1
|
AlKhaleefa A, Snider FL, Duff HJ, McGhee JD. -Using the C. elegans lem-2 Gene to Reconstruct the Human LEMD2 Mutation Associated with Hutterite-type Cataract/Cardiomyopathy. MICROPUBLICATION BIOLOGY 2020; 2020. [PMID: 32666044 PMCID: PMC7351585 DOI: 10.17912/micropub.biology.000273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ayaa AlKhaleefa
- 1. Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta CANADA
| | - Frances L Snider
- 1. Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta CANADA
| | - Henry J Duff
- Cardiac Sciences, Libin Cardiology Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta CANADA
| | - James D McGhee
- 1. Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta CANADA
| |
Collapse
|
2
|
Abdelfatah N, Chen R, Duff HJ, Seifer CM, Buffo I, Huculak C, Clarke S, Clegg R, Jassal DS, Gordon PMK, Ober C, Frosk P, Gerull B. Characterization of a Unique Form of Arrhythmic Cardiomyopathy Caused by Recessive Mutation in LEMD2. JACC Basic Transl Sci 2019; 4:204-221. [PMID: 31061923 PMCID: PMC6488817 DOI: 10.1016/j.jacbts.2018.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/02/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023]
Abstract
Nuclear envelope proteins have been shown to play an important role in the pathogenesis of inherited dilated cardiomyopathy. Here, we present a remarkable cardiac phenotype caused by a homozygous LEMD2 mutation in patients of the Hutterite population with juvenile cataract. Mutation carriers develop arrhythmic cardiomyopathy with mild impairment of left ventricular systolic function but severe ventricular arrhythmias leading to sudden cardiac death. Affected cardiac tissue from a deceased patient and fibroblasts exhibit elongated nuclei with abnormal condensed heterochromatin at the periphery. The patient fibroblasts demonstrate cellular senescence and reduced proliferation capacity, which may suggest an involvement of LEM domain containing protein 2 in chromatin remodeling processes and premature aging.
Collapse
Key Words
- ACM, arrhythmogenic cardiomyopathy
- BANF, barrier to autointegration factor
- CMR, cardiac magnetic resonance
- DAPI, 4′,6′-diamidino-2-phenylindole
- DCM, dilated cardiomyopathy
- DNA, deoxyribonucleic acid
- EMD, emerin
- ICD, implantable cardioverter-defibrillator
- LEMD2
- LEMD2, LEM domain containing protein 2
- LGE, late gadolinium enhancement
- LMNA, lamin A/C
- LV, left ventricular
- NE, nuclear envelope
- P, passage
- PBS, phosphate-buffered saline
- SAHF, senescence-associated heterochromatin foci
- SNV, single nucleotide variant
- chromatin remodeling
- dilated cardiomyopathy
- eGFP, enhanced green fluorescent protein
- inner nuclear membrane
- sudden death
Collapse
Affiliation(s)
- Nelly Abdelfatah
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ruping Chen
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Henry J Duff
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colette M Seifer
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ilan Buffo
- Variety Children's Heart Centre, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Cathleen Huculak
- Department of Medical Genetics, Alberta Health Services, Calgary, Alberta, Canada
| | - Stephanie Clarke
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robin Clegg
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Davinder S Jassal
- Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Paul M K Gordon
- Cumming School of Medicine Centre for Health Genomics and Informatics, University of Calgary, Calgary, Alberta, Canada
| | - Carole Ober
- Department of Human Genetics, The University of Chicago, Chicago, Illinois
| | | | - Patrick Frosk
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Pediatrics and Child Health, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Brenda Gerull
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany.,Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Boone PM, Yuan B, Gu S, Ma Z, Gambin T, Gonzaga-Jauregui C, Jain M, Murdock TJ, White JJ, Jhangiani SN, Walker K, Wang Q, Muzny DM, Gibbs RA, Hejtmancik JF, Lupski JR, Posey JE, Lewis RA. Hutterite-type cataract maps to chromosome 6p21.32-p21.31, cosegregates with a homozygous mutation in LEMD2, and is associated with sudden cardiac death. Mol Genet Genomic Med 2015; 4:77-94. [PMID: 26788539 PMCID: PMC4707028 DOI: 10.1002/mgg3.181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Juvenile-onset cataracts are known among the Hutterites of North America. Despite being identified over 30 years ago, this autosomal recessive condition has not been mapped, and the disease gene is unknown. METHODS We performed whole exome