1
|
Kocere A, Lalonde RL, Mosimann C, Burger A. Lateral thinking in syndromic congenital cardiovascular disease. Dis Model Mech 2023; 16:dmm049735. [PMID: 37125615 PMCID: PMC10184679 DOI: 10.1242/dmm.049735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Syndromic birth defects are rare diseases that can present with seemingly pleiotropic comorbidities. Prime examples are rare congenital heart and cardiovascular anomalies that can be accompanied by forelimb defects, kidney disorders and more. Whether such multi-organ defects share a developmental link remains a key question with relevance to the diagnosis, therapeutic intervention and long-term care of affected patients. The heart, endothelial and blood lineages develop together from the lateral plate mesoderm (LPM), which also harbors the progenitor cells for limb connective tissue, kidneys, mesothelia and smooth muscle. This developmental plasticity of the LPM, which founds on multi-lineage progenitor cells and shared transcription factor expression across different descendant lineages, has the potential to explain the seemingly disparate syndromic defects in rare congenital diseases. Combining patient genome-sequencing data with model organism studies has already provided a wealth of insights into complex LPM-associated birth defects, such as heart-hand syndromes. Here, we summarize developmental and known disease-causing mechanisms in early LPM patterning, address how defects in these processes drive multi-organ comorbidities, and outline how several cardiovascular and hematopoietic birth defects with complex comorbidities may be LPM-associated diseases. We also discuss strategies to integrate patient sequencing, data-aggregating resources and model organism studies to mechanistically decode congenital defects, including potentially LPM-associated orphan diseases. Eventually, linking complex congenital phenotypes to a common LPM origin provides a framework to discover developmental mechanisms and to anticipate comorbidities in congenital diseases affecting the cardiovascular system and beyond.
Collapse
Affiliation(s)
- Agnese Kocere
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
- Department of Molecular Life Science, University of Zurich, 8057 Zurich, Switzerland
| | - Robert L. Lalonde
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Rozas MF, Benavides F, León L, Repetto GM. Association between phenotype and deletion size in 22q11.2 microdeletion syndrome: systematic review and meta-analysis. Orphanet J Rare Dis 2019; 14:195. [PMID: 31399107 PMCID: PMC6688301 DOI: 10.1186/s13023-019-1170-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chromosome 22q11.2 microdeletion syndrome, a disorder caused by heterozygous loss of genetic material in chromosome region 22q11.2, has a broad range of clinical symptoms. The most common congenital anomalies involve the palate in 80% of patients, and the heart in 50-60% of them. The cause of the phenotypic variability is unknown. Patients usually harbor one of three common deletions sizes: 3, 2 and 1.5 Mb, between low copy repeats (LCR) designated A-D, A-C and A-B, respectively. This study aimed to analyze the association between these 3 deletion sizes and the presence of congenital cardiac and/or palatal malformations in individuals with this condition. A systematic review and meta-analysis were conducted, merging relevant published studies with data from Chilean patients to increase statistical power. RESULTS Eight articles out of 432 were included; the data from these studies was merged with our own, achieving a total of 1514 and 487 patients to evaluate cardiac and palate malformations, respectively. None of the compared deleted chromosomal segments were statistically associated with cardiac defects (ORAB v/s AC-AD: 0.654 [0.408-1.046]; OR AD v/s AB-AC: 1.291 [0.860-1.939]) or palate anomalies (ORAB v/s AC-AD: 1.731 [0.708-4.234]; OR AD v/s AB-AC: 0.628 [0.286-1.382]). CONCLUSIONS The lack of association between deletion size and CHD or PA found in this meta-analysis suggests that deletion size does not explain the incomplete penetrance of these 2 major manifestations, and that the critical region for the development of heart and palatal abnormalities is within LCR A-B, the smallest region of overlap among the three deletion sizes.
Collapse
Affiliation(s)
- M. Fernanda Rozas
- Programa de Doctorado en Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Avda Las Condes, 12461 Santiago, Chile
| | - Felipe Benavides
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Avda Las Condes, 12438 Santiago, Chile
- Present address: ThermoScientific, Santiago, Chile
| | - Luis León
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Avda Las Condes, 12438 Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Pedro de Valdivia, 425 Santiago, Chile
| | - Gabriela M. Repetto
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Avda Las Condes, 12438 Santiago, Chile
| |
Collapse
|
3
|
Burnside RD. 22q11.21 Deletion Syndromes: A Review of Proximal, Central, and Distal Deletions and Their Associated Features. Cytogenet Genome Res 2015; 146:89-99. [PMID: 26278718 DOI: 10.1159/000438708] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2015] [Indexed: 04/13/2024] Open
Abstract
Chromosome 22q11.21 contains a cluster of low-copy repeats (LCRs), referred to as LCR22A-H, that mediate meiotic non-allelic homologous recombination, resulting in either deletion or duplication of various intervals in the region. The deletion of the DiGeorge/velocardiofacial syndrome interval LCR22A-D is the most common recurrent microdeletion in humans, with an estimated incidence of ∼1:4,000 births. Deletion of other intervals in 22q11.21 have also been described, but the literature is often confusing, as the terms 'proximal', 'nested', 'distal', and 'atypical' have all been used to describe various of the other intervals. Individuals with deletions tend to have features with widely variable expressivity, even among families. This review concisely delineates each interval and classifies the reported literature accordingly.
