1
|
Xu C, Xiong Y, Wang D, Zhang S, Wu X, Li M. Evaluating Chromosomal Mosaicism in Prenatal Diagnosis: The Complementary Roles of Chromosomal Microarray Analysis and Karyotyping. J Clin Lab Anal 2025; 39:e25154. [PMID: 39835400 PMCID: PMC11848149 DOI: 10.1002/jcla.25154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE To explore the impact of in vitro cell subculture on prenatal diagnostic sample results and compare the efficacy of conventional karyotyping and chromosomal microarray analysis (CMA) in detecting chromosome mosaicism. METHODS We conducted a retrospective analysis of G-banding karyotyping and CMA data from 2007 amniocentesis cases to investigate chromosome mosaicism. RESULTS Chromosome mosaicism was detected in 1.49% of cases (30/2007). Sex chromosome mosaicism was the most common form of mosaicism. Among the 30 mosaicisms, 18 results were consistent between the two methods. In four cases, CMA indicated mosaicism but the karyotypes were normal. In eight cases, CMA was normal while the karyotypes suggested mosaicism. CONCLUSIONS CMA and karyotyping complement each other in prenatal genetic diagnosis. Combining both methods enhances detection accuracy, particularly in cases of chromosomal mosaicism, which may be missed after the subculture of adherent cells in karyotype analysis.
Collapse
Affiliation(s)
- Chenxia Xu
- Prenatal Diagnosis CenterBoai Hospital of ZhongshanZhongShanChina
| | - Yi Xiong
- Prenatal Diagnosis CenterBoai Hospital of ZhongshanZhongShanChina
| | - Degang Wang
- Prenatal Diagnosis CenterBoai Hospital of ZhongshanZhongShanChina
| | - Sheng Zhang
- Department of PediatricsBoai Hospital of ZhongshanZhongShanChina
| | - Xuewei Wu
- Prenatal Diagnosis CenterBoai Hospital of ZhongshanZhongShanChina
| | - Miaoyuan Li
- Department of UrologyZhongshan People's HospitalZhongShanChina
- The First School of Clinical MedicineJinan UniversityGuangzhouChina
| |
Collapse
|
2
|
Sabbagh Q, Larrieux M, Schneider A, Theze C, Vincent MC, Coubes C, Puechberty J, Renard S, Koenig M, Pellestor F, Cossée M, Gatinois V. Confined placental mosaicism is a diagnostic pitfall in dystrophinopathies: a clinical report. Eur J Hum Genet 2024:10.1038/s41431-024-01665-0. [PMID: 39014012 DOI: 10.1038/s41431-024-01665-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
Single-gene copy number variants (CNVs) limited to placenta although rarely identified may have clinical implications. We describe a pregnant woman referred for chorionic villus sampling due to increased fetal nuchal translucency. Incident intragenic deletion of Duchenne muscular dystrophy (DMD) gene, affecting exons 56 and 57, was identified in a male fetus in ~23-30% of placental cells by chromosomal microarray and confirmed using multiplex ligation-dependent probe amplification (MLPA). Rapid aneuploidy testing showed normal results and the deletion was not detected in the mother. Subsequent analyses on amniotic cells yielded a normal DMD gene result, corroborating the confined placental nature of the mosaicism. Hence, this report emphasizes the importance of conducting amniocentesis following detection of mosaicism for single gene CNVs on chorionic villi, in order to preclude confined placental mosaicism (CPM). As far as we know, this report marks only the second documented situation of CPM involving an intragenic DMD deletion.
Collapse
Affiliation(s)
- Quentin Sabbagh
- Montpellier University, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », ERN-ITHACA, Department of Clinical Genetics, University Hospital of Montpellier, Montpellier, France.
| | - Marion Larrieux
- Montpellier University, Molecular Diagnostic Laboratory, University Hospital of Montpellier, Montpellier, France
| | - Anouck Schneider
- Montpellier University, Laboratory of Cytogenomics, University Hospital of Montpellier, Montpellier, France
| | - Corinne Theze
- Montpellier University, Molecular Diagnostic Laboratory, University Hospital of Montpellier, Montpellier, France
| | - Marie-Claire Vincent
- Montpellier University, Molecular Diagnostic Laboratory, University Hospital of Montpellier, Montpellier, France
- Montpellier University, INSERM, CNRS, PhyMedExp, Montpellier, France
| | - Christine Coubes
- Montpellier University, Centre de Référence « Anomalies du Développement et Syndromes Malformatifs », ERN-ITHACA, Department of Clinical Genetics, University Hospital of Montpellier, Montpellier, France
| | - Jacques Puechberty
- Montpellier University, Laboratory of Cytogenomics, University Hospital of Montpellier, Montpellier, France
| | - Sarah Renard
- Department of Obstetrics and Gynecology, Perpignan Hospital, Perpignan, France
| | - Michel Koenig
- Montpellier University, Molecular Diagnostic Laboratory, University Hospital of Montpellier, Montpellier, France
- Montpellier University, INSERM, CNRS, PhyMedExp, Montpellier, France
| | - Franck Pellestor
- Montpellier University, Laboratory of Cytogenomics, University Hospital of Montpellier, Montpellier, France
| | - Mireille Cossée
- Montpellier University, Molecular Diagnostic Laboratory, University Hospital of Montpellier, Montpellier, France
- Montpellier University, INSERM, CNRS, PhyMedExp, Montpellier, France
| | - Vincent Gatinois
- Montpellier University, Laboratory of Cytogenomics, University Hospital of Montpellier, Montpellier, France
| |
Collapse
|
3
|
Ardizzoia A, Jemma A, Redaelli S, Silva M, Bentivegna A, Lavitrano M, Conconi D. AhRR and PPP1R3C: Potential Prognostic Biomarkers for Serous Ovarian Cancer. Int J Mol Sci 2023; 24:11455. [PMID: 37511212 PMCID: PMC10380391 DOI: 10.3390/ijms241411455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The lack of effective screening and successful treatment contributes to high ovarian cancer mortality, making it the second most common cause of gynecologic cancer death. Development of chemoresistance in up to 75% of patients is the cause of a poor treatment response and reduced survival. Therefore, identifying potential and effective biomarkers for its diagnosis and prognosis is a strong critical need. Copy number alterations are frequent in cancer, and relevant for molecular tumor stratification and patients' prognoses. In this study, array-CGH analysis was performed in three cell lines and derived cancer stem cells (CSCs) to identify genes potentially predictive for ovarian cancer patients' prognoses. Bioinformatic analyses of genes involved in copy number gains revealed that AhRR and PPP1R3C expression negatively correlated with ovarian cancer patients' overall and progression-free survival. These results, together with a significant association between AhRR and PPP1R3C expression and ovarian cancer stemness markers, suggested their potential role in CSCs. Furthermore, AhRR and PPP1R3C's increased expression was maintained in some CSC subpopulations, reinforcing their potential role in ovarian cancer. In conclusion, we reported for the first time, to the best of our knowledge, a prognostic role of AhRR and PPP1R3C expression in serous ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (A.A.); (A.J.); (S.R.); (M.S.); (A.B.); (M.L.)