sequencing of three Hutterite-type cataract trios and follow-up genotyping and mapping in four extended kindreds. RESULTS Trio exomes enabled genome-wide autozygosity mapping, which localized the disease gene to a 9.5-Mb region on chromosome 6p. This region contained two candidate variants, LEMD2 c.T38G and MUC21 c.665delC. Extended pedigrees recruited for variant genotyping revealed multiple additional relatives with juvenile-onset cataract, as well as six deceased relatives with both cataracts and sudden cardiac death. The candidate variants were genotyped in 84 family members, including 17 with cataracts; only the variant in LEMD2 cosegregated with cataracts (LOD = 9.62). SNP-based fine mapping within the 9.5 Mb linked region supported this finding by refining the cataract locus to a 0.5- to 2.9-Mb subregion (6p21.32-p21.31) containing LEMD2 but not MUC21. LEMD2 is expressed in mouse and human lenses and encodes a LEM domain-containing protein; the c.T38G missense mutation is predicted to mutate a highly conserved residue within this domain (p.Leu13Arg). CONCLUSION We performed a genetic and genomic study of Hutterite-type cataract and found evidence for an association of this phenotype with sudden cardiac death. Using combined genetic and genomic approaches, we mapped cataracts to a small portion of chromosome 6 and propose that they result from a homozygous missense mutation in LEMD2.
Collapse
Affiliation(s)
- Philip M Boone
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Bo Yuan
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Shen Gu
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Zhiwei Ma
- Ophthalmic Genetics and Visual Function Branch National Eye Institute Rockville Maryland
| | - Tomasz Gambin
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | | | - Mahim Jain
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | | | - Janson J White
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | | | - Kimberly Walker
- Human Genome Sequencing Center Baylor College of Medicine Houston Texas
| | - Qiaoyan Wang
- Human Genome Sequencing Center Baylor College of Medicine Houston Texas
| | - Donna M Muzny
- Human Genome Sequencing Center Baylor College of Medicine Houston Texas
| | - Richard A Gibbs
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas; Human Genome Sequencing CenterBaylor College of MedicineHoustonTexas
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch National Eye Institute Rockville Maryland
| | - James R Lupski
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas; Human Genome Sequencing CenterBaylor College of MedicineHoustonTexas; Department of PediatricsBaylor College of MedicineHoustonTexas; Texas Children's HospitalHoustonTexas
| | - Jennifer E Posey
- Department of Molecular and Human Genetics Baylor College of Medicine Houston Texas
| | - Richard A Lewis
- Department of Molecular and Human GeneticsBaylor College of MedicineHoustonTexas; Department of PediatricsBaylor College of MedicineHoustonTexas; Texas Children's HospitalHoustonTexas; Department of OphthalmologyBaylor College of MedicineHoustonTexas; Department of MedicineBaylor College of MedicineHoustonTexas
| |
Collapse
|
4
|
Sherwin JC, Hewitt AW, Ruddle JB, Mackey DA. Genetic isolates in ophthalmic diseases. Ophthalmic Genet 2008; 29:149-61. [PMID: 19005985 DOI: 10.1080/13816810802334341] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In recent years, noteworthy gains have been made in unravelling the genetic contribution to some complex ocular diseases, principally age-related macular degeneration. Yet, a relatively poor understanding of the genetic aetiology for many other heritable blinding diseases, such as glaucoma, keratoconus and myopia, remains. Genetic isolates, populations with varying degrees of geographical or cultural seclusion, provide an effective means for investigating the molecular mechanisms involved in human diseases. This is particularly true for rare diseases in which founded alleles can be rapidly driven to a high frequency due to restriction of gene flow in the population. Recent success in complex gene mapping has resulted from the widened linkage disequilibrium (LD) in the genome of genetically isolated populations. An improved understanding of the predisposing genetic risk factors allows for enhanced screening modalities and paves the foundations for the translation of genomic technology into the clinic. This review focuses on the role population isolates have had in the investigation of genes underlying complex eye diseases and discusses their likely usefulness given the expansion of large-scale case-control association studies.
