inati-cel was approved as the first CAR T-cell therapy for adult R/R B-ALL in China and underscores its potential therapeutic benefits for this patient population. This trial was registered at www.ClinicalTrials.gov as #NCT04684147.
Collapse
Affiliation(s)
- Ying Wang
- Leukemia Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center of Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lulu Lv
- Juventas Cell Therapy Ltd, Tianjin, China
| | - Yongping Song
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xudong Wei
- Department of Hematology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongsheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Dongmei Yan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
| | - Shuangyou Liu
- Department of Hematology, Beijing Gobroad Boren Hospital, Beijing, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Heng Mei
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Aibin Liang
- Department of Hematology, Tongji Hospital of Tongji University, Shanghai, China
| | - Runxia Gu
- Leukemia Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center of Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jienan Ren
- Juventas Cell Therapy Ltd, Tianjin, China
| | - Yi Feng
- Juventas Cell Therapy Ltd, Tianjin, China
| | - Wei Jin
- Juventas Cell Therapy Ltd, Tianjin, China
| | - Yan Zhou
- Juventas Cell Therapy Ltd, Tianjin, China
| | | | - Jianxiang Wang
- Leukemia Center, State Key Laboratory of Experimental Hematology, National Clinical Research Center of Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
2
|
Shen Q, Gong X, Feng Y, Hu Y, Wang T, Yan W, Zhang W, Qi S, Gale RP, Chen J. Measurable residual disease (MRD)-testing in haematological cancers: A giant leap forward or sideways? Blood Rev 2024; 68:101226. [PMID: 39164126 DOI: 10.1016/j.blre.2024.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/22/2024]
Abstract
Measurable residual disease (MRD)-testing is used in many haematological cancers to estimate relapse risk and to direct therapy. Sometimes MRD-test results are used for regulatory approval. However, some people including regulators wrongfully believe results of MRD-testing are highly accurate and of proven efficacy in directing therapy. We review MRD-testing technologies and evaluate the accuracy of MRD-testing for predicting relapse and the strength of evidence supporting efficacy of MRD-guided therapy. We show that at the individual level MRD-test results are often an inaccurate relapse predictor. Also, no convincing data indicate that increasing therapy-intensity based on a positive MRD-test reduces relapse risk or improves survival. We caution against adjusting therapy-intensity based solely on results of MRD-testing.
Collapse
Affiliation(s)
- Qiujin Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Xiaowen Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Yahui Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Yu Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Tiantian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Wen Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Wei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Saibing Qi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, UK.
| | - Junren Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Tianjin Institutes of Health Science, Tianjin, China.
| |
Collapse
|
3
|
Yang M, Tang Y, Zhu P, Lu H, Wan X, Guo Q, Xiao L, Liu C, Guo L, Liu W, Yang Y. The advances of E2A-PBX1 fusion in B-cell acute lymphoblastic Leukaemia. Ann Hematol 2024; 103:3385-3398. [PMID: 38148344 DOI: 10.1007/s00277-023-05595-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
The E2A-PBX1 gene fusion is a common translocation in B-cell acute lymphoblastic leukaemia. Patients harbouring the E2A-PBX1 fusion gene typically exhibit an intermediate prognosis. Furthermore, minimal residual disease has unsatisfactory prognostic value in E2A-PBX1 B-cell acute lymphoblastic leukaemia. However, the mechanism of E2A-PBX1 in the occurrence and progression of B-cell acute lymphoblastic leukaemia is not well understood. Here, we mainly review the roles of E2A and PBX1 in the differentiation and development of B lymphocytes, the mechanism of E2A-PBX1 gene fusion in B-cell acute lymphoblastic leukaemia, and the potential therapeutic approaches.
Collapse
Affiliation(s)
- Mengting Yang
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Yanhui Tang
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Peng Zhu
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, People's Republic of China
| | - Haiquan Lu
- The Second Hospital, Centre for Reproductive Medicine, Advanced Medical Research Institute, Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaohong Wan
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Qulian Guo
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Lan Xiao
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunyan Liu
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Guo
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China
| | - Wenjun Liu
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China.
| | - You Yang
- Department of Paediatrics (Children Haematological Oncology), Birth Defects and Childhood Haematological Oncology Laboratory, Sichuan Clinical Research Centre for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Paediatrics, Southwest Medical University, Luzhou, Sichuan, China.