| |
Collapse
|
4
|
Chen Y, Wu Z, Sutlive J, Wu K, Mao L, Nie J, Zhao XZ, Guo F, Chen Z, Huang Q. Noninvasive prenatal diagnosis targeting fetal nucleated red blood cells. J Nanobiotechnology 2022; 20:546. [PMID: 36585678 PMCID: PMC9805221 DOI: 10.1186/s12951-022-01749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022] Open
Abstract
Noninvasive prenatal diagnosis (NIPD) aims to detect fetal-related genetic disorders before birth by detecting markers in the peripheral blood of pregnant women, holding the potential in reducing the risk of fetal birth defects. Fetal-nucleated red blood cells (fNRBCs) can be used as biomarkers for NIPD, given their remarkable nature of carrying the entire genetic information of the fetus. Here, we review recent advances in NIPD technologies based on the isolation and analysis of fNRBCs. Conventional cell separation methods rely primarily on physical properties and surface antigens of fNRBCs, such as density gradient centrifugation, fluorescence-activated cell sorting, and magnetic-activated cell sorting. Due to the limitations of sensitivity and purity in Conventional methods, separation techniques based on micro-/nanomaterials have been developed as novel methods for isolating and enriching fNRBCs. We also discuss emerging methods based on microfluidic chips and nanostructured substrates for static and dynamic isolation of fNRBCs. Additionally, we introduce the identification techniques of fNRBCs and address the potential clinical diagnostic values of fNRBCs. Finally, we highlight the challenges and the future directions of fNRBCs as treatment guidelines in NIPD.
Collapse
Affiliation(s)
- Yanyu Chen
- grid.207374.50000 0001 2189 3846Academy of Medical Sciences, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China ,grid.49470.3e0000 0001 2331 6153School of Physics and Technology, Wuhan University, Wuhan, 430072 China
| | - Zhuhao Wu
- grid.411377.70000 0001 0790 959XDepartment of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405 USA
| | - Joseph Sutlive
- grid.38142.3c000000041936754XDivision of Thoracic and Cardiac Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA
| | - Ke Wu
- grid.49470.3e0000 0001 2331 6153School of Physics and Technology, Wuhan University, Wuhan, 430072 China
| | - Lu Mao
- grid.207374.50000 0001 2189 3846Academy of Medical Sciences, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 China
| | - Jiabao Nie
- grid.38142.3c000000041936754XDivision of Thoracic and Cardiac Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115 USA ,grid.261112.70000 0001 2173 3359Department of Biological Sciences, Northeastern University, Boston, MA 02115 USA
| | - Xing-Zhong Zhao
- grid.49470.3e0000 0001 2331 6153School of Physics and Technology, Wuhan University, Wuhan, 430072 China
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, United States.
| | - Zi Chen
- Division of Thoracic and Cardiac Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Qinqin Huang
- The Research and Application Center of Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Discovery of Long Non-Coding RNA MALAT1 Amplification in Precancerous Colorectal Lesions. Int J Mol Sci 2022; 23:ijms23147656. [PMID: 35887000 PMCID: PMC9318831 DOI: 10.3390/ijms23147656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/12/2022] Open
Abstract
A colorectal adenoma, an aberrantly growing tissue, arises from the intestinal epithelium and is considered as precursor of colorectal cancer (CRC). In this study, we investigated structural and numerical chromosomal aberrations in adenomas, hypothesizing that chromosomal instability (CIN) occurs early in adenomas. We applied array comparative genomic hybridization (aCGH) to fresh frozen colorectal adenomas and their adjacent mucosa from 16 patients who underwent colonoscopy examination. In our study, histologically similar colorectal adenomas showed wide variability in chromosomal instability. Based on the obtained results, we further stratified patients into four distinct groups. The first group showed the gain of MALAT1 and TALAM1, long non-coding RNAs (lncRNAs). The second group involved patients with numerous microdeletions. The third group consisted of patients with a disrupted karyotype. The fourth group of patients did not show any CIN in adenomas. Overall, we identified frequent losses in genes, such as TSC2, COL1A1, NOTCH1, MIR4673, and GNAS, and gene gain containing MALAT1 and TALAM1. Since long non-coding RNA MALAT1 is associated with cancer cell metastasis and migration, its gene amplification represents an important event for adenoma development.
