1
|
Zhao Z, Zhang X, Sun N, Duan L, Xin J, Li H, Ni X, Wang H, Ma H, Bai Y. Lactobacillus johnsonii HL79 modulates the microbiota-gut-brain axis to protect cognitive function in mice chronically exposed to high altitude. Front Microbiol 2025; 16:1561400. [PMID: 40124891 PMCID: PMC11925889 DOI: 10.3389/fmicb.2025.1561400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction High-altitude environments have significant effects on brain function, particularly a decline in cognitive function, due to insufficient oxygen supply. The microbiome-gut-brain axis (MGBA) plays an important role in regulating cognitive function, but its specific mechanism of action in high-altitude environments is unclear. Therefore, the aim of this study was to investigate whether the probiotic Lactobacillus johnsonii HL79 could alleviate high altitude-induced cognitive dysfunction in mice by modulating the gut microbiota. Methods and results Sixty C57BL/6 mice aged 8 weeks were randomly divided into four groups: control, high altitude exposure (HA), HL79-treated (P), and high altitude exposure plus HL79-treated (HAP). the HA and HAP groups were exposed to a low-pressure oxygen chamber at a simulated altitude of 3,500-4,000 m for 20 weeks, while the Control and P groups were maintained at the normal barometric pressure level. Probiotic HL79 was given daily by gavage in the P and HAP groups, while saline gavage was given daily in the other two groups. The cognitive functions of the mice were assessed by new object recognition test and elevated plus maze test. The results showed that HL79 treatment significantly improved the working memory abilities of high altitude exposed mice. In addition, HL79 treatment improved antioxidant capacity, decreased malondialdehyde (MDA) content, and increased superoxide dismutase (SOD) and catalase (CAT) activities in serum and whole brain tissue. Gut microbiota analysis showed that HL79 was able to modulate the structure of gut microbiota and increase the relative abundance of beneficial flora in high altitude environment. Conclusion Lactobacillus johnsonii HL79 significantly ameliorated cognitive dysfunction in high altitude-exposed mice by modulating the gut microbiota and antioxidant capacity, further confirming the important role of MGBA in high altitude environment.
Collapse
Affiliation(s)
- Zhifang Zhao
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, National Institution of Drug Clinical Trial, Guizhou Provincial People's Hospital, Medical College of Guizhou University, Guiyang, China
| | - Xufei Zhang
- Key Laboratory of High Altitudes Brain, Science and Environmental Acclimation, Tibet University, Lhasa, China
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Tibet Autonomous Region Psychological Society, Lhasa, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixiao Duan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jinge Xin
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hao Li
- Key Laboratory of High Altitudes Brain, Science and Environmental Acclimation, Tibet University, Lhasa, China
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Tibet Autonomous Region Psychological Society, Lhasa, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hesong Wang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hailin Ma
- Key Laboratory of High Altitudes Brain, Science and Environmental Acclimation, Tibet University, Lhasa, China
- Plateau Brain Science Research Center, Tibet University, Lhasa, China
- Tibet Autonomous Region Psychological Society, Lhasa, China
| | - Yang Bai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Savina Y, Pichon AP, Lemaire L, Howe CA, Ulliel-Roche M, Skinner S, Nader E, Guillot N, Stauffer É, Roustit M, Hancco I, Robach P, Esteve F, Pialoux V, Perger E, Parati G, Ainslie PN, Doutreleau S, Connes P, Verges S, Brugniaux JV. Micro- and macrovascular function in the highest city in the world: a cross sectional study. LANCET REGIONAL HEALTH. AMERICAS 2024; 38:100887. [PMID: 39381083 PMCID: PMC11459627 DOI: 10.1016/j.lana.2024.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 07/04/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Background Since vascular responses to hypoxia in both healthy high-altitude natives and chronic mountain sickness (a maladaptive high-altitude pathology characterised by excessive erythrocytosis and the presence of symptoms-CMS) remain unclear, the role of inflammation and oxidative/nitrosative stress on the endothelium-dependent and -independent responses in both the micro- and macrocirculation, in healthy Andeans at different altitudes and in CMS patients, was examined. Methods 94 men were included: 18 lowlanders (LL), 38 healthy highlanders permanently living at 3800 m (n = 21-HL-3800) or in La Rinconada, the highest city in the world (5100-5300 m) (n = 17-HL-5100/No CMS). Moreover, 14 participants with mild (Mild CMS) and 24 with moderate to severe CMS (Mod/Sev CMS) were recruited. All undertook two reactivity tests: i) local thermal hyperaemia (microcirculation) and ii) flow-mediated dilation (macrocirculation). Endothelium-independent function (glyceryl trinitrate) was also assessed only in La Rinconada. Findings Conductance and skin blood flow velocity during the microcirculation test, as well as macrocirculation progressively decreased with altitude (LL > HL-3800 > HL-5100/No CMS). CMS also induced a decrease in macrocirculation (HL-5100/No CMS > Mild CMS = Mod/Sev CMS), while glyceryl trinitrate restored vascular function. Both oxidative stress and nitric oxide metabolites increased with altitude only. Principal component analysis revealed that increasing inflammation with altitude was associated with a progressive decline in both micro- and macrovascular function in healthy highlanders. Interpretation Both micro and macrovascular function are affected by chronic exposure to hypoxia, the latter being further compounded by CMS. Funding The "Fonds de dotation AGIR pour les maladies chroniques", the "Air Liquide Foundation", and the "French National Research Agency".