- The Second Hospital, Centre for Reproductive Medicine, Advanced Medical Research Institute, Key Laboratory for Experimental Teratology of the Ministry of Education, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Liu M, Xing Y, Tan J, Chen X, Xue Y, Qu L, Ma J, Jin X. Comprehensive summary: the role of PBX1 in development and cancers. Front Cell Dev Biol 2024; 12:1442052. [PMID: 39129784 PMCID: PMC11310070 DOI: 10.3389/fcell.2024.1442052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
PBX1 is a transcription factor that can promote the occurrence of various tumors and play a reg-ulatory role in tumor growth, metastasis, invasion, and drug resistance. Furthermore, a variant generated by fusion of E2A and PBX1, E2A-PBX1, has been found in 25% of patients with childhood acute lymphoblastic leukemia. Thus, PBX1 is a potential therapeutic target for many cancers. Here, we describe the structure of PBX1 and E2A-PBX1 as well as the molecular mecha-nisms whereby these proteins promote tumorigenesis to provide future research directions for developing new treatments. We show that PBX1 and E2A-PBX1 induce the development of highly malignant and difficult-to-treat solid and blood tumors. The development of specific drugs against their targets may be a good therapeutic strategy for PBX1-related cancers. Furthermore, we strongly recommend E2A-PBX1 as one of the genes for prenatal screening to reduce the incidence of childhood hematological malignancies.
Collapse
Affiliation(s)
- Mingsheng Liu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yan Xing
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jiufeng Tan
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xiaoliang Chen
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Yaming Xue
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Licheng Qu
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Jianchao Ma
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| | - Xuefei Jin
- 2nd Inpatient Area of Urology Department, China-Japan Union Hospital, Jilin University, Changchun, China
- Jinlin Provincial Key Laboratory of Molecular Diagnosis of Urological Tumors, Changchun, China
- Jinlin Provincial Key Laboratory of Urological Tumors, Changchun, China
| |
Collapse
|
5
|
Chen J, Gale RP, Hu Y, Yan W, Wang T, Zhang W. Measurable residual disease (MRD)-testing in haematological and solid cancers. Leukemia 2024; 38:1202-1212. [PMID: 38637690 PMCID: PMC11147778 DOI: 10.1038/s41375-024-02252-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Affiliation(s)
- Junren Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, China.
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, UK
| | - Yu Hu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wen Yan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Tiantian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
6
|
Panda T, Rainchwar S, Singh R, Singh A, Soni M, Kakkar D, Jegan KR, Pillai RH, Palatty RJ, Jha K, Ahmed R, Halder R, Tejwani N, Panda D, Bhurani D, Agrawal N. Real world outcome of B ALL with t (1; 19) (q23; p13)/TCF3::PBX1 in adolescents and adults treated with intensive regimes. Leuk Res 2024; 141:107506. [PMID: 38663165 DOI: 10.1016/j.leukres.2024.107506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/09/2024] [Accepted: 04/17/2024] [Indexed: 06/01/2024]
Abstract
Significant heterogeneity has been reported in outcome of Acute lymphoblastic leukemia with t(1;19)(q23;p13)/TCF3::PBX1 in adolescents and adults leading to a lack of consensus on precise risk stratification. We evaluated clinical outcome of 17 adult ALL cases (≥15 years) with this genotype treated on intensive regimes.13/17 received COG0232 and 4/17 cases received UK-ALL protocol. All achieved CR (100%) with above treatment. End of induction MRD was evaluated in 14/17 cases of which 11 (78.5%) achieved MRD negativity. Total nine patients relapsed (7 marrows, 2 CNS). Overall survival at 2 years was 53.3%. The 2 year estimated PFS was 42.9%. The 2 years CIR was 54.2%. Adults with this genotype perform poorly despite early favorable response. Incorporation of novel immunotherapies and prompt HSCT should be strongly considered with this genotype. Targeted NGS panels for additional genetic aberrations can further help in risk stratifying and guiding therapy for this genotype.