Collapse
|
6
|
Li S, Shi Y, Han X, Chen Y, Shen Y, Hu W, Zhao X, Wang Y. Prenatal Diagnosis of Chromosomal Mosaicism in Over 18,000 Pregnancies: A Five-Year Single-Tertiary-Center Retrospective Analysis. Front Genet 2022; 13:876887. [PMID: 35651933 PMCID: PMC9150818 DOI: 10.3389/fgene.2022.876887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Chromosomal mosaicism (CM) is a common biological phenomenon observed in humans. It is one of the main challenges in prenatal diagnosis due to uncertain outcomes, especially when fetal ultrasonographic features appear normal. This study aimed to assess the phenotypic features of CM detected during prenatal diagnosis and the risk factors affecting parents’ pregnancy decisions. Materials and methods: A retrospective cohort study involving 18,374 consecutive pregnancies that underwent prenatal diagnosis by karyotyping, fluorescence in situ hybridization (FISH), or chromosome microarray analysis (CMA) was conducted. The association of risk factors with malformations detected by ultrasound and pregnancy outcomes was assessed using the chi-square test and binary logistic regression. Discordant results between the different methods were identified and further analyzed. Results: During this five-year period, 118 (0.6%) patients were diagnosed with CM. The incidences of CM in the chorionic villus, amniotic fluid, and umbilical cord blood were 3.2, 0.5, and 0.7%, respectively. The frequency of ultrasound malformations in individuals with a high fraction of autosomal CM was significantly higher than that in other groups (62.5% vs. 21.4–33.3%, all p <0.05). Inconsistent results between karyotyping and CMA/FISH were observed in 23 cases (19.5%). The risk of pregnancy termination in cases with ultrasound malformations, consistent results, autosomal CM, or a high CM fraction increased with an odds ratio of 3.09, 8.35, 2.30, and 7.62 (all p <0.05). Multiple regression analysis revealed that all four factors were independent risk factors for the termination of pregnancy. Conclusion: Patients with a high fraction of autosomal CM are more likely to have ultrasound malformations. Inconsistent results between different methods in CM are not rare. Ultrasound malformations, consistent results between different methods, autosomal CM, and a high CM fraction were independent risk factors for the choice to terminate pregnancies.
Collapse
Affiliation(s)
- Shuyuan Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yiru Shi
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xu Han
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yiyao Chen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yinghua Shen
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Wenjing Hu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Xinrong Zhao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| | - Yanlin Wang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China
| |
Collapse
|
7
|
Sagath L, Lehtokari VL, Wallgren-Pettersson C, Pelin K, Kiiski K. A custom ddPCR method for the detection of copy number variations in the nebulin triplicate region. PLoS One 2022; 17:e0267793. [PMID: 35576196 PMCID: PMC9109913 DOI: 10.1371/journal.pone.0267793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 04/15/2022] [Indexed: 11/21/2022] Open
Abstract
The human genome contains repetitive regions, such as segmental duplications, known to be prone to copy number variation. Segmental duplications are highly identical and homologous sequences, posing a specific challenge for most mutation detection methods. The giant nebulin gene is expressed in skeletal muscle. It harbors a large segmental duplication region composed of eight exons repeated three times, the so-called triplicate region. Mutations in nebulin are known to cause nemaline myopathy and other congenital myopathies. Using our custom targeted Comparative Genomic Hybridization arrays, we have previously shown that copy number variations in the nebulin triplicate region are pathogenic when the copy number of the segmental duplication block deviates two or more copies from the normal number, which is three per allele. To complement our Comparative Genomic Hybridization arrays, we have established a custom Droplet Digital PCR method for the detection of copy number variations within the nebulin triplicate region. The custom Droplet Digital PCR assays allow sensitive, rapid, high-throughput, and cost-effective detection of copy number variations within this region and is ready for implementation a screening method for disease-causing copy number variations of the nebulin triplicate region. We suggest that Droplet Digital PCR may also be used in the study and diagnostics of other segmental duplication regions of the genome.
Collapse
Affiliation(s)
- Lydia Sagath
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- * E-mail: , (LS); (KK)
| | - Vilma-Lotta Lehtokari
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Carina Wallgren-Pettersson
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Katarina Pelin
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kirsi Kiiski
- Folkhälsan Research Center, Helsinki, Finland
- Department of Medical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- * E-mail: , (LS); (KK)
| |
Collapse
|
8
|
Hu X, Baker EK, Johnson J, Balow S, Pena LDM, Conlin LK, Guan Q, Smolarek TA. Characterization of a rare mosaic unbalanced translocation of t(3;12) in a patient with neurodevelopmental disorders. Mol Cytogenet 2022; 15:10. [PMID: 35248119 PMCID: PMC8898488 DOI: 10.1186/s13039-022-00579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/28/2022] [Indexed: 11/21/2022] Open
Abstract
Background Unbalanced translocations may be de novo or inherited from one parent carrying the balanced form and are usually present in all cells. Mosaic unbalanced translocations are extremely rare with a highly variable phenotype depending on the tissue distribution and level of mosaicism. Mosaicism for structural chromosomal abnormalities is clinically challenging for diagnosis and counseling due to the limitation of technical platforms and complex mechanisms, respectively. Here we report a case with a tremendously rare maternally-derived mosaic unbalanced translocation of t(3;12), and we illustrate the unreported complicated mechanism using single nucleotide polymorphism (SNP) array, fluorescence in situ hybridization (FISH), and chromosome analyses. Case presentation An 18-year-old female with a history of microcephaly, pervasive developmental disorder, intellectual disability, sensory integration disorder, gastroparesis, and hypotonia presented to our genetics clinic. She had negative karyotype by parental report but no other genetic testing performed previously. SNP microarray analysis revealed a complex genotype including 8.4 Mb terminal mosaic duplication on chromosome 3 (3p26.3->3p26.1) with the distal 5.7 Mb involving two parental haplotypes and the proximal 2.7 Mb involving three parental haplotypes, and a 6.1 Mb terminal mosaic deletion on chromosome 12 (12p13.33->12p13.31) with no evidence for a second haplotype. Adjacent to the mosaic deletion is an interstitial mosaic copy-neutral region of homozygosity (1.9 Mb, 12p13.31). The mother of this individual was confirmed by chromosome analysis and FISH that she carries a balanced translocation, t(3;12)(p26.1;p13.31). Conclusion Taken together, the proband, when at the stage of a zygote, likely carried the derivative chromosome 12 from this translocation, and a postzygotic mitotic recombination event occurred between the normal paternal chromosome 12 and maternal derivative chromosome 12 to “correct” the partial 3p trisomy and partial deletion of 12p. To the best of our knowledge, it is the first time to report the mechanism utilizing a combined cytogenetic and cytogenomic approach, and we believe it expands our knowledge of mosaic structural chromosomal disorders and provides new insight into clinical management and genetic counseling.
