1
|
Li MW, Chang SJ, Chang HH, Yang SSD. Role of Phenylethanolamine-N-methyltransferase on Nicotine-Induced Vasodilation in Rat Cerebral Arteries. Microcirculation 2024; 31:e12858. [PMID: 38837563 DOI: 10.1111/micc.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/28/2023] [Accepted: 04/22/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE The sympathetic-parasympathetic (or axo-axonal) interaction mechanism mediated that neurogenic relaxation, which was dependent on norepinephrine (NE) releases from sympathetic nerve terminal and acts on β2-adrenoceptor of parasympathetic nerve terminal, has been reported. As NE is a weak β2-adrenoceptor agonist, there is a possibility that synaptic NE is converted to epinephrine by phenylethanolamine-N-methyltransferase (PNMT) and then acts on the β2-adrenoceptors to induce neurogenic vasodilation. METHODS Blood vessel myography technique was used to measure relaxation and contraction responses of isolated basilar arterial rings of rats. RESULTS Nicotine-induced relaxation was sensitive to propranolol, guanethidine (an adrenergic neuronal blocker), and Nω-nitro-l-arginine. Nicotine- and exogenous NE-induced vasorelaxation was partially inhibited by LY-78335 (a PNMT inhibitor), and transmural nerve stimulation depolarized the nitrergic nerve terminal directly and was not inhibited by LY-78335; it then induced the release of nitric oxide (NO). Epinephrine-induced vasorelaxation was not affected by LY-78335. However, these vasorelaxations were completely inhibited by atenolol (a β1-adrenoceptor antagonist) combined with ICI-118,551 (a β2-adrenoceptor antagonist). CONCLUSIONS These results suggest that NE may be methylated by PNMT to form epinephrine and cause the release of NO and vasodilation. These results provide further evidence supporting the physiological significance of the axo-axonal interaction mechanism in regulating brainstem vascular tone.
Collapse
Affiliation(s)
- Ming-Wei Li
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, New Taipei, Taiwan
| | - Shang-Jen Chang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsi-Hsien Chang
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, New Taipei, Taiwan
| | - Stephen Shei-Dei Yang
- Division of Urology, Department of Surgery, Taipei Tzu Chi Hospital, New Taipei, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Taipei Tzu Chi Hospital, Buddhist Medical Foundation, New Taipei, Taiwan
| |
Collapse
|
2
|
The regulatory role of AP-2β in monoaminergic neurotransmitter systems: insights on its signalling pathway, linked disorders and theragnostic potential. Cell Biosci 2022; 12:151. [PMID: 36076256 PMCID: PMC9461128 DOI: 10.1186/s13578-022-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractMonoaminergic neurotransmitter systems play a central role in neuronal function and behaviour. Dysregulation of these systems gives rise to neuropsychiatric and neurodegenerative disorders with high prevalence and societal burden, collectively termed monoamine neurotransmitter disorders (MNDs). Despite extensive research, the transcriptional regulation of monoaminergic neurotransmitter systems is not fully explored. Interestingly, certain drugs that act on these systems have been shown to modulate central levels of the transcription factor AP-2 beta (AP-2β, gene: TFAP2Β). AP-2β regulates multiple key genes within these systems and thereby its levels correlate with monoamine neurotransmitters measures; yet, its signalling pathways are not well understood. Moreover, although dysregulation of TFAP2Β has been associated with MNDs, the underlying mechanisms for these associations remain elusive. In this context, this review addresses AP-2β, considering its basic structural aspects, regulation and signalling pathways in the controlling of monoaminergic neurotransmitter systems, and possible mechanisms underpinning associated MNDS. It also underscores the significance of AP-2β as a potential diagnostic biomarker and its potential and limitations as a therapeutic target for specific MNDs as well as possible pharmaceutical interventions for targeting it. In essence, this review emphasizes the role of AP-2β as a key regulator of the monoaminergic neurotransmitter systems and its importance for understanding the pathogenesis and improving the management of MNDs.
Collapse
|
3
|
Saxena S, Murthy TPK, Chandramohan V, Achyuth S, Maansi M, Das P, Sineagha V, Prakash S. In-silico analysis of deleterious single nucleotide polymorphisms of PNMT gene. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2094922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sidharth Saxena
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | | | - Vivek Chandramohan
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, India
| | - Sai Achyuth
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | - M. Maansi
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | - Papiya Das
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | - V. Sineagha
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| | - Sriraksha Prakash
- Department of Biotechnology, Ramaiah Institute of Technology, Bengaluru, India
| |
Collapse
|
4
|
Insights into S-adenosyl-l-methionine (SAM)-dependent methyltransferase related diseases and genetic polymorphisms. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108396. [PMID: 34893161 DOI: 10.1016/j.mrrev.2021.108396] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/11/2022]
Abstract
Enzymatic methylation catalyzed by methyltransferases has a significant impact on many human biochemical reactions. As the second most ubiquitous cofactor in humans, S-adenosyl-l-methionine (SAM or AdoMet) serves as a methyl donor for SAM-dependent methyltransferases (MTases), which transfer a methyl group to a nucleophilic acceptor such as O, As, N, S, or C as the byproduct. SAM-dependent methyltransferases can be grouped into different types based on the substrates. Here we systematically reviewed eight types of methyltransferases associated with human diseases. Catechol O-methyltransferase (COMT), As(III) S-adenosylmethionine methyltransferase (AS3MT), indolethylamine N-methyltransferase (INMT), phenylethanolamine N-methyltransferase (PNMT), histamine N-methyltransferase (HNMT), nicotinamide N-methyltransferase (NNMT), thiopurine S-methyltransferase (TPMT) and DNA methyltansferase (DNMT) are classic SAM-dependent MTases. Correlations between genotypes and disease susceptibility can be partially explained by genetic polymorphisms. The physiological function, substrate specificity, genetic variants and disease susceptibility associated with these eight SAM-dependent methyltransferases are discussed in this review.