Collapse
Affiliation(s)
- Tribikram Panda
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi 110085, India
| | - Sujay Rainchwar
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi 110085, India
| | - Reema Singh
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi 110085, India
| | - Aakanksha Singh
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi 110085, India
| | - Mayank Soni
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi 110085, India
| | - Disha Kakkar
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi 110085, India
| | - K R Jegan
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi 110085, India
| | - Reshmi Harikumar Pillai
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi 110085, India
| | - Roy J Palatty
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi 110085, India
| | - Karuna Jha
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi 110085, India
| | - Rayaz Ahmed
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi 110085, India
| | - Rohan Halder
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi 110085, India
| | - Narender Tejwani
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi 110085, India
| | - Devasis Panda
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi 110085, India
| | - Dinesh Bhurani
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi 110085, India
| | - Narendra Agrawal
- Department of Hematology and Bone Marrow Transplant Unit, Rajiv Gandhi Cancer Institute and Research Centre, Delhi 110085, India.
| |
Collapse
|
7
|
Song J, Zhang X, Lv S, Liu M, Hua X, Yue L, Wang S, He W. Age-related promoter-switch regulates Runx1 expression in adult rat hearts. BMC Cardiovasc Disord 2023; 23:541. [PMID: 37936072 PMCID: PMC10631011 DOI: 10.1186/s12872-023-03583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Runt-related transcription factor-1 (RUNX1), a key member of the core-binding factor family of transcription factors, has emerged as a novel therapeutic target for cardiovascular disease. There is an urgent need to fully understand the expression pattern of Runx1 in the heart and the mechanisms by which it is controlled under normal conditions and in response to disease. The expression of Runx1 is regulated at the transcriptional level by two promoters designated P1 and P2. Alternative usage of these two promoters creates differential mRNA transcripts diversified in distribution and translational potential. While the significance of P1/P2 promoter-switch in the transcriptional control of Runx1 has been highlighted in the embryogenic process, very little is known about the level of P1- and P2-specific transcripts in adult hearts, and the underlying mechanisms controlling the promoter-switch. METHODS To amplify P1/P2 specific sequences in the heart, we used two different sense primers complementary to either P1 or P2 5'-regions to monitor the expression of P1/P2 transcripts. DNA methylation levels were assessed at the Runx1 promoter regions. Rats were grouped by age. RESULTS The expression levels of both P1- and P2-derived Runx1 transcripts were decreased in older rats when compared with that in young adults, paralleled with an age-dependent decline in Runx1 protein level. Furthermore, older rats demonstrated a higher degree of DNA methylation at Runx1 promoter regions. Alternative promoter usage was observed in hearts with increased age, as reflected by altered P1:P2 mRNA ratio. CONCLUSION Our data demonstrate that the expression of Runx1 in the heart is age-dependent and underscore the importance of gene methylation in the promoter-mediated transcriptional control of Runx1, thereby providing new insights to the role of epigenetic regulation in the heart.