Collapse
|
9
|
Su M, Page S, Haag M, Swisshelm K, Hennerich D, Graw S, LeRoux J, Brzeskiewicz P, Svihovec S, Bao L. Clinical utility and cost-effectiveness analysis of chromosome testing concomitant with chromosomal microarray of patients with constitutional disorders in a U.S. academic medical center. J Genet Couns 2021; 31:364-374. [PMID: 34397147 DOI: 10.1002/jgc4.1496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 12/11/2022]
Abstract
Chromosomal microarray (CMA) is now widely used as first-tier testing for the detection of copy number variants (CNVs) and absence of heterozygosity (AOH) in patients with multiple congenital anomalies (MCA), autism spectrum disorder (ASD), developmental delay (DD), and/or intellectual disability (ID). Chromosome analysis is commonly used to complement CMA in the detection of balanced genomic aberrations. However, the cost-effectiveness and the impact on clinical management of chromosome analysis concomitant with CMA were not well studied, and there is no consensus on how to best utilize these two tests. To assess the clinical utility and cost-effectiveness of chromosome analysis concomitant with CMA in patients with MCA, ASD, DD, and/or ID, we retrospectively analyzed 3,360 postnatal cases for which CMA and concomitant chromosome analysis were performed in the Colorado Genetic Laboratory (CGL) at the University Of Colorado School Of Medicine. Chromosome analysis alone yielded a genetic diagnosis in two patients (0.06%) and contributed additional information to CMA results in 199 (5.92%) cases. The impact of abnormal chromosome results on patient management was primarily related to counseling for reproductive and recurrence risks assessment (101 cases, 3.01%) while a few (5 cases, 0.15%) led to changes in laboratory testing and specialist referral (25 cases, 0.74%). The incremental cost-effectiveness ratio (ICER) of combined testing demonstrated the cost of each informative chromosome finding was significantly higher for patients with clinically insignificant (CI) CMA findings versus clinically significant (CS) CMA results. Our results suggest that a stepwise approach with CMA testing with reflex to chromosome analysis on cases with CS CMA findings is a more cost-effective testing algorithm for patients with MCA, ASD, and/or DD/ID.
Collapse
Affiliation(s)
- Meng Su
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Stephanie Page
- Genetics Counseling Program, Department of Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mary Haag
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Karen Swisshelm
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Deborrah Hennerich
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Sharon Graw
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jamie LeRoux
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Peter Brzeskiewicz
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Shayna Svihovec
- Clinical Genetics and Metabolism, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Liming Bao
- Colorado Genetics Laboratory, Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
10
|
Li M, Glass J, Du X, Dubbs H, Harr MH, Falk M, Smolarek T, Hopkin RJ, Zackai E, Sheppard SE. Trisomy 9 mosaic syndrome: Sixteen additional patients with new and/or less commonly reported features, literature review, and suggested clinical guidelines. Am J Med Genet A 2021; 185:2374-2383. [PMID: 33969943 DOI: 10.1002/ajmg.a.62251] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 11/10/2022]
Abstract
Trisomy 9 mosaic syndrome (T9M) is a rare condition characterized by multiorgan system involvement including craniofacial dysmorphisms, cardiac, genitourinary (GU), skeletal, and central nervous system (CNS) abnormalities. Although more than 100 cases have been reported in the literature, a comprehensive review has not been performed nor have clinical guidelines been established. Therefore, we describe the clinical features of 16 additional patients, review features of previously reported individuals, and suggest clinical guidelines. Our findings expand the clinical phenotype of T9M, including novel features of amblyopia, astigmatism, corectopia of pupil, posterior embryotoxon, and diaphragmatic eventration. Most patients had prenatal and perinatal issues, particularly from respiratory, growth, and feeding standpoints. Although small birth parameters were common, long-term growth trends varied widely. An association with advanced parental ages was also identified. The spectrum of growth and development was wide, ranging from nonverbal patients to those able to participate in educational programs with age-appropriate peers. The severity of clinical outcomes was unrelated to blood lymphocyte mosaicism levels. Microarray analysis had a higher diagnostic rate compared to standard karyotype analysis and should be utilized if this diagnosis is suspected. Future longitudinal studies will be key to monitor long-term outcomes of individuals with T9M and determine best practices for clinical management.