Collapse
|
5
|
Alam J, Sharma L. Potential Enzymatic Targets in Alzheimer's: A Comprehensive Review. Curr Drug Targets 2020; 20:316-339. [PMID: 30124150 DOI: 10.2174/1389450119666180820104723] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/23/2018] [Accepted: 08/15/2018] [Indexed: 12/13/2022]
Abstract
Alzheimer's, a degenerative cause of the brain cells, is called as a progressive neurodegenerative disease and appears to have a heterogeneous etiology with main emphasis on amyloid-cascade and hyperphosphorylated tau-cascade hypotheses, that are directly linked with macromolecules called enzymes such as β- & γ-secretases, colinesterases, transglutaminases, and glycogen synthase kinase (GSK-3), cyclin-dependent kinase (cdk-5), microtubule affinity-regulating kinase (MARK). The catalytic activity of the above enzymes is the result of cognitive deficits, memory impairment and synaptic dysfunction and loss, and ultimately neuronal death. However, some other enzymes also lead to these dysfunctional events when reduced to their normal activities and levels in the brain, such as α- secretase, protein kinase C, phosphatases etc; metabolized to neurotransmitters, enzymes like monoamine oxidase (MAO), catechol-O-methyltransferase (COMT) etc. or these abnormalities can occur when enzymes act by other mechanisms such as phosphodiesterase reduces brain nucleotides (cGMP and cAMP) levels, phospholipase A2: PLA2 is associated with reactive oxygen species (ROS) production etc. On therapeutic fronts, several significant clinical trials are underway by targeting different enzymes for development of new therapeutics to treat Alzheimer's, such as inhibitors for β-secretase, GSK-3, MAO, phosphodiesterase, PLA2, cholinesterases etc, modulators of α- & γ-secretase activities and activators for protein kinase C, sirtuins etc. The last decades have perceived an increasing focus on findings and search for new putative and novel enzymatic targets for Alzheimer's. Here, we review the functions, pathological roles, and worth of almost all the Alzheimer's associated enzymes that address to therapeutic strategies and preventive approaches for treatment of Alzheimer's.
Collapse
Affiliation(s)
- Jahangir Alam
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., Pin 173229, India
| | - Lalit Sharma
- School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., Pin 173229, India
| |
Collapse
|
6
|
Sadhu N, Jhun EH, Posen A, Yao Y, He Y, Molokie RE, Wilkie DJ, Wang ZJ. Phenylethanolamine N-methyltransferase gene polymorphisms associate with crisis pain in sickle cell disease patients. Pharmacogenomics 2020; 21:269-278. [PMID: 32162598 DOI: 10.2217/pgs-2019-0096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Phenylethanolamine N-methyltransferase (PNMT) catalyzes the conversion of sympathetic neurotransmitter norepinephrine to epinephrine. We examined the association of PNMT polymorphisms with acute and chronic pain in sickle cell disease (SCD). Methods: Utilization of emergency care owing to painful crisis was used as a marker for acute pain in 131 patients with SCD. Results: rs876493 A allele, rs2934965 T allele and rs2941523 G allele were significantly associated with decreased utilization (p ≤ 0.05). rs876493 A allele showed association with utilization in females (p = 0.003), not males (p = 0.803). rs2934965 T allele and rs2941523 G allele were predicted to cause loss of putative transcription factor binding sites. This is the first report of the association of PNMT polymorphisms with acute crisis pain in SCD. Together with our previous findings in catechol-o-methyltransferase, polymorphisms in catecholamine metabolizing enzymes appear to primarily influence acute pain in SCD.