Collapse
Affiliation(s)
- Yann Savina
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Aurélien P. Pichon
- Laboratory Mobility, Aging & Exercise (MOVE, EA6314), Faculty of Sport Sciences, University of Poitiers, Poitiers, France
| | - Lucas Lemaire
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Connor A. Howe
- Centre for Heart, Lung, and Vascular Health, University of British Columbia, Kelowna, British Columbia, Canada
| | - Mathilde Ulliel-Roche
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
- Grenoble Alpes University Hospital, Grenoble, France
| | - Sarah Skinner
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), “Red Blood cell and Vascular Biology” team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence on Red Blood Cell (GR-Ex), Paris, France
| | - Elie Nader
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), “Red Blood cell and Vascular Biology” team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence on Red Blood Cell (GR-Ex), Paris, France
| | - Nicolas Guillot
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), “Red Blood cell and Vascular Biology” team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence on Red Blood Cell (GR-Ex), Paris, France
| | - Émeric Stauffer
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), “Red Blood cell and Vascular Biology” team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence on Red Blood Cell (GR-Ex), Paris, France
| | - Matthieu Roustit
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
- Grenoble Alpes University Hospital, Grenoble, France
| | - Ivan Hancco
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Paul Robach
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
- National School for Mountain Sports, Site of the National School for Skiing and Mountaineering (ENSA), Chamonix, France
| | - François Esteve
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| | - Vincent Pialoux
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), “Red Blood cell and Vascular Biology” team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
| | - Elisa Perger
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
- University of Milano-Bicocca, Milan, Italy
| | - Gianfranco Parati
- Istituto Auxologico Italiano, IRCCS, Sleep Disorders Center & Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital, Milan, Italy
- University of Milano-Bicocca, Milan, Italy
| | - Philip N. Ainslie
- Centre for Heart, Lung, and Vascular Health, University of British Columbia, Kelowna, British Columbia, Canada
| | - Stéphane Doutreleau
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
- Grenoble Alpes University Hospital, Grenoble, France
| | - Philippe Connes
- Interuniversity Laboratory of Human Movement Biology (LIBM, EA7424), “Red Blood cell and Vascular Biology” team, Univ Lyon - University Claude Bernard Lyon 1, Villeurbanne, France
- Laboratory of Excellence on Red Blood Cell (GR-Ex), Paris, France
| | - Samuel Verges
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
- Grenoble Alpes University Hospital, Grenoble, France
| | - Julien V. Brugniaux
- HP2 laboratory, Univ. Grenoble Alpes, INSERM, CHU Grenoble Alpes, Grenoble, France
| |
Collapse
|
3
|
Proskurnina E, Martynov D, Yakushkin A, Zelenkova I. Non-enzymatic antioxidant blood plasma profile in the period of high training loads in elite speed skaters at the altituda. SPORTS MEDICINE AND HEALTH SCIENCE 2023. [DOI: 10.1016/j.smhs.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
4
|
Rytz CL, Pun M, Mawhinney JA, Mounsey CA, Mura M, Martin A, Pialoux V, Hartmann SE, Furian M, Rawling JM, Lopez I, Soza D, Moraga FA, Lichtblau M, Bader PR, Ulrich S, Bloch KE, Frise MC, Poulin MJ. Differential Effects of High-Altitude Exposure on Markers of Oxidative Stress, Antioxidant Capacity and Iron Profiles. Am J Physiol Regul Integr Comp Physiol 2022; 323:R445-R456. [PMID: 35938686 DOI: 10.1152/ajpregu.00321.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
High altitude (HA) exposure may stimulate significant physiological and molecular changes, resulting in HA-related illnesses. HA may impact oxidative stress, antioxidant capacity and iron homeostasis, yet it is unclear how both repeated exposure and HA acclimatization may modulate such effects. Therefore, we assessed the effects of weeklong repeated daily HA exposure (2,900m to 5,050m) in altitude-naïve individuals (n=21, 13 females, mean ± SD, 25.3 ± 3.7 years) to mirror the working schedule of HA workers (n=19, all males, 40.1 ± 2.1 years) at the Atacama Large Millimeter Array (ALMA) Observatory (San Pedro de Atacama, Chile). Markers of oxidative stress, antioxidant capacity and iron homeostasis were measured in blood plasma. Levels of protein oxidation (p<0.001) and catalase activity (p=0.023) increased and serum iron (p<0.001), serum ferritin (p<0.001) and transferrin saturation (p<0.001) levels decreased with HA exposure in both groups. HA workers had lower levels of oxidative stress, and higher levels of antioxidant capacity, iron supply and hemoglobin concentration as compared to altitude-naïve individuals. Upon a second week of daily HA exposure, changes in levels of protein oxidation, glutathione peroxidase and nitric oxide metabolites were lower as compared to the first week in altitude-naïve individuals. These results indicate that repeated exposure to HA may significantly alter oxidative stress and iron homeostasis, and the degree of such changes may be dependent on if HA is visited naïvely or routinely. Further studies are required to fully elucidate differences in HA-induced changes in oxidative stress and iron homeostasis profiles amongst visitors of HA.
Collapse
Affiliation(s)
- Chantal L Rytz
- Libin Cardiovascular Institute, Calgary, Canada.,Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Matiram Pun
- Cumming School of Medicine, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Jamie A Mawhinney
- Department of Plastic Surgery, Queen Alexandra Hospital, Portsmouth University Hospital NHS Foundation Trust, UK
| | | | - Mathilde Mura
- Univ Lyon, University Lyon 1, Team "Atherosclerosis, Thrombosis and Physical Activity", Lyon, France
| | - Agnès Martin
- Univ Lyon, University Lyon 1, Team "Atherosclerosis, Thrombosis and Physical Activity", Lyon, France
| | - Vincent Pialoux
- Univ Lyon, University Lyon 1, Team "Atherosclerosis, Thrombosis and Physical Activity", Lyon, France
| | - Sara E Hartmann
- Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Michael Furian
- Pulmonary Division, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Jean M Rawling
- Department of Family Medicine at the University of Calgary, Calgary, Canada
| | - Ivan Lopez
- Safety Group, Atacama Large Millimeter Submillimeter Array, Calama, Chile
| | - Daniel Soza
- Safety Group, Atacama Large Millimeter Submillimeter Array, Calama, Chile
| | - Fernando A Moraga
- Laboratorio de Fisiología, Hipoxia y Función Vascular, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Mona Lichtblau
- Pulmonary Division, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Patrick R Bader
- Pulmonary Division, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Silvia Ulrich
- Pulmonary Division, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Konrad E Bloch
- Pulmonary Division, Sleep Disorders Centre and Pulmonary Hypertension Clinic, University Hospital Zurich, Zurich, Switzerland
| | - Matthew C Frise
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Intensive Care Unit, Royal Berkshire Hospitals NHS Foundation Trust, Reading, UK
| | - Marc J Poulin
- Libin Cardiovascular Institute, Calgary, Canada.,Cumming School of Medicine, University of Calgary, Calgary, Canada.,Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Faculty of Kinesiology, University of Calgary, Calgary, Canada
| |
Collapse
|
5
|
Wu D, Liu Y, Chen W, Shao J, Zhuoma P, Zhao D, Yu Y, Liu T, Yu R, Gan Y, Yuzheng B, Huang Y, Zhang H, Bi X, Tao C, Lai S, Luo Q, Zhang D, Wang H, Zhaxi P, Zhang J, Qiao J, Zeng C. How placenta promotes the successful reproduction in high-altitude populations: a transcriptome comparison between adaptation and acclimatization. Mol Biol Evol 2022; 39:6596365. [PMID: 35642306 PMCID: PMC9206416 DOI: 10.1093/molbev/msac120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
As the best adapted high altitude population, Tibetans feature a relatively high offspring survival rate. Genome-wide studies have identified hundreds of candidate SNPs related to high altitude adaptation of Tibetans, although most of them have unknown functional relevance. To explore the mechanisms behind successful reproduction at high altitudes, we compared the placental transcriptomes of Tibetans, sea level Hans (SLHan), and Han immigrants (ImHan). Among the three populations, placentas from ImHan showed a hyperactive gene expression pattern. Their increased activation demonstrates a hypoxic stress response similar to sea level individuals experiencing hypoxic conditions. Unlike ImHan, Tibetan placentas were characterized by the significant up-regulation of placenta-specific genes, and the activation of autophagy and the tricarboxylic acid (TCA) cycle. Certain conserved hypoxia response functions, including the antioxidant system and angiogenesis, were activated in both ImHan and Tibetans, but mediated by different genes. The coherence of specific transcriptome features linked to possible genetic contribution was observed in Tibetans. Furthermore, we identified a novel Tibetan-specific EPAS1 isoform with a partial deletion at exon six, which may be involved in the adaption to hypoxia through the EPAS1-centred gene network in the placenta. Overall, our results show that the placenta grants successful pregnancies in Tibetans by strengthening the natural functions of the placenta itself. On the other hand, the placenta of ImHan was in an inhabiting time-dependent acclimatization process representing a common hypoxic stress response pattern.