Collapse
Affiliation(s)
- Jiawei Song
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiaoling Zhang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Sinan Lv
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Meng Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xing Hua
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Limin Yue
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Si Wang
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Weihong He
- Department of Physiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Zhang X, Zhu G, Zhang F, Yu D, Jia X, Ma B, Chen W, Cai X, Mao L, Zhuang C, Yu Z. Identification of a novel immune-related transcriptional regulatory network in sarcopenia. BMC Geriatr 2023; 23:463. [PMID: 37525094 PMCID: PMC10391869 DOI: 10.1186/s12877-023-04152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 07/04/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Sarcopenia is highly prevalent in elderly individuals and has a significant adverse effect on their physical health and quality of life, but the mechanisms remain unclear. Studies have indicated that transcription factors (TFs) and the immune microenvironment play a vital role in skeletal muscle atrophy. METHODS RNA-seq data of 40 muscle samples were downloaded from the GEO database. Then, differentially expressed genes (DEGs), TFs(DETFs), pathways(DEPs), and the expression of immune gene sets were identified with limma, edgeR, GO, KEGG, ORA, GSVA, and ssGSEA. Furthermore, the results above were integrated into coexpression analysis by Pearson correlation analysis (PCA). Significant coexpression patterns were used to construct the immune-related transcriptional regulatory network by Cytoscape and potential medicine targeting the network was screened by Connectivity Map. Finally, the regulatory mechanisms and RNA expression of DEGs and DETFs were identified by multiple online databases and RT‒qPCR. RESULTS We screened 808 DEGs (log2 fold change (FC) > 1 or < - 1, p < 0.05), 4 DETFs (log2FC > 0.7 or < - 0.7, p < 0.05), 304 DEPs (enrichment scores (ES) > 1 or < - 1, p < 0.05), and 1208 differentially expressed immune genes sets (DEIGSs) (p < 0.01). Based on the results of PCA (correlation coefficient (CC) > 0.4 or < - 0.4, p < 0.01), we then structured an immune-related network with 4 DETFs, 9 final DEGs, 11 final DEPs, and 6 final DEIGSs. Combining the results of online databases and in vitro experiments, we found that PAX5-SERPINA5-PI3K/Akt (CC ≤ 0.444, p ≤ 0.004) was a potential transcriptional regulation axis, and B cells (R = 0.437, p = 0.005) may play a vital role in this signal transduction. Finally, the compound of trichostatin A (enrichment = -0.365, specificity = 0.4257, p < 0.0001) might be a potential medicine for sarcopenia based on the PubChem database and the result of the literature review. CONCLUSIONS We first identified immune-related transcriptional regulatory network with high-throughput RNA-seq data in sarcopenia. We hypothesized that PAX5-SERPIAN5-PI3K/Akt axis is a potential mechanism in sarcopenia and that B cells may play a vital role in this signal transduction. In addition, trichostatin A might be a potential medicine for sarcopenia.
Collapse
Affiliation(s)
- Xianzhong Zhang
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Middle 301 Yanchang Road, Shanghai, 200072, China
| | - Guanglou Zhu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Middle 301 Yanchang Road, Shanghai, 200072, China
| | - Fengmin Zhang
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Middle 301 Yanchang Road, Shanghai, 200072, China
| | - Dingye Yu
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuyang Jia
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingwei Ma
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Middle 301 Yanchang Road, Shanghai, 200072, China
| | - Weizhe Chen
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Middle 301 Yanchang Road, Shanghai, 200072, China
| | - Xinyu Cai
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingzhou Mao
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chengle Zhuang
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Middle 301 Yanchang Road, Shanghai, 200072, China
- Colorectal Cancer Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhen Yu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Middle 301 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
9
|
Chuang KT, Chiou SS, Hsu SH. Recent Advances in Transcription Factors Biomarkers and Targeted Therapies Focusing on Epithelial-Mesenchymal Transition. Cancers (Basel) 2023; 15:3338. [PMID: 37444447 DOI: 10.3390/cancers15133338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription factors involve many proteins in the process of transactivating or transcribing (none-) encoded DNA to initiate and regulate downstream signals, such as RNA polymerase. Their unique characteristic is that they possess specific domains that bind to specific DNA element sequences called enhancer or promoter sequences. Epithelial-mesenchymal transition (EMT) is involved in cancer progression. Many dysregulated transcription factors-such as Myc, SNAIs, Twists, and ZEBs-are key drivers of tumor metastasis through EMT regulation. This review summarizes currently available evidence related to the oncogenic role of classified transcription factors in EMT editing and epigenetic regulation, clarifying the roles of the classified conserved transcription factor family involved in the EMT and how these factors could be used as therapeutic targets in future investigations.