Collapse
Affiliation(s)
- Nilanjana Sadhu
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60607, USA
| | - Ellie H Jhun
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60607, USA
| | - Andrew Posen
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60607, USA
| | - Yingwei Yao
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, FL, USA
| | - Ying He
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60607, USA.,Comprehensive Sickle Cell Center, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Robert E Molokie
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60607, USA.,Comprehensive Sickle Cell Center, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Jesse Brown Veteran's Administration Medical Center, Chicago, IL, USA.,Division of Hematology/Oncology, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Diana J Wilkie
- Department of Biobehavioral Nursing Science, University of Florida College of Nursing, Gainesville, FL, USA
| | - Zaijie J Wang
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago College of Pharmacy, Chicago, IL 60607, USA.,Comprehensive Sickle Cell Center, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Jung J, Kim LJ, Wang X, Wu Q, Sanvoranart T, Hubert CG, Prager BC, Wallace LC, Jin X, Mack SC, Rich JN. Nicotinamide metabolism regulates glioblastoma stem cell maintenance. JCI Insight 2017; 2:90019. [PMID: 28515364 DOI: 10.1172/jci.insight.90019] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 04/18/2017] [Indexed: 12/29/2022] Open
Abstract
Metabolic dysregulation promotes cancer growth through not only energy production, but also epigenetic reprogramming. Here, we report that a critical node in methyl donor metabolism, nicotinamide N-methyltransferase (NNMT), ranked among the most consistently overexpressed metabolism genes in glioblastoma relative to normal brain. NNMT was preferentially expressed by mesenchymal glioblastoma stem cells (GSCs). NNMT depletes S-adenosyl methionine (SAM), a methyl donor generated from methionine. GSCs contained lower levels of methionine, SAM, and nicotinamide, but they contained higher levels of oxidized nicotinamide adenine dinucleotide (NAD+) than differentiated tumor cells. In concordance with the poor prognosis associated with DNA hypomethylation in glioblastoma, depletion of methionine, a key upstream methyl group donor, shifted tumors toward a mesenchymal phenotype and accelerated tumor growth. Targeting NNMT expression reduced cellular proliferation, self-renewal, and in vivo tumor growth of mesenchymal GSCs. Supporting a mechanistic link between NNMT and DNA methylation, targeting NNMT reduced methyl donor availability, methionine levels, and unmethylated cytosine, with increased levels of DNA methyltransferases, DNMT1 and DNMT3A. Supporting the clinical significance of these findings, NNMT portended poor prognosis for glioblastoma patients. Collectively, our findings support NNMT as a GSC-specific therapeutic target in glioblastoma by disrupting oncogenic DNA hypomethylation.
Collapse
Affiliation(s)
- Jinkyu Jung
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Leo Jy Kim
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine.,Medical Scientist Training Program, School of Medicine.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiuxing Wang
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Qiulian Wu
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tanwarat Sanvoranart
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christopher G Hubert
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Briana C Prager
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine.,Medical Scientist Training Program, School of Medicine.,Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lisa C Wallace
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Xun Jin
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stephen C Mack
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jeremy N Rich
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine
| |
Collapse
|
8
|
Wruck W, Schröter F, Adjaye J. Meta-Analysis of Transcriptome Data Related to Hippocampus Biopsies and iPSC-Derived Neuronal Cells from Alzheimer's Disease Patients Reveals an Association with FOXA1 and FOXA2 Gene Regulatory Networks. J Alzheimers Dis 2016; 50:1065-82. [PMID: 26890743 DOI: 10.3233/jad-150733] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the incidence of Alzheimer's disease (AD) is continuously increasing in the aging population worldwide, effective therapies are not available. The interplay between causative genetic and environmental factors is partially understood. Meta-analyses have been performed on aspects such as polymorphisms, cytokines, and cognitive training. Here, we propose a meta-analysis approach based on hierarchical clustering analysis of a reliable training set of hippocampus biopsies, which is condensed to a gene expression signature. This gene expression signature was applied to various test sets of brain biopsies and iPSC-derived neuronal cell models to demonstrate its ability to distinguish AD samples from control. Thus, our identified AD-gene signature may form the basis for determination of biomarkers that are urgently needed to overcome current diagnostic shortfalls. Intriguingly, the well-described AD-related genes APP and APOE are not within the signature because their gene expression profiles show a lower correlation to the disease phenotype than genes from the signature. This is in line with the differing characteristics of the disease as early-/late-onset or with/without genetic predisposition. To investigate the gene signature's systemic role(s), signaling pathways, gene ontologies, and transcription factors were analyzed which revealed over-representation of response to stress, regulation of cellular metabolic processes, and reactive oxygen species. Additionally, our results clearly point to an important role of FOXA1 and FOXA2 gene regulatory networks in the etiology of AD. This finding is in corroboration with the recently reported major role of the dopaminergic system in the development of AD and its regulation by FOXA1 and FOXA2.
Collapse
|
9
|
Metazoan innovation: from aromatic amino acids to extracellular signaling. Amino Acids 2013; 45:359-67. [PMID: 23690137 DOI: 10.1007/s00726-013-1509-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
Abstract
Tyrosine depletion in metazoan proteins was recently explained to be due to the appearance of tyrosine kinases in Metazoa. Here, we present a complementary explanation for the depletion of tyrosine, stating the importance of tyrosine in signaling not only as a phosphorylation target but also as a precursor for catecholamines and hormones. Molecules (dopamine, norepinephrine, and epinephrine, and to a lesser extent serotonin and melatonin) critical to metazoan multicellular signaling are also greatly dependent on a supply of tyrosine. These signaling molecules are synthesized in two highly linked pathways specific to metazoans. In addition, the shikimate pathway that non-metazoans use to synthesize the aromatic amino acids is not present in metazoans. These important pathway changes have occurred between Metazoa and other eukaryotes, causing significant changes to tyrosine metabolism and rendering tyrosine crucial for extracellular signaling. In addition, the evolutionary and functional linkage between these two pathways and the resulting implications for neuropathology are discussed.