Collapse
Affiliation(s)
- Rachel D Burnside
- Department of Cytogenetics, Laboratory Corporation of America Holdings, Center for Molecular Biology and Pathology, Research Triangle Park, N.C., USA
| |
Collapse
|
4
|
Rump P, de Leeuw N, van Essen AJ, Verschuuren-Bemelmans CC, Veenstra-Knol HE, Swinkels MEM, Oostdijk W, Ruivenkamp C, Reardon W, de Munnik S, Ruiter M, Frumkin A, Lev D, Evers C, Sikkema-Raddatz B, Dijkhuizen T, van Ravenswaaij-Arts CM. Central 22q11.2 deletions. Am J Med Genet A 2014; 164A:2707-23. [PMID: 25123976 DOI: 10.1002/ajmg.a.36711] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/29/2014] [Indexed: 11/11/2022]
Abstract
22q11.2 deletion syndrome is one of the most common microdeletion syndromes. Most patients have a deletion resulting from a recombination of low copy repeat blocks LCR22-A and LCR22-D. Loss of the TBX1 gene is considered the most important cause of the phenotype. A limited number of patients with smaller, overlapping deletions distal to the TBX1 locus have been described in the literature. In these patients, the CRKL gene is deleted. Haploinsufficiency of this gene has also been implicated in the pathogenesis of 22q11.2 deletion syndrome. To distinguish these deletions (comprising the LCR22-B to LCR22-D region) from the more distal 22q11.2 deletions (located beyond LCR22-D), we propose the term "central 22q11.2 deletions". In the present study we report on 27 new patients with such a deletion. Together with information on previously published cases, we review the clinical findings of 52 patients. The prevalence of congenital heart anomalies and the frequency of de novo deletions in patients with a central deletion are substantially lower than in patients with a common or distal 22q11.2 deletion. Renal and urinary tract malformations, developmental delays, cognitive impairments and behavioral problems seem to be equally frequent as in patients with a common deletion. None of the patients had a cleft palate. Patients with a deletion that also encompassed the MAPK1 gene, located just distal to LCR22-D, have a different and more severe phenotype, characterized by a higher prevalence of congenital heart anomalies, growth restriction and microcephaly. Our results further elucidate genotype-phenotype correlations in 22q11.2 deletion syndrome spectrum.
Collapse
Affiliation(s)
- Patrick Rump
- University of Groningen, University Medical Centre Groningen, Department of Genetics, Groningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Turan S, Ignatius J, Moilanen JS, Kuismin O, Stewart H, Mann NP, Linglart A, Bastepe M, Jüppner H. De novo STX16 deletions: an infrequent cause of pseudohypoparathyroidism type Ib that should be excluded in sporadic cases. J Clin Endocrinol Metab 2012; 97:E2314-9. [PMID: 23087324 PMCID: PMC3513531 DOI: 10.1210/jc.2012-2920] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 09/24/2012] [Indexed: 01/18/2023]
Abstract
CONTEXT Maternally inherited 3-kb STX16 deletions cause autosomal dominant pseudohypoparathyroidism type Ib (PHP-Ib) characterized by PTH resistance with loss of methylation restricted to the GNAS exon A/B. OBJECTIVE The objective of the study was to search for the 3-kb STX16 deletion and to establish haplotypes for the GNAS region for two PHP-Ib patients and their families. SETTING The study was conducted at a research laboratory and tertiary care hospitals. PATIENTS The index cases presented at the ages 8 and 9.5 yr, respectively, with hypocalcemia, hyperphosphatemia, and elevated PTH. INTERVENTIONS There were no interventions. RESULTS DNA analyses of the index cases revealed an isolated loss of the GNAS exon A/B methylation and the 3-kb STX16 deletion. In the first family, the patient's healthy mother and sister showed no genetic or epigenetic abnormality, yet microsatellite analysis of the GNAS region indicated that both siblings share the same maternal allele, with the exception of an allelic loss for marker 261P9-CA1 (located within STX16), leading to the conclusion that a de novo mutation had occurred on the maternal allele. In the second family, three siblings of the index case are also affected, and an analysis of their DNA revealed the 3-kb STX16 deletion, which was also found in the healthy mother and a maternal uncle. Analysis of the siblings of the deceased maternal grandfather and some of their descendants excluded the 3-kb STX16 deletion, but haplotype analysis of the GNAS region suggested that he had acquired the mutation de novo. CONCLUSIONS De novo 3-kb STX16 deletions, reported only once previously, are infrequent but should be excluded in all cases of PHP-Ib, even when the family history is negative for an inherited form of this disorder.