Collapse
Affiliation(s)
- Deng Wu
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Yunao Liu
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Wei Chen
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Jianming Shao
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Pubu Zhuoma
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Dexiong Zhao
- Department of Obstetrics and Gynecology, Qinghai Red Cross Hospital, Xining, Qinghai China
| | - Yang Yu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Tianzi Liu
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Ruoxuan Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yongna Gan
- Department of Obstetrics and Gynecology, Qinghai Red Cross Hospital, Xining, Qinghai China
| | - Baima Yuzheng
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Yongshu Huang
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Haikun Zhang
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoman Bi
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Chengcheng Tao
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Shujuan Lai
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoxia Luo
- The Third People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Dake Zhang
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China.,Beijing Advanced Innovation Centre for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Engineering Medicine, Beihang University, Beijing, China
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pingcuo Zhaxi
- The Third People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Jianqing Zhang
- Department of Obstetrics and Gynecology, The Second People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Changqing Zeng
- The Key Laboratory of Precision and Genomic Medicine, Chinese Academy of Sciences; Beijing Institute of Genomics (China National Center for Bioinformation); University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Wan Y, Zhu D, He B, Guo Y, Wang L, Dingda D, Laji A, Wang C, Zhang Y, Gao F. Protective effect of a chronic hypobaric hypoxic environment at high altitude on cardiotoxicity induced by doxorubicin in rats: a 7 T magnetic resonance study. Quant Imaging Med Surg 2022; 12:711-725. [PMID: 34993113 DOI: 10.21037/qims-21-360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/06/2021] [Indexed: 02/05/2023]
Abstract
Background Doxorubicin (DOX)-induced cardiotoxicity (DIC), a major clinical problem, has no effective preventive therapies. We hypothesized that left ventricular (LV) systolic function would be improved in a chronic hypobaric hypoxia environment at high altitude. The purpose of this study was to investigate whether cardiovascular magnetic resonance could reveal the cardioprotective effect of chronic hypobaric hypoxia on DIC. Methods In total, 60 rats were randomly assigned to 1 of 6 groups (n=10 per group): the P group (plain), PD group (plain + DOX), HH group (high altitude), HHD4 group (high altitude + DOX for 4 weeks), HHD8 group (high altitude + DOX for 8 weeks), and HHD12 group (high altitude + DOX for 12 weeks). The rats were transported to either Yushu (altitude: 4,250 m) or Chengdu (altitude: 500 m) where they underwent intraperitoneal injection of DOX (5 mg/kg/week for 3 weeks) or saline. Preclinical 7 T cardiovascular magnetic resonance was performed at weeks 4, 8, and 12. Tissue tracking was used to measure LV cardiac function and to analyze global and segmental strains. Subsequently, histological and oxidative stress tests were performed to evaluate the protective effect of a high-altitude environment on DIC. Results The left ventricular ejection fraction (LVEF) and global and regional strains in the middle, apical, anterior, septal, inferior, and lateral segments (all P<0.05) were improved in the HHD4 group compared with the PD group. The global strain was significantly greater in absolute value in the HHD8 and HHD12 groups than in the HHD4 group (all P<0.05). Additionally, histological and enzyme-linked immunosorbent assay evaluations supported the in vivo results. Conclusions A chronic hypobaric and hypoxic environment at high altitude partially prevented cardiac dysfunction and increased global and regional strain in DIC rat models, thereby minimizing myocardial injury and fibrosis. In addition, by increasing the total duration of chronic hypobaric hypoxia, the global strain was further increased, which was likely due to reduced oxidative stress.