Collapse
|
10
|
Affiliation(s)
- Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, DK 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
11
|
Huang C, Zhang S, Hu K, Ma Q, Yang T. Phenylethanolamine N-methyltransferase gene promoter haplotypes and risk of essential hypertension. Am J Hypertens 2011; 24:1222-6. [PMID: 21866188 DOI: 10.1038/ajh.2011.124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Phenylethanolamine N-methyltransferase gene (PNMT) catalyzes the synthesis of epinephrine and plays an important role in regulating cardiovascular function. Genetic variation in the PNMT promoter is reportedly associated with the risk of essential hypertension in certain population. METHODS In the present study, we explored the association of two common PNMT promoter single-nucleotide polymorphisms (SNPs) G-367A (rs3764351) and G-161A (rs876493) and their haplotypes with the risk of essential hypertension in a Han Chinese population, using 316 pairs of age-, sex-, and geographically matched essential hypertension patients and normotensive controls. RESULTS No significant difference in allele and genotype frequencies at either G-367A (rs3764351) or G-161A (rs876493) was observed between essential hypertension patients and normotensive controls. However, the 2-SNP AA haplotype was found significantly more common in normotensive controls than in essential hypertensive patients (P = 0.01; adjusted odds ratios, 0.17; 95% confidence interval, 0.05-0.58). CONCLUSIONS The 2-SNP AA haplotype in the PNMT promoter is associated with decreased risk of essential hypertension in Han Chinese. This is the first evidence of an association between a PNMT promoter haplotype and the risk of essential hypertension.
Collapse
|
12
|
Pérez-Alvarez A, Hernández-Vivanco A, Albillos A. Past, present and future of human chromaffin cells: role in physiology and therapeutics. Cell Mol Neurobiol 2010; 30:1407-15. [PMID: 21107679 PMCID: PMC11498861 DOI: 10.1007/s10571-010-9582-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/02/2010] [Indexed: 12/26/2022]
Abstract
Chromaffin cells are neuroendocrine cells mainly found in the medulla of the adrenal gland. Most existing knowledge of these cells has been the outcome of extensive research performed in animals, mainly in the cow, cat, mouse and rat. However, some insight into the physiology of this neuroendocrine cell in humans has been gained. This review summarizes the main findings reported in human chromaffin cells under physiological or disease conditions and discusses the clinical implications of these results.
Collapse
Affiliation(s)
- Alberto Pérez-Alvarez
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, c/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Alicia Hernández-Vivanco
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, c/Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Almudena Albillos
- Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, c/Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
13
|
Rutherford K, Daggett V. Polymorphisms and disease: hotspots of inactivation in methyltransferases. Trends Biochem Sci 2010; 35:531-8. [PMID: 20382027 DOI: 10.1016/j.tibs.2010.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/10/2010] [Accepted: 03/10/2010] [Indexed: 01/13/2023]
Abstract
Methyltransferases catalyze the methylation processes essential for protein/DNA repair, transcriptional regulation, and drug metabolism in vivo. More than 500 human methyltransferase polymorphisms have been identified, many of which are linked to disease. We mapped all available coding polymorphisms of seven methyltransferases onto their structures to address their structural significance, and identified a polymorphic hotspot ∼20Å from the active site in four of the proteins. Molecular dynamics simulations of these proteins reveal a common mechanism of destabilization: the mutations alter important side-chain contacts within the polymorphic site that are propagated through the protein, thereby distorting the active site. We propose that this hotspot might have arisen to modulate enzymatic activity, with decreased activity actually conferring an advantage in three of the four methyltransferases.