Collapse
Affiliation(s)
- Mindy Li
- Division of Genetics, Department of Pediatrics, Rush Medical College and Rush University Medical Center, Chicago, Illinois, USA
| | - Jennifer Glass
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xiaoli Du
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Holly Dubbs
- Division of Human Genetics, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Margaret Horton Harr
- Division of Human Genetics, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marni Falk
- Division of Human Genetics, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Teresa Smolarek
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Elaine Zackai
- Division of Human Genetics, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Sarah E Sheppard
- Division of Human Genetics, Department of Pediatrics, University of Pennsylvania Perelman School of Medicine and The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
Hu X, Ayala SS, Dyer L, Guan Q, Pena L. A rare case of postnatal mosaic trisomy 12 with severe congenital heart disease and literature review. Am J Med Genet A 2021; 185:1864-1869. [PMID: 33759348 DOI: 10.1002/ajmg.a.62166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/30/2021] [Accepted: 02/23/2021] [Indexed: 11/10/2022]
Abstract
Trisomy 12 is a rare autosomal aneuploidy. All postnatally diagnosed individuals with trisomy 12 have been mosaic for this chromosome abnormality. We herein report an infant girl presented at 2 weeks of age with severe congenital heart defect, tracheobronchomalacia, and dysmorphic features. All of the dysmorphic features of this patient fit into the known phenotype spectrum of mosaic trisomy 12, although this patient uniquely presented with macrocephaly. Tracheo-bronchomalacia has been described once previously but had a significant impact on this patient's clinical course. The patient passed away at 2-month-old due to cardiac and respiratory complications. Chromosomal single nucleotide polymorphism (SNP) microarray analysis on a peripheral blood sample from the patient revealed trisomy 12 in approximately 50% of cells. Concurrent fluorescence in situ hybridization analysis of uncultured blood cells detected a comparable level of trisomy 12 mosaicism. Compared to conventional cytogenetics, SNP microarray examines all nucleated cells without sampling bias, has an increased power to estimate mosaicism level, and can provide a quick assessment of the underlying mechanism. Here we demonstrate the utilization of SNP microarray in the clinical diagnosis of those once considered rare disorders but might have been missed by conventional cytogenetic techniques.
Collapse
Affiliation(s)
- Xiaolin Hu
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Sofia Saenz Ayala
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lisa Dyer
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Qiaoning Guan
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Loren Pena
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
Tulay P, Ergoren MC, Alkaya A, Yayci E, Sag SO, Temel SG. Inconsistency of Karyotyping and Array Comparative Genomic Hybridization (aCGH) in a Mosaic Turner Syndrome Case. Glob Med Genet 2021; 7:128-132. [PMID: 33693446 PMCID: PMC7938938 DOI: 10.1055/s-0041-1722974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Purpose
Turner syndrome is a sex chromosomal aberration where majority of the patients have 45,X karyotype, while several patients are mosaic involving 45,X/46,XX; 46,X,i(Xq); and other variants. Cytogenetic analysis, karyotyping, is considered to be the “gold standard” to detect numerical and structural chromosomal abnormalities. In the recent years, alternative approaches, such as array comparative genomic hybridization (aCGH), have been widely used in genetic analysis to detect numerical abnormalities as well as unbalanced structural rearrangements. In this study, we report the use of karyotyping as well as aCGH in detecting a possible Turner syndrome variant.
Methods
An apparent 16-year-old female was clinically diagnosed as Turner syndrome with premature ovarian failure and short stature. The genetic diagnosis was performed for the patient and the parents by karyotyping analysis. aCGH was also performed for the patient.
Main Findings
Cytogenetic analysis of the patient was performed showing variant Turner syndrome (46,X,i(X)(q10)[26]/46,X,del(X)(q11.2)[11]/45,X[8]/46,XX[5]). The patient's aCGH result revealed that she has a deletion of 57,252kb of Xp22.33-p11.21 region; arr[GRCh37] Xp22.33-p11.21 (310,932–57,563–078)X1. Both aCGH and fluorescence in situ hybridization (FISH) results suggested that
short stature Homeobox-containing
(
SHOX
) gene, which is located on Xp22.33, was deleted, though FISH result indicated that this was in a mosaic pattern.
Conclusion
In the recent years, aCGH has become the preferred method in detecting numerical abnormalities and unbalanced chromosomal rearrangements. However, its use is hindered by its failure of detecting mosaicism, especially low-level partial mosaicism. Therefore, although the resolution of the aCGH is higher, the cytogenetic investigation is still the first in line to detect mosaicism.