Collapse
Affiliation(s)
- Yixuan Wan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Dongyong Zhu
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Bo He
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Guo
- Department of Radiology, Yushu People's Hospital, Qinghai, China
| | - Lei Wang
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, China
| | - Duojie Dingda
- Department of Radiology, Yushu People's Hospital, Qinghai, China
| | - Angwen Laji
- Department of Clinical Laboratory, Yushu People's Hospital, Yushu, China
| | - Chunhua Wang
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, China
| | - Yonghai Zhang
- Department of Radiology, The Fifth People's Hospital of Qinghai Province, Xining, China
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Sharma HS, Lafuente JV, Feng L, Muresanu DF, Menon PK, Castellani RJ, Nozari A, Sahib S, Tian ZR, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma A. Methamphetamine exacerbates pathophysiology of traumatic brain injury at high altitude. Neuroprotective effects of nanodelivery of a potent antioxidant compound H-290/51. PROGRESS IN BRAIN RESEARCH 2021; 266:123-193. [PMID: 34689858 DOI: 10.1016/bs.pbr.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel are often exposed to high altitude (HA, ca. 4500-5000m) for combat operations associated with neurological dysfunctions. HA is a severe stressful situation and people frequently use methamphetamine (METH) or other psychostimulants to cope stress. Since military personnel are prone to different kinds of traumatic brain injury (TBI), in this review we discuss possible effects of METH on concussive head injury (CHI) at HA based on our own observations. METH exposure at HA exacerbates pathophysiology of CHI as compared to normobaric laboratory environment comparable to sea level. Increased blood-brain barrier (BBB) breakdown, edema formation and reductions in the cerebral blood flow (CBF) following CHI were exacerbated by METH intoxication at HA. Damage to cerebral microvasculature and expression of beta catenin was also exacerbated following CHI in METH treated group at HA. TiO2-nanowired delivery of H-290/51 (150mg/kg, i.p.), a potent chain-breaking antioxidant significantly enhanced CBF and reduced BBB breakdown, edema formation, beta catenin expression and brain pathology in METH exposed rats after CHI at HA. These observations are the first to point out that METH exposure in CHI exacerbated brain pathology at HA and this appears to be related with greater production of oxidative stress induced brain pathology, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
8
|
Szpiech ZA, Novak TE, Bailey NP, Stevison LS. Application of a novel haplotype-based scan for local adaptation to study high-altitude adaptation in rhesus macaques. Evol Lett 2021; 5:408-421. [PMID: 34367665 PMCID: PMC8327953 DOI: 10.1002/evl3.232] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/24/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022] Open
Abstract
When natural populations split and migrate to different environments, they may experience different selection pressures that can lead to local adaptation. To capture the genomic patterns of a local selective sweep, we develop XP-nSL, a genomic scan for local adaptation that compares haplotype patterns between two populations. We show that XP-nSL has power to detect ongoing and recently completed hard and soft sweeps, and we then apply this statistic to search for evidence of adaptation to high altitude in rhesus macaques. We analyze the whole genomes of 23 wild rhesus macaques captured at high altitude (mean altitude > 4000 m above sea level) to 22 wild rhesus macaques captured at low altitude (mean altitude < 500 m above sea level) and find evidence of local adaptation in the high-altitude population at or near 303 known genes and several unannotated regions. We find the strongest signal for adaptation at EGLN1, a classic target for convergent evolution in several species living in low oxygen environments. Furthermore, many of the 303 genes are involved in processes related to hypoxia, regulation of ROS, DNA damage repair, synaptic signaling, and metabolism. These results suggest that, beyond adapting via a beneficial mutation in one single gene, adaptation to high altitude in rhesus macaques is polygenic and spread across numerous important biological systems.