Collapse
Affiliation(s)
- Kai-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shyh-Shin Chiou
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
10
|
Zhang X, Wang Z, Sun J, Liu L, Qin J, Huang A, Yang M, Lou Y, Tang G, Mao L, Qian J, Wei J, Mai W, Meng H, Yang J, Tong H, Wang J, Yu W, Ni X, Jin J. New insights into the clinical characteristics of SETD2-mutated acute myeloid leukaemia. Br J Haematol 2023. [PMID: 37038274 DOI: 10.1111/bjh.18811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
As reported, SETD2 is recurrently mutated in acute myeloid leukaemia (AML), but knowledge about the specifics is limited. We enrolled 530 consecutive newly diagnosed AML patients in our study, and we analysed the distribution pattern and prognostic role of SETD2 mutation in AML. SETD2 mutation was found to affect 6.3% of AML patients, and it frequently co-occurred with IDH2, NRAS and CEBPA mutations. SETD2-mutated patients saw excellent therapeutic responses but failed to gain better survival time than other patients. This could be because of the high recurrence and mortality in SETD2-mutated patients who have additional mutations, such as NRAS mutation.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Ziwei Wang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai, People's Republic of China
| | - Jiewen Sun
- Institute of Genetics and Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Lixia Liu
- Acornmed Biotechnology Co. Ltd., Tianjin, People's Republic of China
| | - Jiayue Qin
- Acornmed Biotechnology Co. Ltd., Tianjin, People's Republic of China
| | - Aijie Huang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai, People's Republic of China
| | - Min Yang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Yinjun Lou
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Gusheng Tang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai, People's Republic of China
| | - Liping Mao
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Jiejin Qian
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Juying Wei
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Wenyuan Mai
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Haitao Meng
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Jianmin Yang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai, People's Republic of China
| | - Hongyan Tong
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Jianmin Wang
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai, People's Republic of China
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | - Xiong Ni
- Department of Hematology, Institute of Hematology, Changhai Hospital, Shanghai, People's Republic of China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
11
|
Zhang H, Wan Y, Wang H, Cai J, Yu J, Hu S, Fang Y, Gao J, Jiang H, Yang M, Liang C, Jin R, Tian X, Ju X, Hu Q, Jiang H, Li Z, Wang N, Sun L, Leung AWK, Wu X, Qian X, Qian M, Li CK, Yang J, Tang J, Zhu X, Shen S, Zhang L, Pui CH, Zhai X. Prognostic factors of childhood acute lymphoblastic leukemia with TCF3::PBX1 in CCCG-ALL-2015: A multicenter study. Cancer 2023; 129:1691-1703. [PMID: 36943767 DOI: 10.1002/cncr.34741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/08/2023] [Accepted: 01/24/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Contemporary risk-directed treatment has improved the outcome of patients with acute lymphoblastic leukemia (ALL) and TCF3::PBX1 fusion. In this study, the authors seek to identify prognostic factors that can be used to further improve outcome. METHODS The authors studied 384 patients with this genotype treated on Chinese Children's Cancer Group ALL-2015 protocol between January 1, 2015 and December 31, 2019. All patients provisionally received intensified chemotherapy in the intermediate-risk arm without prophylactic cranial irradiation; those with high minimal residual disease (MRD) ≥1% at day 46 (end) of remission induction were candidates for hematopoietic cell transplantation. RESULTS The overall 5-year event-free survival was 84.4% (95% confidence interval [CI], 80.6-88.3) and 5-year overall survival 88.9% (95% CI, 85.5-92.4). Independent factors associated with lower 5-year event-free survival were male sex (80.4%, [95% CI, 74.8-86.4] vs. 88.9%, [95% CI, 84.1-93.9] in female, p = .03) and positive day 46 MRD (≥0.01%) (62.1%, [95% CI, 44.2-87.4] vs. 87.1%, [95% CI, 83.4-90.9] in patients with negative MRD, p < .001). The presence of testicular leukemia at diagnosis (n = 10) was associated with particularly dismal 5-year event-free survival (33.3% [95% CI, 11.6-96.1] vs. 83.0% [95% CI, 77.5-88.9] in the other 192 male patients, p < .001) and was an independent risk factor (hazard ratio [HR], 5.7; [95% CI, 2.2-14.5], p < .001). CONCLUSIONS These data suggest that the presence of positive MRD after intensive remission induction and testicular leukemia at diagnosis are indicators for new molecular therapeutics or immunotherapy in patients with TCF3::PBX1 ALL.