Collapse
Affiliation(s)
- Pinar Tulay
- Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus.,Near East University, DESAM Institute, Nicosia, Cyprus
| | - Mahmut Cerkez Ergoren
- Near East University, Faculty of Medicine, Department of Medical Genetics, Nicosia, Cyprus.,Near East University, DESAM Institute, Nicosia, Cyprus
| | - Ahmet Alkaya
- Bilecik Seyh Edebali University, Graduate School of Applied Sciences, Gulumbe Yerleskesi, Bilecik, Turkey
| | - Eyup Yayci
- Near East University, Faculty of Medicine, Department of Gynecology and Obstetrics, Nicosia, Cyprus
| | - Sebnem Ozemri Sag
- Uludag University, Faculty of Medicine, Department of Medical Genetics, Bursa, Turkey
| | - Sehime Gulsum Temel
- Uludag University, Faculty of Medicine, Department of Medical Genetics, Bursa, Turkey.,Uludag University, Faculty of Medicine, Department of Histology and Embryology, Bursa, Turkey
| |
Collapse
|
13
|
Conconi D, Redaelli S, Lissoni AA, Cilibrasi C, Perego P, Gautiero E, Sala E, Paderno M, Dalprà L, Landoni F, Lavitrano M, Roversi G, Bentivegna A. Genomic and Epigenomic Profile of Uterine Smooth Muscle Tumors of Uncertain Malignant Potential (STUMPs) Revealed Similarities and Differences with Leiomyomas and Leiomyosarcomas. Int J Mol Sci 2021; 22:1580. [PMID: 33557274 PMCID: PMC7914585 DOI: 10.3390/ijms22041580] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/24/2021] [Accepted: 02/01/2021] [Indexed: 01/20/2023] Open
Abstract
Uterine smooth muscle tumors of uncertain malignant potential (STUMPs) represent a heterogeneous group of tumors that cannot be histologically diagnosed as unequivocally benign or malignant. For this reason, many authors are working to obtain a better definition of diagnostic and prognostic criteria. In this work, we analyzed the genomic and epigenomic profile of uterine smooth muscle tumors (USMTs) in order to find similarities and differences between STUMPs, leiomyosarcomas (LMSs) and leiomyomas (LMs), and possibly identify prognostic factors in this group of tumors. Array-CGH data on 23 USMTs demonstrated the presence of a more similar genomic profile between STUMPs and LMSs. Some genes, such as PRKDC and PUM2, with a potential prognostic value, were never previously associated with STUMP. The methylation data appears to be very promising, especially with regards to the divergent profile found in the sample that relapsed, characterized by an overall CGI hypomethylation. Finally, the Gene Ontology analysis highlighted some cancer genes that could play a pivotal role in the unexpected aggressive behavior that can be found in some of these tumors. These genes could prove to be prognostic markers in the future.
Collapse
Affiliation(s)
- Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (A.A.L.); (M.P.); (L.D.); (F.L.); (M.L.); (G.R.)
| | - Serena Redaelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (A.A.L.); (M.P.); (L.D.); (F.L.); (M.L.); (G.R.)
| | - Andrea Alberto Lissoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (A.A.L.); (M.P.); (L.D.); (F.L.); (M.L.); (G.R.)
- Clinic of Obstetrics and Gynecology, San Gerardo Hospital, 20900 Monza, Italy
| | - Chiara Cilibrasi
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK;
| | - Patrizia Perego
- Division of Pathology, San Gerardo Hospital, 20900 Monza, Italy;
| | - Eugenio Gautiero
- Medical Genetics Laboratory, San Gerardo Hospital, 20900 Monza, Italy; (E.G.); (E.S.)
| | - Elena Sala
- Medical Genetics Laboratory, San Gerardo Hospital, 20900 Monza, Italy; (E.G.); (E.S.)
| | - Mariachiara Paderno
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (A.A.L.); (M.P.); (L.D.); (F.L.); (M.L.); (G.R.)
- Clinic of Obstetrics and Gynecology, San Gerardo Hospital, 20900 Monza, Italy
| | - Leda Dalprà
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (A.A.L.); (M.P.); (L.D.); (F.L.); (M.L.); (G.R.)
| | - Fabio Landoni
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (A.A.L.); (M.P.); (L.D.); (F.L.); (M.L.); (G.R.)
- Clinic of Obstetrics and Gynecology, San Gerardo Hospital, 20900 Monza, Italy
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (A.A.L.); (M.P.); (L.D.); (F.L.); (M.L.); (G.R.)
| | - Gaia Roversi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (A.A.L.); (M.P.); (L.D.); (F.L.); (M.L.); (G.R.)
- Medical Genetics Laboratory, San Gerardo Hospital, 20900 Monza, Italy; (E.G.); (E.S.)
| | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (S.R.); (A.A.L.); (M.P.); (L.D.); (F.L.); (M.L.); (G.R.)
| |
Collapse
|
14
|
Wang T, Lian J, Ren C, Huang H, Huang Y, Xu L, Zheng L, Cai C, Guo L. Prenatal diagnosis of mosaic trisomy 2 and literature review. Mol Cytogenet 2020; 13:36. [PMID: 32855656 PMCID: PMC7445897 DOI: 10.1186/s13039-020-00504-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background We presented two cases of mosaic trisomy 2 with high risk of maternal serum screening and non-invasive prenatal testing (NIPT). The invasive amniocentesis was performed and genetic tests including karyotype, single nucleotide polymorphism array(SNP-array), interphase fluorescence in situ hybridization (FISH) were employed to detect the chromosomal abnormality. Results Cytogentic analysis of the case 1 and 2 showed a mosaic karyotype consisting of two cell lines (mos 47,XY,+2[8]/46,XY[19] and mos 47,XX,+2[7]/46,XX[28], respectively). SNP-array using DNA extracted from uncultured amniotic fluid cells revealed a result of arr[GRCh38](2)x2~3, which indicated that chromosome 2 may be trisomy of mosaicism in both two cases. The results of interphases FISH confirmation test showed that three red signals of the CEP 2 specific probe in 14%(14/100) and 12%(12/100) of the two cases’ cells, respectively, which indicated a mosaicism for trisomy 2 in the uncultured amniocytes. Fetal ultrasound of case 1 suggested that the long bone is smaller than the gestational age, while the case 2 showed that the biparietal diameter (BPD), head circumference (HC) and femur length (FL) were smaller than gestational age along with abnormal cardiac structure. Conclusions We presented two cases with mosaic trisomy 2 and performed confirmatory genetic testing using cultured and uncultured amniocytes. When maternal serum screening and NIPT suggesting high risk, genetic counselor should be alert for increasing possibility of chromosomal anomalies if combined with abnormal ultrasound findings.