Collapse
Affiliation(s)
- Zachary A Szpiech
- Department of Biology Pennsylvania State University University Park Pennsylvania 16801.,Institute for Computational and Data Sciences Pennsylvania State University University Park Pennsylvania 16801.,Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Taylor E Novak
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Nick P Bailey
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| | - Laurie S Stevison
- Department of Biological Sciences Auburn University Auburn Ala 36842 USA
| |
Collapse
|
9
|
Gaur P, Prasad S, Kumar B, Sharma SK, Vats P. High-altitude hypoxia induced reactive oxygen species generation, signaling, and mitigation approaches. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:601-615. [PMID: 33156424 DOI: 10.1007/s00484-020-02037-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Homeostasis between pro-oxidants and anti-oxidants is necessary for aerobic life, which if perturbed and shifted towards pro-oxidants results in oxidative stress. It is generally agreed that reactive oxygen species (ROS) production is accelerated with mountainous elevation, which may play a role in spawning serious health crisis. Exposure to increasing terrestrial altitude leads to a reduction in ambient O2 availability in cells producing a series of hypoxic oxidative stress reactions and altering the redox balance in humans. Enormous literature on redox signaling drove research activity towards understanding the role of oxidative stress under normal and challenging conditions like high-altitude hypoxia which grounds for disturbed redox signaling. Excessive ROS production and accumulation of free radicals in cells and tissues can cause various pulmonary, cardiovascular, and metabolic pathophysiological conditions. In order to counteract this oxidative stress and maintain the balance of pro-oxidants and anti-oxidants, an anti-oxidant system exists in the human body, which, however, gets surpassed by elevated ROS levels, but can be strengthened through the use of anti-oxidant supplements. Such cumulative studies of fundamentals on a global concept like oxidative stress and role of anti-oxidants can act as a foundation to further smoothen for researchers to study over health, disease, and other pathophysiological conditions. This review highlights the interconnection between high altitude and oxidative stress and the role of anti-oxidants to protect cells from oxidative damages and to lower the risk of altitude-associated sickness.
Collapse
Affiliation(s)
- Priya Gaur
- Endocrinology & Metabolism Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Lucknow Road, Timarpur, Delhi, 110054,, India
| | - Suchita Prasad
- Department of Chemistry, University of Delhi, Delhi, 110007,, India
| | - Bhuvnesh Kumar
- Endocrinology & Metabolism Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Lucknow Road, Timarpur, Delhi, 110054,, India
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi, 110007,, India.
| | - Praveen Vats
- Endocrinology & Metabolism Division, Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Lucknow Road, Timarpur, Delhi, 110054,, India.
| |
Collapse
|
10
|
Ashour AA. High Altitude and Its Effects on Oral Health: A Review of Literature. JOURNAL OF ADVANCED ORAL RESEARCH 2020. [DOI: 10.1177/2320206820942401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Health deterioration at high altitudes is related to many pathophysiological processes. The literature contains much evidence describing the multiple factors responsible for this deterioration, including hypoxia, decreased oxygen saturation, and decreased barometric pressure. An increase in the levels of oxidative stress at high altitudes can lead to many serious health events, although the human body may be able to adapt to such changes in the case of people who are accustomed to living at a high altitude. The pathophysiological processes at high altitudes also have adverse effects on oral tissue health. The aim of this review is to summarize the major published findings about oral health deterioration of living in and travelling to high-altitude areas. Most studies have noted the adverse effects of prolonged exposure to hypoxia at high altitudes on oral tissues, including the salivary gland, periodontal tissue, gingival crevicular fluids, and jawbone. These changes include increases in the levels of inflammatory mediators and periodontal inflammation parameters. In addition, the incidence and severity of dental fluorosis is higher in residents of high-altitude areas. Abrupt changes in barometric pressure in people who travel to high altitudes may cause dental barotrauma and appear to increase sensitivity to pain (barodontalgia). In conclusion, it is important to consider that travelling to and living in high-altitude areas is a possible risk factor for multiple oral diseases.