Collapse
Affiliation(s)
- Karen Rutherford
- Department of Biochemistry, Box 355013, University of Washington, Seattle WA 98195-5013, USA
| | | |
Collapse
|
14
|
Rodríguez-Flores JL, Zhang K, Kang SW, Wen G, Ghosh S, Friese RS, Mahata SK, Subramaniam S, Hamilton BA, O'Connor DT. Conserved regulatory motifs at phenylethanolamine N-methyltransferase (PNMT) are disrupted by common functional genetic variation: an integrated computational/experimental approach. Mamm Genome 2010; 21:195-204. [PMID: 20204374 PMCID: PMC2844968 DOI: 10.1007/s00335-010-9253-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 02/08/2010] [Indexed: 11/30/2022]
Abstract
The adrenomedullary hormone epinephrine transduces environmental stressors into cardiovascular events (tachycardia and hypertension). Although the epinephrine biosynthetic enzyme PNMT genetic locus displays both linkage and association to such traits, genetic variation underlying these quantitative phenotypes is not established. Using an integrated suite of computational and experimental approaches, we elucidate a functional mechanism for common (minor allele frequencies > 30%) genetic variants at PNMT. Transcription factor binding motif prediction on mammalian PNMT promoter alignments identified two variant regulatory motifs, SP1 and EGR1, disrupted by G-367A (rs3764351), and SOX17 motif created by G-161A (rs876493). Electrophoretic mobility shifts of approximately 30-bp oligonucleotides containing ancestral versus variant alleles validated the computational hypothesis. Queried against chromaffin cell nuclear protein extracts, only the G-367 and -161A alleles shifted. Specific antibodies applied in electrophoretic gel shift experiments confirmed binding of SP1 and EGR1 to G-367 and SOX17 to -161A. The in vitro allele-specific binding was verified in cella through promoter reporter assays: lower activity for -367A haplotypes cotransfected by SP1 (p = 0.002) and EGR1 (p = 0.034); and enhanced inhibition of -161A haplotypes (p = 0.0003) cotransfected with SP1 + SOX17. Finally, we probed cis/trans regulation with endogenous factors by chromatin immunoprecipitation using SP1/EGR1/SOX17 antibodies. We describe the systematic application of complementary computational and experimental techniques to detect and document functional genetic variation in a trait-associated regulatory region. The results provide insight into cis and trans transcriptional mechanisms whereby common variation at PNMT can give rise to quantitative changes in human physiological and disease traits. Thus, PNMT variants in cis may interact with nuclear factors in trans to govern adrenergic activity.
Collapse
Affiliation(s)
- Juan L Rodríguez-Flores
- Department of Medicine, Institute for Genomic Medicine, University of California at San Diego School of Medicine, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Kvetnansky R, Sabban EL, Palkovits M. Catecholaminergic systems in stress: structural and molecular genetic approaches. Physiol Rev 2009; 89:535-606. [PMID: 19342614 DOI: 10.1152/physrev.00042.2006] [Citation(s) in RCA: 363] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Stressful stimuli evoke complex endocrine, autonomic, and behavioral responses that are extremely variable and specific depending on the type and nature of the stressors. We first provide a short overview of physiology, biochemistry, and molecular genetics of sympatho-adrenomedullary, sympatho-neural, and brain catecholaminergic systems. Important processes of catecholamine biosynthesis, storage, release, secretion, uptake, reuptake, degradation, and transporters in acutely or chronically stressed organisms are described. We emphasize the structural variability of catecholamine systems and the molecular genetics of enzymes involved in biosynthesis and degradation of catecholamines and transporters. Characterization of enzyme gene promoters, transcriptional and posttranscriptional mechanisms, transcription factors, gene expression and protein translation, as well as different phases of stress-activated transcription and quantitative determination of mRNA levels in stressed organisms are discussed. Data from catecholamine enzyme gene knockout mice are shown. Interaction of catecholaminergic systems with other neurotransmitter and hormonal systems are discussed. We describe the effects of homotypic and heterotypic stressors, adaptation and maladaptation of the organism, and the specificity of stressors (physical, emotional, metabolic, etc.) on activation of catecholaminergic systems at all levels from plasma catecholamines to gene expression of catecholamine enzymes. We also discuss cross-adaptation and the effect of novel heterotypic stressors on organisms adapted to long-term monotypic stressors. The extra-adrenal nonneuronal adrenergic system is described. Stress-related central neuronal regulatory circuits and central organization of responses to various stressors are presented with selected examples of regulatory molecular mechanisms. Data summarized here indicate that catecholaminergic systems are activated in different ways following exposure to distinct stressful stimuli.
Collapse
Affiliation(s)
- Richard Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
16
|
Haavik J, Blau N, Thöny B. Mutations in human monoamine-related neurotransmitter pathway genes. Hum Mutat 2008; 29:891-902. [PMID: 18444257 DOI: 10.1002/humu.20700] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biosynthesis and metabolism of serotonin and catecholamines involve at least eight individual enzymes that are mainly expressed in tissues derived from the neuroectoderm, e.g., the central nervous system (CNS), pineal gland, adrenal medulla, enterochromaffin tissue, sympathetic nerves, and ganglia. Some of the enzymes appear to have additional biological functions and are also expressed in the heart and various other internal organs. The biosynthetic enzymes are tyrosine hydroxylase (TH), tryptophan hydroxylases type 1 and 2 (TPH1, TPH2), aromatic amino acid decarboxylase (AADC), dopamine beta-hydroxylase (DbetaH), and phenylethanolamine N-methyltransferase (PNMT), and the specific catabolic enzymes are monoamine oxidase A (MAO-A) and catechol O-methyltransferase (COMT). For the TH, DDC, DBH, and MAOA genes, many single nucleotide polymorphisms (SNPs) with unknown function, and small but increasing numbers of cases with autosomal recessive mutations have been recognized. For the remaining genes (TPH1, TPH2, PNMT, and COMT) several different genetic markers have been suggested to be associated with regulation of mood, pain perception, and aggression, as well as psychiatric disturbances such as schizophrenia, depression, suicidality, and attention deficit/hyperactivity disorder. The genetic markers may either have a functional role of their own, or be closely linked to other unknown functional variants. In the future, molecular testing may become important for the diagnosis of such conditions. Here we present an overview on mutations and polymorphisms in the group of genes encoding monoamine neurotransmitter metabolizing enzymes. At the same time we propose a unified nomenclature for the nucleic acid aberrations in these genes. New variations or details on mutations will be updated in the Pediatric Neurotransmitter Disorder Data Base (PNDDB) database (www.bioPKU.org).