Collapse
Affiliation(s)
- Honghong Zhang
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yang Wan
- Department of Pediatrics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hongsheng Wang
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jiaoyang Cai
- Department of Hematology/Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Jie Yu
- Department of Hematology/Oncology, Chongqing Medical University Affiliated Children's Hospital, Chongqing, China
| | - Shaoyan Hu
- Department of Hematology/Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Yongjun Fang
- Department of Hematology/Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ju Gao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Key Laboratory of Birth Defects and Related Disease of Women and Children, Ministry of Education, Chengdu, China
| | - Hua Jiang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Minghua Yang
- Department of Pediatrics, Xiangya Hospital Central South University, Changsha, China
| | - Changda Liang
- Department of Hematology/Oncology, Jiangxi Provincial Children's Hospital, Nanchang, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tian
- Department of Hematology/Oncology, KunMing Children's Hospital, Kunming, China
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Qun Hu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Jiang
- Department of Hematology/Oncology, Children's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Zhifan Li
- Department of Hematology/Oncology, Xi'an Northwest Women's and Children's Hospital, Xi'an, China
| | - Ningling Wang
- Department of Pediatrics, Anhui Medical University Second Affiliated Hospital, Hefei, Anhui, China
| | - Lirong Sun
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Alex W K Leung
- Department of Pediatrics, Hong Kong Children's Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaowen Qian
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Maoxiang Qian
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Chi-Kong Li
- Department of Pediatrics, Hong Kong Children's Hospital, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jun Yang
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Jingyan Tang
- Department of Hematology/Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Xiaofan Zhu
- Department of Pediatrics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shuhong Shen
- Department of Hematology/Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, National Health Committee Key Laboratory of Pediatric Hematology & Oncology, Shanghai, China
| | - Li Zhang
- Department of Pediatrics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Xiaowen Zhai
- Department of Hematology/Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| |
Collapse
|
12
|
Chu J, Cai H, Cai J, Bian X, Cheng Y, Guan X, Chen X, Jiang H, Zhai X, Fang Y, Zhang L, Tian X, Zhou F, Wang Y, Wang L, Li H, Kwan Alex LW, Yang M, Yang H, Zhan A, Wang N, Hu S. Prognostic significance of steroid response in pediatric acute lymphoblastic leukemia: The CCCG-ALL-2015 study. Front Oncol 2022; 12:1062065. [PMID: 36624786 PMCID: PMC9824631 DOI: 10.3389/fonc.2022.1062065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Whether steroid response is an independent risk factor for acute lymphoblastic leukemia (ALL) is controversial. This study aimed to investigate the relationship between response to dexamethasone and prognosis in children with ALL. Methods We analyzed the data of 5,161 children with ALL who received treatment in accordance with the Chinese Children's Cancer Group ALL-2015 protocol between January 1, 2015, and December 31, 2018, in China. All patients received dexamethasone for 4 days as upfront window therapy. Based on the peripheral lymphoblast count on day 5, these patients were classified into the dexamethasone good response (DGR) and dexamethasone poor response (DPR) groups. A peripheral lymphoblast count ≥1× 109/L indicated poor response to dexamethasone. Results The age, white blood cell counts, prevalence of the BCR/ABL1 and TCF3/PBX1 fusion genes, and rates of recurrence in the central nervous system were higher in the DPR than in the DGR group (P<0.001). Compared to the DPR group, the DGR group had a lower recurrence rate (18.6% vs. 11%) and higher 6-year event-free survival (73% vs. 83%) and overall survival (86% vs. 92%) rates; nevertheless, subgroup analysis only showed significant difference in the intermediate-risk group (P<0.001). Discussion Response to dexamethasone was associated with an early treatment response in our study. In the intermediate-risk group, dexamethasone response added a prognostic value in addition to minimal residual disease, which may direct early intervention to reduce the relapse rate.