Collapse
Affiliation(s)
- Justin C Sherwin
- Department of Ophthalmology, Centre for Eye Research Australia, University of Melbourne, elbourne, Australia
| | | | | | | |
Collapse
|
5
|
Boycott KM, Parboosingh JS, Chodirker BN, Lowry RB, McLeod DR, Morris J, Greenberg CR, Chudley AE, Bernier FP, Midgley J, Møller LB, Innes AM. Clinical genetics and the Hutterite population: A review of Mendelian disorders. Am J Med Genet A 2008; 146A:1088-98. [DOI: 10.1002/ajmg.a.32245] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Forsius H, Arentz-Grastvedt B, Eriksson AW. Juvenile cataract with autosomal recessive inheritance. A study from the Aland Islands, Finland. Acta Ophthalmol 1992; 70:26-32. [PMID: 1557971 DOI: 10.1111/j.1755-3768.1992.tb02088.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Juvenile (including congenital and infantile) cataract occurs commonly as part of a more generalized or systematic condition, or as a component of a syndrome. Isolated juvenile cataract is a relatively rare disorder and the mode of inheritance is often autosomal dominant. Autosomal recessive transmission of isolated juvenile cataract is rare. The present paper is a report of 15 cases of juvenile cataract on the Aland Islands (Finland) with about 23,000 inhabitants. Twelve belong to 7 sibships of two different pedigrees and 3 cases are sporadic, of which we have found no genealogical connections in the last 6-10 generations to the two cataracta pedigrees. One of the sporadic cases presented an operated cleft palate and a chromosomal anomaly. In another sporadic case the mother probably had been infected with rubella during early gestation. In the third sporadic case the cataract was combined with partial aniridia, but he has several genealogical connections to one of the cataract pedigrees. Consanguinity between the parents was detected in 5 of the 7 sibships, in some even on various ancestral levels. Apart from the cataracts, all patients were healthy, with normal intellect, behavior, hearing, growth and development. They were neurologically intact and there were no ocular lesions apart from cataract. In the Alandic familial cases the cataracts appear to be an autosomal recessive trait. A family branch originating from southwestern Sweden and south Norway showed transmission of the cataract in three successive generations. The possibility of quasi-dominant inheritance is discussed against the background that autosomal recessive juvenile cataract may not be so rare as the small number of recorded cases would suggest.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H Forsius
- Population Genetics Unit, Folkhälsan Institute of Genetics, Helsinki, Finland
| | | | | |
Collapse
|
7
|
Pearce WG, Mackay JA, Holmes TM, Morgan K, Fowlow SB, Shokeir MH, Lowry RB. Autosomal recessive juvenile cataract in Hutterites. OPHTHALMIC PAEDIATRICS AND GENETICS 1987; 8:119-24. [PMID: 3658338 DOI: 10.3109/13816818709028527] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Autosomal recessive inheritance of juvenile cataract is described amongst several related sibships of Lehrerleut Hutterites. The main features of the cataract include onset between three and seven years of age; rapid progression to maturity within one to three months; normal intelligence; no systemic associations, and no urinary reducing substances and normal erythrocyte galactokinase activity. Genetic analysis demonstrates the close relationship between parents of affected sibships with a coefficient of inbreeding of affected sibships of 0.0512. Estimates of heterozygote frequency within Lehrerleut Hutterites at 0.128 indicate that if current inbreeding practice continues additional cases can be expected.
Collapse
Affiliation(s)
- W G Pearce
- Department of Ophthalmology, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | |
Collapse
|