Collapse
Affiliation(s)
- Jan Haavik
- Department of Biomedicine, University of Bergen, Norway
| | | | | |
Collapse
|
17
|
Nishimura FT, Kimura Y, Abe S, Fukunaga T, Minami J, Tanii H, Saijoh K. Effects of functional polymorphisms related to catecholaminergic systems on changes in blood catecholamine and cardiovascular measures after alcohol ingestion in the Japanese population. Alcohol Clin Exp Res 2008; 32:1937-46. [PMID: 18715275 DOI: 10.1111/j.1530-0277.2008.00778.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND The polymorphism of human aldehyde dehyrogenase-2 (ALDH2) Glu(487)Lys is well known to be a crucial factor underlying the genetic background for alcohol sensitivity in Asian populations. Subjects with the inactive Lys(487) allele show a marked increase in blood acetaldehyde level after alcohol intake, which results in facial flushing and various cardiovascular-related symptoms. However, other polymorphisms related to catecholaminergic systems that tightly regulate the activity of the sympathetic nervous system may also influence the physiological changes after acute alcohol intake. METHODS We investigated whether, together with the ALDH2 Gly(487)Lys and ADH1B Arg(47)His genotype, putative functionally important polymorphisms, including 9 loci in 7 human genes, were associated with changes in blood catecholamine levels and cardiovascular measures after alcohol ingestion. Forty-nine young Japanese males were subjected to blood catecholamine analysis after alcohol ingestion. Among them, 28 were also subjected to heart rate variability and blood pressure analysis. The contribution of polymorphisms to the alcohol-induced response was analyzed by multiple regression analysis. RESULTS Among the polymorphisms examined in this study, haplotypes of the phenylethanolamine N-methyltransferase (PNMT) promoter [(-182bpG/A)_(-387bpG/A)] and catechol-O-methyltransferase (COMT) exon 4 [(Ex4 + 119bpC/G)_(Ex4 + 138bpG/A), Leu(136)Leu_Val(158)Met] are suggested to have functionally important effects on alcohol-induced cardiovascular symptoms by affecting blood catecholamine levels. The neuropeptide Y (NPY) promoter C-1450T genotype is also suggested to be involved in the individual differences in regulation of catecholamine secretion. CONCLUSIONS This study suggested that these common polymorphisms of genes related to catecholaminergic systems, as well as those of the alcohol metabolizing system, are significant for understanding the basis of individual differences in alcohol sensitivity.
Collapse
Affiliation(s)
- Fusae T Nishimura
- Department of Hygiene, Kanazawa University School of Medicine and Graduate School of Medical Sciences, Kanazawa, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Ji Y, Snyder EM, Fridley BL, Salavaggione OE, Moon I, Batzler A, Yee VC, Schaid DJ, Joyner MJ, Johnson BD, Weinshilboum RM. Human phenylethanolamine N-methyltransferase genetic polymorphisms and exercise-induced epinephrine release. Physiol Genomics 2008; 33:323-32. [PMID: 18349382 DOI: 10.1152/physiolgenomics.00248.2007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Phenylethanolamine N-methyltransferase (PNMT) catalyzes the synthesis of epinephrine from norepinephrine. We previously identified and functionally characterized common sequence variation in the PNMT gene. In the present study, we set out to determine whether common PNMT genetic polymorphisms might be associated with individual variation in circulating epinephrine levels during exercise in 74 Caucasian American subjects. Circulating epinephrine levels were measured in each subject at baseline and during two different levels of exercise, approximately 40% and approximately 75% of peak workload. The PNMT gene was resequenced with DNA from each study subject. Eight novel PNMT polymorphisms were identified, including a C319T (Arg107Cys) nonsynonymous single nucleotide polymorphism (SNP) and I1G(280)A, a SNP located in the first intron of the gene. The I1G(280)A SNP was significantly associated with decreased exercise-induced circulating epinephrine levels and with a decreased epinephrine-to-norepinephrine ratio. The Cys107 recombinant allozyme displayed significantly lower levels of both PNMT activity and immunoreactive protein than the wild-type allozyme after transfection into COS-1 cells, but it did not appear to be associated with level of epinephrine in these subjects. Electrophoretic mobility shift and reporter gene assays performed with the I1G(280)A SNP indicated that this polymorphism could bind nuclear proteins and might modulate gene transcription. Our studies suggest that functionally significant variant sequence in the human PNMT gene might contribute to individual variation in levels of circulating epinephrine during exercise.