Collapse
Affiliation(s)
- Jinhua Chu
- Department of Hematology/Oncology, Pediatrics, the Second Hospital of Anhui Medical University, Hefei, China
| | - Huaju Cai
- Department of Hematology/Oncology, Pediatrics, the Second Hospital of Anhui Medical University, Hefei, China
| | - Jiaoyang Cai
- Department of Hematology/Oncology, Shanghai Children’s Medical Center, Shanghai Jiaotong University of School of Medicine, Shanghai, China
| | - Xinni Bian
- Department of Hematology/Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Yumei Cheng
- Department of Pediatrics, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xianmin Guan
- Department of Hematology/Oncology, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian Chen
- Hematology/Oncology, West China Second Hospital of Sichuan University, Chengdu, China
| | - Hua Jiang
- Department of Hematology/Oncology, Guangzhou Women and Children Health Care Center, Guangzhou, China
| | - Xiaowen Zhai
- Department of Hematology/Oncology, Children’s Hospital of Fudan University, Shanghai, China
| | - Yongjun Fang
- Department of Hematology/Oncology, Nanjing Children’s Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Lei Zhang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Tian
- Department of Hematology/Oncology, Kunming Children’s Hospital, Kunming, China
| | - Fen Zhou
- Department of Pediatrics, Huazhong University of Science and Technology Tongji Medical College Union Hospital, Wuhan, China
| | - Yaqin Wang
- Department of Pediatrics, Huazhong University of Science and Technology Tongji Medical College Tongji Hospital, Wuhan, China
| | - Lingzhen Wang
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hong Li
- Department of Hematology Oncology, Children’s Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Leung Wing Kwan Alex
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong Children’s Hospital, Hong Kong, China
| | - Minghua Yang
- Department of Pediatrics, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Hanfang Yang
- Department of Hematology/Oncology, Northwest Women’s and Children’s Hospital, Xi’an, China
| | - Aijun Zhan
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Ningling Wang
- Department of Hematology/Oncology, Pediatrics, the Second Hospital of Anhui Medical University, Hefei, China,*Correspondence: Shaoyan Hu, ; Ningling Wang,
| | - Shaoyan Hu
- Department of Hematology/Oncology, Children’s Hospital of Soochow University, Suzhou, China,*Correspondence: Shaoyan Hu, ; Ningling Wang,
| |
Collapse
|
13
|
Song Y, Fang Q, Mi Y. Prognostic significance of copy number variation in B-cell acute lymphoblastic leukemia. Front Oncol 2022; 12:981036. [PMID: 35992882 PMCID: PMC9386345 DOI: 10.3389/fonc.2022.981036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Copy number variations (CNVs) are widespread in both pediatric and adult cases of B-cell acute lymphoblastic leukemia (B-ALL); however, their clinical significance remains unclear. This review primarily discusses the most prevalent CNVs in B-ALL to elucidate their clinical value and further personalized management of this population. The discovery of the molecular mechanism of gene deletion and the development of targeted drugs will further enhance the clinical prognosis of B-ALL.
Collapse
Affiliation(s)
| | - Qiuyun Fang
- *Correspondence: Qiuyun Fang, ; Yingchang Mi,
| | | |
Collapse
|
14
|
Xu GF, Liu LM, Wang M, Zhang ZB, Xie JD, Qiu HY, Chen SN. Treatments of Ph-like acute lymphoblastic leukemia: a real-world retrospective analysis from a single large center in China. Leuk Lymphoma 2022; 63:2652-2662. [DOI: 10.1080/10428194.2022.2090550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Guo-fa Xu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
- Department of Hematology, Chongqing University FuLing Hospital, Chongqing, P.R. China
| | - Li-min Liu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
| | - Man Wang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
| | - Zhi-bo Zhang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
| | - Jun-dan Xie
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
| | - Hui-ying Qiu
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
| | - Su-ning Chen
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, P.R. China
| |
Collapse
|