Collapse
Affiliation(s)
- Serap Turan
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
A deletion and a duplication in distal 22q11.2 deletion syndrome region. Clinical implications and review. BMC MEDICAL GENETICS 2009; 10:48. [PMID: 19490635 PMCID: PMC2700091 DOI: 10.1186/1471-2350-10-48] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 06/02/2009] [Indexed: 12/31/2022]
Abstract
Background Individuals affected with DiGeorge and Velocardiofacial syndromes present with both phenotypic diversity and variable expressivity. The most frequent clinical features include conotruncal congenital heart defects, velopharyngeal insufficiency, hypocalcemia and a characteristic craniofacial dysmorphism. The etiology in most patients is a 3 Mb recurrent deletion in region 22q11.2. However, cases of infrequent deletions and duplications with different sizes and locations have also been reported, generally with a milder, slightly different phenotype for duplications but with no clear genotype-phenotype correlation to date. Methods We present a 7 month-old male patient with surgically corrected ASD and multiple VSDs, and dysmorphic facial features not clearly suggestive of 22q11.2 deletion syndrome, and a newborn male infant with cleft lip and palate and upslanting palpebral fissures. Karyotype, FISH, MLPA, microsatellite markers segregation studies and SNP genotyping by array-CGH were performed in both patients and parents. Results Karyotype and FISH with probe N25 were normal for both patients. MLPA analysis detected a partial de novo 1.1 Mb deletion in one patient and a novel partial familial 0.4 Mb duplication in the other. Both of these alterations were located at a distal position within the commonly deleted region in 22q11.2. These rearrangements were confirmed and accurately characterized by microsatellite marker segregation studies and SNP array genotyping. Conclusion The phenotypic diversity found for deletions and duplications supports a lack of genotype-phenotype correlation in the vicinity of the LCRC-LCRD interval of the 22q11.2 chromosomal region, whereas the high presence of duplications in normal individuals supports their role as polymorphisms. We suggest that any hypothetical correlation between the clinical phenotype and the size and location of these alterations may be masked by other genetic and/or epigenetic modifying factors.
Collapse
|
8
|
Beaujard MP, Chantot S, Dubois M, Keren B, Carpentier W, Mabboux P, Whalen S, Vodovar M, Siffroi JP, Portnoï MF. Atypical deletion of 22q11.2: detection using the FISH TBX1 probe and molecular characterization with high-density SNP arrays. Eur J Med Genet 2009; 52:321-7. [PMID: 19467348 DOI: 10.1016/j.ejmg.2009.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 05/09/2009] [Indexed: 12/24/2022]
Abstract
Despite the heterogeneous clinical presentations, the majority of patients with 22q11.2 deletion syndrome (22q11.2 DS) have either a common recurrent 3 Mb deletion or a less common, 1.5 Mb nested deletion, with breakpoint sites in flanking low-copy repeats (LCR) sequences. Only a small number of atypical deletions have been reported and precisely defined. Haploinsufficiency of the TBX1 gene was determined to be the likely cause of 22q11.2 DS. The diagnostic procedure usually used is FISH using commercially probes (N25 or TUPLE1). However, this test does not contain TBX1, and fails to detect deletions that are either proximal or distal to the FISH probes. Here, we report on two patients with clinical features suggestive of 22q11.2 DS, a male infant with facial dysmorphia, pulmonary atresia, ventricular septal defect, neonatal hypocalcemia, and his affected mother, with facial dysmorphia, learning disabilities, and hypernasal speech. They were tested negative for 22q11.2 DS using N25 or TUPLE1 probes, but were shown deleted for a probe containing TBX1. Delineation of the deletion was performed using high-density SNP arrays (Illumina, 370K). This atypical deletion was spanning 1.89 Mb. The distal breakpoint resided in LCR-D, sharing the same distal breakpoint with the 3 Mb common deletion. The proximal breakpoint was located 105 kb telomeric to TUPLE1, representing a new breakpoint variant that does not correspond to known LCRs of 22q11.2. We conclude that FISH with the TBX1 probe is an accurate diagnostic tool for 22q11.2 DS, with a higher sensitivity than FISH using standard probes, detecting all but the rarest deletions, greatly reducing the false negative rate.