Collapse
Affiliation(s)
- Yuan Ji
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kepp K, Juhanson P, Kozich V, Ots M, Viigimaa M, Laan M. Resequencing PNMT in European hypertensive and normotensive individuals: no common susceptibilily variants for hypertension and purifying selection on intron 1. BMC MEDICAL GENETICS 2007; 8:47. [PMID: 17645789 PMCID: PMC1947951 DOI: 10.1186/1471-2350-8-47] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Accepted: 07/23/2007] [Indexed: 12/29/2022]
Abstract
BACKGROUND Human linkage and animal QTL studies have indicated the contribution of genes on Chr17 into blood pressure regulation. One candidate gene is PNMT, coding for phenylethanolamine-N-methyltransferase, catalyzing the synthesis of epinephrine from norepinephrine. METHODS Fine-scale variation of PNMT was screened by resequencing hypertensive (n = 50) and normotensive (n = 50) individuals from two European populations (Estonians and Czechs). The resulting polymorphism data were analyzed by statistical genetics methods using Genepop 3.4, PHASE 2.1 and DnaSP 4.0 software programs. In silico prediction of transcription factor binding sites for intron 1 was performed with MatInspector 2.2 software. RESULTS PNMT was characterized by minimum variation and excess of rare SNPs in both normo- and hypertensive individuals. None of the SNPs showed significant differences in allelic frequencies among population samples, as well as between screened hypertensives and normotensives. In the joint case-control analysis of the Estonian and the Czech samples, hypertension patients had a significant excess of heterozygotes for two promoter region polymorphisms (SNP-184; SNP-390). The identified variation pattern of PNMT reflects the effect of purifying selection consistent with an important role of PNMT-synthesized epinephrine in the regulation of cardiovascular and metabolic functions, and as a CNS neurotransmitter. A striking feature is the lack of intronic variation. In silico analysis of PNMT intron 1 confirmed the presence of a human-specific putative Glucocorticoid Responsive Element (GRE), inserted by Alu-mediated transfer. Further analysis of intron 1 supported the possible existence of a full Glucocorticoid Responsive Unit (GRU) predicted to consist of multiple gene regulatory elements known to cooperate with GRE in driving transcription. The role of these elements in regulating PNMT expression patterns and thus determining the dynamics of the synthesis of epinephrine is still to be studied. CONCLUSION We suggest that the differences in PNMT expression between normotensives and hypertensives are not determined by the polymorphisms in this gene, but rather by the interplay of gene expression regulators, which may vary among individuals. Understanding the determinants of PNMT expression may assist in developing PNMT inhibitors as potential novel therapeutics.
Collapse
Affiliation(s)
- Katrin Kepp
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Peeter Juhanson
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Viktor Kozich
- Institute of Inherited Metabolic Diseases, Charles University – First Faculty of Medicine, Prague, Czech Republic
| | - Mai Ots
- Department of Internal Medicine, University of Tartu, Tartu, Estonia
| | - Margus Viigimaa
- Division of Cardiology, Northern Estonian Regional Hospital, Tallinn, Estonia
| | - Maris Laan
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
20
|
Ji Y, Salavaggione OE, Wang L, Adjei AA, Eckloff B, Wieben ED, Weinshilboum RM. Human phenylethanolamine N-methyltransferase pharmacogenomics: gene re-sequencing and functional genomics. J Neurochem 2005; 95:1766-76. [PMID: 16277617 DOI: 10.1111/j.1471-4159.2005.03453.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenylethanolamine N-methyltransferase (PNMT, EC2.1.1.28) catalyzes the N-methylation of norepinephrine to form epinephrine. As a step toward understanding the possible contribution of inheritance to individual variation in PNMT-catalyzed epinephrine formation, we 're-sequenced' the entire human PNMT gene, including the three exons, the introns and approximately 1 kb of the 5'-flanking region (5'-FR), using DNA samples from 60 African-American (AA) and 60 Caucasian-American (CA) subjects. Within the 3.5 kb re-sequenced, 18 single nucleotide polymorphisms (SNPs) were observed, including four non-synonymous coding SNPs (cSNPs) that resulted in the following alterations in encoded amino acid sequence: Asn9Ser, Thr98Ala, Arg112Cys and Ala175Thr. When constructs for the non-synonymous cSNPs were transiently expressed in COS-1 cells, the Ala98 allozyme displayed significantly lower levels of both activity and immunoreactive protein (p < 0.002) than did the wild-type (WT) enzyme due, at least in part, to accelerated protein degradation by a proteasome-mediated process. Luciferase reporter gene constructs were also created for the six common PNMT 5'-FR haplotypes observed. Significant differences were observed among haplotypes in their ability to drive transcription. These observations raise the possibility of inherited variation in the ability to form epinephrine from norepinephrine as a result of variant PNMT polymorphisms and haplotypes.