Collapse
Affiliation(s)
- Amal Adnan Ashour
- Department of Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Hail, Saudi Arabia
| |
Collapse
|
11
|
Bhandari S, Cavalleri GL. Population History and Altitude-Related Adaptation in the Sherpa. Front Physiol 2019; 10:1116. [PMID: 31555147 PMCID: PMC6722185 DOI: 10.3389/fphys.2019.01116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/12/2019] [Indexed: 12/29/2022] Open
Abstract
The first ascent of Mount Everest by Tenzing Norgay and Sir Edmund Hillary in 1953 brought global attention to the Sherpa people and human performance at altitude. The Sherpa inhabit the Khumbu Valley of Nepal, and are descendants of a population that has resided continuously on the Tibetan plateau for the past ∼25,000 to 40,000 years. The long exposure of the Sherpa to an inhospitable environment has driven genetic selection and produced distinct adaptive phenotypes. This review summarizes the population history of the Sherpa and their physiological and genetic adaptation to hypoxia. Genomic studies have identified robust signals of positive selection across EPAS1, EGLN1, and PPARA, that are associated with hemoglobin levels, which likely protect the Sherpa from altitude sickness. However, the biological underpinnings of other adaptive phenotypes such as birth weight and the increased reproductive success of Sherpa women are unknown. Further studies are required to identify additional signatures of selection and refine existing Sherpa-specific adaptive phenotypes to understand how genetic factors have underpinned adaptation in this population. By correlating known and emerging signals of genetic selection with adaptive phenotypes, we can further reveal hypoxia-related biological mechanisms of adaptation. Ultimately this work could provide valuable information regarding treatments of hypoxia-related illnesses including stroke, heart failure, lung disease and cancer.
Collapse
Affiliation(s)
- Sushil Bhandari
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
12
|
Dantzger DD, Jonsson CM, Aoyama H. Mixtures of diflubenzuron and p-chloroaniline changes the activities of enzymes biomarkers on tilapia fish (Oreochromis niloticus) in the presence and absence of soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:367-376. [PMID: 29096263 DOI: 10.1016/j.ecoenv.2017.10.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 10/11/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
The insecticide Diflubenzuron (DFB), used by many fish farming, when metabolized or degraded produces the extremely toxic compound p-chloroaniline (PCA). Once in the aquatic environment, these compounds can form mixtures and their bioavailability depends on factors such as the presence of soil. The toxic effects of the isolated compounds and their mixtures in the proportions: 75%, 50%, and 25% of PCA were analyzed in tilapia (Oreochromis niloticus) in the presence and absence of soil after 96h. The enzymes catalase (CAT), acid (AcP) and alkaline (AlP) phosphatases and alanine (ALT) and aspartate (AST) aminotransferases of the liver of the tilapia (Oreochromis niloticus) were used as biomarkers. DFB and the mixture containing 75% of this compound did not present high toxicity to fish; however, 25mg/L of PCA alone and 15mg/L of the mixture with 75% of this compound promoted 50% mortality of tilapia (Oreochromis niloticus). In the presence of soil, these toxicity values decreased to 37 and 25mg/L, respectively. Independent of the presence of soil, a synergistic effect was observed when the proportion of PCA was 75% and to the mixture, with 25% PCA was observed the antagonistic effect. Different concentrations of the compounds and their mixtures induced CAT activity independently of the presence of soil. Additionally, increases in phosphatases and transaminases activities were observed. In some cases, the enzymes also had their activities decreased and the dose-dependence effects were not observed. This research showed that the presence of soil influenced the toxicity of the compounds but not altered interaction type among them. Diflubenzuron, p-chloroaniline, and mixtures thereof caused disorders in enzymes important for the health of tilapia (Oreochromis niloticus).
Collapse
Affiliation(s)
- Darlene D Dantzger
- Laboratório de Enzimologia, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), SP, Brazil
| | - Claudio M Jonsson
- Laboratório de Ecotoxicologia e Biossegurança, EMBRAPA Meio Ambiente, Jaguariúna, SP, Brazil
| | - Hiroshi Aoyama
- Laboratório de Enzimologia, Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), SP, Brazil.
| |
Collapse
|