Collapse
Affiliation(s)
- Ting Wang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou,Chi531 Xinnan Road, Panyu District, Guangzhou, China
| | - Jufei Lian
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou,Chi531 Xinnan Road, Panyu District, Guangzhou, China
| | - Congmian Ren
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou,Chi531 Xinnan Road, Panyu District, Guangzhou, China
| | - Huamei Huang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou,Chi531 Xinnan Road, Panyu District, Guangzhou, China
| | - Yanlin Huang
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou,Chi531 Xinnan Road, Panyu District, Guangzhou, China
| | - Ling Xu
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou,Chi531 Xinnan Road, Panyu District, Guangzhou, China
| | - Laiping Zheng
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou,Chi531 Xinnan Road, Panyu District, Guangzhou, China
| | - Chanhui Cai
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou,Chi531 Xinnan Road, Panyu District, Guangzhou, China
| | - Li Guo
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou,Chi531 Xinnan Road, Panyu District, Guangzhou, China
| |
Collapse
|
15
|
Liu Q, Karolak JA, Grochowski CM, Wilson TA, Rosenfeld JA, Bacino CA, Lalani SR, Patel A, Breman A, Smith JL, Cheung SW, Lupski JR, Bi W, Stankiewicz P. Parental somatic mosaicism for CNV deletions - A need for more sensitive and precise detection methods in clinical diagnostics settings. Genomics 2020; 112:2937-2941. [PMID: 32387503 DOI: 10.1016/j.ygeno.2020.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 05/04/2020] [Indexed: 10/25/2022]
Abstract
To further assess the scale and level of parental somatic mosaicism, we queried the CMA database at Baylor Genetics. We selected 50 unrelated families where clinically relevant apparent de novo CNV-deletions were found in the affected probands. Parental blood samples screening using deletion junction-specific PCR revealed four parents with somatic mosaicism. Droplet digital PCR (ddPCR), qPCR, and amplicon-based next-generation sequencing (NGS) were applied to validate these findings. Using ddPCR levels of mosaicism ranged from undetectable to 18.5%. Amplicon-based NGS and qPCR for the father with undetectable mosaicism was able to detect mosaicism at 0.39%. In one mother, ddPCR analysis revealed 15.6%, 10.6%, 8.2%, and undetectable levels of mosaicism in her blood, buccal cells, saliva, and urine samples, respectively. Our data suggest that more sensitive and precise methods, e.g. CNV junction-specific LR-PCR, ddPCR, or qPCR may allow for a more refined assessment of the potential disease recurrence risk for an identified variant.
Collapse
Affiliation(s)
- Qian Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Justyna A Karolak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | | | - Theresa A Wilson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Amy Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Janice L Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Alkaya DU, Karaman B, Tüysüz B. Three Offspring with Cri-du-Chat Syndrome from Phenotypically Normal Parents. Mol Syndromol 2020; 11:97-103. [PMID: 32655341 DOI: 10.1159/000506892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Cri-du-chat syndrome is characterized by facial dysmorphism, intellectual disability, and multiple congenital anomalies. Most cases occur de novo. Here, we report 3 siblings with cri-du-chat syndrome born to healthy parents. The proband was admitted to our clinic at the age of 6.5 years due to severe intellectual disability, facial dysmorphism, and heart defect. His karyotype showed a deletion of chromosome 5p. Microarray analysis revealed a 29-Mb deletion in chromosome 5p and a 4.7-Mb duplication in chromosome 19q. FISH analysis indicated an unbalanced translocation between 5p13.3 and 19q13.4. During follow-up, the second and the third child of the family were born with the same chromosome abnormality. Parental peripheral blood and skin fibroblast karyotypes as well as the FISH results using chromosome 5p- and 19q-specific subtelomeric probes were normal. FISH analysis of the father's sperm detected a 5p deletion in 12.8% of 200 cells, and microarray analysis confirmed the same unbalanced chromosome abnormality in a mosaic pattern. Uncultured peripheral blood and buccal smear of the father were also studied by FISH to exclude low-level mosaicism and in vitro culture effect. This is the first study that provides molecular evidence of paternal gonadal mosaicism of an unbalanced translocation detected in 3 siblings with cri-du-chat syndrome.
Collapse
Affiliation(s)
- Dilek U Alkaya
- Department of Pediatric Genetics, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| | - Birsen Karaman
- Department of Medical Genetics, Medical School, Istanbul University, Istanbul, Turkey
| | - Beyhan Tüysüz
- Department of Pediatric Genetics, Cerrahpasa Medical School, Istanbul University, Istanbul, Turkey
| |
Collapse
|
17
|
Refining the Phenotype of Recurrent Rearrangements of Chromosome 16. Int J Mol Sci 2019; 20:ijms20051095. [PMID: 30836598 PMCID: PMC6429492 DOI: 10.3390/ijms20051095] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 01/08/2023] Open
Abstract
Chromosome 16 is one of the most gene-rich chromosomes of our genome, and 10% of its sequence consists of segmental duplications, which give instability and predisposition to rearrangement by the recurrent mechanism of non-allelic homologous recombination. Microarray technologies have allowed for the analysis of copy number variations (CNVs) that can contribute to the risk of developing complex diseases. By array comparative genomic hybridization (CGH) screening of 1476 patients, we detected 27 cases with CNVs on chromosome 16. We identified four smallest regions of overlapping (SROs): one at 16p13.11 was found in seven patients; one at 16p12.2 was found in four patients; two close SROs at 16p11.2 were found in twelve patients; finally, six patients were found with atypical rearrangements. Although phenotypic variability was observed, we identified a male bias for Childhood Apraxia of Speech associated to 16p11.2 microdeletions. We also reported an elevated frequency of second-site genomic alterations, supporting the model of the second hit to explain the clinical variability associated with CNV syndromes. Our goal was to contribute to the building of a chromosome 16 disease-map based on disease susceptibility regions. The role of the CNVs of chromosome 16 was increasingly made clear in the determination of developmental delay. We also found that in some cases a second-site CNV could explain the phenotypic heterogeneity by a simple additive effect or a pejorative synergistic effect.