Collapse
Affiliation(s)
- Yuan Ji
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Wellek S. Tests for Establishing Compatibility of an Observed Genotype Distribution with Hardy-Weinberg Equilibrium in the Case of a Biallelic Locus. Biometrics 2004; 60:694-703. [PMID: 15339292 DOI: 10.1111/j.0006-341x.2004.00219.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The classical chi(2)-procedure for the assessment of genetic equilibrium is tailored for establishing lack rather than goodness of fit of an observed genotype distribution to a model satisfying the Hardy-Weinberg law, and the same is true for the exact competitors to the large-sample procedure, which have been proposed in the biostatistical literature since the late 1930s. In this contribution, the methodology of statistical equivalence testing is adopted for the construction of tests for problems in which the assumption of approximate compatibility of the genotype distribution actually sampled with Hardy-Weinberg equilibrium (HWE) plays the role of the alternative hypothesis one aims to establish. The result of such a construction highly depends on the choice of a measure of distance to be used for defining an indifference zone containing those genotype distributions whose degree of disequilibrium shall be considered irrelevant. The first such measure proposed here is the Euclidean distance of the true parameter vector from that of a genotype distribution with identical allele frequencies being in strict HWE. The second measure is based on the (scalar) parameter of the distribution first introduced into the present context by Stevens (1938, Annals of Eugenics 8, 377-383). The first approach leads to a nonconditional test (which nevertheless can be carried out in a numerically exact way), the second to an exact conditional test shown to be uniformly most powerful unbiased (UMPU) for the associated pair of hypotheses. Both tests are compared in terms of the exact power attained against the class of those specific alternatives under which HWE is strictly satisfied.
Collapse
Affiliation(s)
- Stefan Wellek
- Division of Biostatistics, Central Institute of Mental Health Mannheim, University of Heidelberg, D-68159 Mannheim, J5, Germany.
| |
Collapse
|
22
|
Peters WR, MacMurry JP, Walker J, Giese RJ, Comings DE. Phenylethanolamine N-methyltransferase G-148A genetic variant and weight loss in obese women. OBESITY RESEARCH 2003; 11:415-9. [PMID: 12634439 DOI: 10.1038/oby.2003.56] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To understand the impact of the phenylethanolamine N-methyltransferase (PNMT) G-148A gene and nutritional variables on weight loss in obese women. RESEARCH METHODS AND PROCEDURES One hundred forty-nine women, ages 45 to 65 with a body mass index of >30 kg/m(2), participated in a 6-month, open-label intervention that included sibutramine (15 mg/d) and a monthly health-education class. Anthropometric measurements, vital signs, food frequency, exercise log, medication compliance, and psychological and sociological questionnaires were completed each month. Genetic polymorphisms of PNMT were determined. RESULTS Univariate analysis of G/G, G/A, and A/A genotypes against tertiles of percentage of weight loss were significant at 3 but not at 6 months (Pearson chi(2): p < 0.006; homozygous/heterozygosity: p < 0.002, p < 0.253, and p < 0.122, respectively). A regression model that included the PNMT genetic variation and certain nutrition and exercise variables demonstrated that only the PNMT gene (beta = 0.360, SE 0.585, and p = 0.003) was statistically significant at 6 months, and the total calories (beta = -0.925, SE = 0.004, and p = 0.009), fiber intake (beta = 0.621, SE = 0.124, and p = 0.000), and PNMT (beta = 0.262, SE = 1.415, and p = 0.024) were significant. DISCUSSION The homozygosity/heterozygosity of the PNMT gene was highly predictive of significant weight loss with sibutramine during the first 3 months, which highlights the need for specific pharmacotherapy. The early weight-loss success of those subjects who were homozygous for PNMT may have motivated and selected those that would make further dietary changes, which then augmented their final weight loss.
Collapse
Affiliation(s)
- Warren R Peters
- Loma Linda University, Center for Health Promotion, Loma Linda, California 92350, USA.
| | | | | | | | | |
Collapse
|
23
|
Mann MB, Wu S, Rostamkhani M, Tourtellotte W, MacMurray JP, Comings DE. Association between the phenylethanolamine N-methyltransferase gene and multiple sclerosis. J Neuroimmunol 2002; 124:101-5. [PMID: 11958827 DOI: 10.1016/s0165-5728(02)00009-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Phenylethanolamine N-methyltransferase (PNMT), the terminal enzyme of the catecholamine biosynthesis pathway, catalyzes the conversion of norepinephrine (NE) to epinephrine (EPI). PNMT is a candidate gene for multiple sclerosis (MS) for two reasons. PNMT is known to map to a region identified in two genome screens for MS and it directly regulates the amounts of NE and EPI, both of which play a significant role in the modulation of the innate immune response. The frequencies of two promoter polymorphisms of the PNMT gene showed genetic association in a case-control study of 108 patients with MS and 774 ethnically and age-matched control subjects. In subjects with MS, significant differences in the frequency of the GG genotype at the G-387A marker and the AA genotype at the G-182A marker were observed. Additionally, when both markers were combined and evaluated, highly significant differences between the polymorphism distributions in patients with MS and control subjects were detected. The data suggest that these promoter polymorphisms of the PNMT gene, both independently and cumulatively, show association with MS.
Collapse
Affiliation(s)
- Michael B Mann
- Department of Medical Genetics, City of Hope Medical Center, Duarte, CA, USA.
| | | | | | | | | | | |
Collapse
|
24
|
Current awareness in geriatric psychiatry. Int J Geriatr Psychiatry 2001; 16:1184-91. [PMID: 11748781 DOI: 10.1002/gps.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|