Collapse
|
9
|
Fernández L, Lapunzina P, Pajares IL, Palomares M, Martínez I, Fernández B, Quero J, García-Guereta L, García-Alix A, Burgueros M, Galán-Gómez E, Carbonell-Pérez JM, Pérez-Granero A, Torres-Juan L, Heine-Suñer D, Rosell J, Delicado A. Unrelated chromosomal anomalies found in patients with suspected 22q11.2 deletion. Am J Med Genet A 2008; 146A:1134-41. [PMID: 18384142 DOI: 10.1002/ajmg.a.32256] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Screening for 22q11.2 deletions has not an easy approach due to the wide variability of their associated phenotype. Many clinical features overlap with those of other known syndromes and reported loci. Patients referred to exclude a 22q11.2 deletion are usually tested with a locus-specific FISH probe, with 10% positive cases depending on the selection criteria, but patients testing negative for FISH at 22q11.2 may have other chromosomal aberrations in routine cytogenetic analysis. We tested 819 patients suspected of having a 22q11.2 deletion. Eighty-eight patients (10.7%) were positive for 22q11.2 deletion, whereas 30 patients (3.7%) showed other chromosomal abnormalities involving deletions and duplications, derivative chromosomes, marker chromosomes, apparently balanced and unbalanced translocations and sex chromosome aneuploidies. Of these alterations, 28 did not involve region 22q11 and most had not been associated with 22q11.2 deletion phenotype before. We discuss the similarity of DiGeorge/velocardiofacial syndrome with other known clinical entities and suggest correlations between the new loci and the observed clinical features. The frequency of unrelated chromosomal anomalies reported in this study and in other previous reports highlights the importance of conventional cytogenetic analysis as an initial genome-wide screening tool in all referred patients, and provides useful data to optimize diagnostic and screening protocols according to the most frequent chromosomal findings.
Collapse
Affiliation(s)
- Luis Fernández
- Servicio de Genética Médica, Hospital Universitario La Paz, Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
D'Angelo CS, Jehee FS, Koiffmann CP. An inherited atypical 1 Mb 22q11.2 deletion within the DGS/VCFS 3 Mb region in a child with obesity and aggressive behavior. Am J Med Genet A 2007; 143A:1928-32. [PMID: 17618498 DOI: 10.1002/ajmg.a.31787] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Carla S D'Angelo
- Centro de Estudos do Genoma Humano, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
11
|
Stachon AC, Baskin B, Smith AC, Shugar A, Cytrynbaum C, Fishman L, Mendoza-Londono R, Klatt R, Teebi A, Ray PN, Weksberg R. Molecular diagnosis of 22q11.2 deletion and duplication by multiplex ligation dependent probe amplification. Am J Med Genet A 2007; 143A:2924-30. [DOI: 10.1002/ajmg.a.32101] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Butts SC, Tatum SA, Mortelliti AJ, Shprintzen RJ. Velo-cardio-facial syndrome: the pediatric otolaryngologist's perspective. Curr Opin Otolaryngol Head Neck Surg 2006; 13:371-5. [PMID: 16282767 DOI: 10.1097/01.moo.0000186203.53214.ac] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The understanding of velo-cardio-facial syndrome has grown markedly since the initial descriptions of this common genetic disorder nearly 30 years ago. Our knowledge of the syndrome has advanced in part from opportunities to monitor many patients into adulthood because of advances in the fields of cardiothoracic surgery and immunology. Longitudinal study has brought to light psychiatric and behavioral features of the syndrome that are often not apparent until late adolescence or the early adult years. Certain endocrine and immunologic features of the syndrome thought to be resolved in childhood are now witnessed in older patients. Variable expression and lack of disease awareness are two major factors that contribute to the delays in diagnosis in many cases. To address this, there has been a call to delineate screening parameters for patients at risk of carrying the deletion. RECENT FINDINGS Several areas are highlighted in this review, reflecting the focus of scholarly work on velo-cardio-facial syndrome in the past year. Molecular genetics has shown smaller deletions in many families with the syndrome. The gene TBX1 has been found to be important to the phenotype. Surgical outcomes data reveal the greater challenges involved in correcting velopharyngeal insufficiency. SUMMARY Defining the genetic basis of velo-cardio-facial syndrome will allow clinicians and basic scientists to make further inroads into understanding the variable expressivity of this syndrome. It is also important to be aware of the continued diagnostic challenges encountered by clinicians in attempts to improve the detection of patients with this syndrome.
Collapse
Affiliation(s)
- Sydney C Butts
- Department of Otolaryngology and Communication Sciences, Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| | | | | | | |
Collapse
|