Collapse
|
18
|
Nakhuda G, Jing C, Butler R, Guimond C, Hitkari J, Taylor E, Tallon N, Yuzpe A. Frequencies of chromosome-specific mosaicisms in trophoectoderm biopsies detected by next-generation sequencing. Fertil Steril 2018; 109:857-865. [PMID: 29778385 DOI: 10.1016/j.fertnstert.2018.01.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/02/2018] [Accepted: 01/08/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To examine the chromosome-specific frequencies of mosaicism detected by next-generation sequencing (NGS) compared with constitutional aneuploidy. DESIGN Retrospective cross-sectional review of NGS results from trophectoderm biopsies analyzed by per-chromosome prevalence of mosaicism and constitutional aneuploidy. SETTING Private fertility clinic. PATIENT(S) A total of 378 patients who underwent preimplantation genetic screening by NGS for routine clinical indications from February 2016 to April 2017. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Aneuploidies and mosaicisms were tabulated per chromosome, and whole-chromosome and segmental mosaicisms were also analyzed. RESULT(S) NGS results were analyzed from 1,547 blastocysts. Mosaicism was detected as the sole abnormality in 17.5% (n = 270) of samples but were also found in 196/634 aneuploid embryos, so the overall incidence of mosaicism per biopsy was 30.1%. Mosaicism did not statistically vary when stratified by maternal age. The mean rate of overall mosaicism per chromosome was 2.46%. When whole chromosome and segmental mosaicisms were compared, unequal frequencies were found in several chromosomes. Trisomy was more frequently detected as whole-chromosome mosaicism, although monosomy was more frequently seen in segmental mosaicism. Aneuploidy and mosaicism displayed different patterns of distribution in various chromosomes. CONCLUSION(S) Mosaicism is unequally detected in various chromosomes and appears distinct from the distribution pattern of constitutional aneuploidy. Whole chromosome and segmental mosaicisms are also differentially detected. These results contribute to the study of mosaicism, illuminating a differential pattern of detection across the genome.
Collapse
Affiliation(s)
- Gary Nakhuda
- Olive Fertility Centre, Vancouver, British Columbia, Canada; University of British Columbia, Vancouver, British Columbia, Canada.
| | - Chen Jing
- Olive Fertility Centre, Vancouver, British Columbia, Canada
| | - Rachel Butler
- Olive Fertility Centre, Vancouver, British Columbia, Canada; University of British Columbia, Vancouver, British Columbia, Canada
| | - Colleen Guimond
- Olive Fertility Centre, Vancouver, British Columbia, Canada; University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason Hitkari
- Olive Fertility Centre, Vancouver, British Columbia, Canada; University of British Columbia, Vancouver, British Columbia, Canada
| | - Elizabeth Taylor
- Olive Fertility Centre, Vancouver, British Columbia, Canada; University of British Columbia, Vancouver, British Columbia, Canada
| | - Niamh Tallon
- Olive Fertility Centre, Vancouver, British Columbia, Canada; University of British Columbia, Vancouver, British Columbia, Canada
| | - Albert Yuzpe
- Olive Fertility Centre, Vancouver, British Columbia, Canada; University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
A survey of undetected, clinically relevant chromosome abnormalities when replacing postnatal karyotyping by Whole Genome Sequencing. Eur J Med Genet 2018; 62:103543. [PMID: 30248410 DOI: 10.1016/j.ejmg.2018.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/30/2018] [Accepted: 09/18/2018] [Indexed: 11/21/2022]
Abstract
Whole genome sequencing (WGS) holds the potential to identify pathogenic gene mutations, copy number variation, uniparental disomy and structural rearrangements in a single genetic test. With its high diagnostic yield and decreasing costs, the question arises whether WGS can serve as a single test for all referrals to diagnostic genome laboratories ("one test fits all"). Here, we provide an estimate for the proportion of clinically relevant aberrations identified by light microscopy in postnatal referrals that would go undetected by WGS. To this end, we compiled the clinically relevant abnormal findings for each of the different referral categories in our laboratory during the period 2006-2015. We assumed that WGS would be performed on 300-500 bp DNA fragments with 150-bp paired sequence reads, and that the mean genome coverage is 30x, corresponding to current practice. For the detection of chromosomal mosaicism we set minimum thresholds of 10% for monosomy and 20% for trisomy. Based on the literature we assumed that balanced Robertsonian translocations and ∼9% of other, balanced chromosome rearrangements would not be detectable because of breakpoints in sequences of repetitive DNA. Based on our analysis of all 14,957 referrals, including 1455 abnormal cases, we show that at least 8.1% of these abnormalities would escape detection (corresponding to 0.79% of all referrals). The highest rate occurs in referrals of premature ovarian failure, as 73.3% of abnormalities would not be identified because of the frequent occurrence of low-level sex chromosome mosaicism. Among referrals of recurrent miscarriage, 25.6% of abnormalities would go undetected, mainly because of a high proportion of balanced Robertsonian translocations. In referrals of mental retardation (with or without multiple congenital anomalies) the abnormality would be missed in only 0.35% of referrals. These include cases without imbalances of unique DNA sequences but of clinical relevance, as for example, r(20) epilepsy syndrome. The expected shift to large-scale implementation of WGS ("one test fits most") as initial genetic test will be beneficial to patients and their families, since a cause for the clinical phenotype can be identified in more cases by a single genetic test at an early phase in the diagnostic process. However, a niche for genome analysis by light microscopy will remain. For example, in referrals of newborns with a suspicion of Down syndrome, karyotyping is not only a cost-effective method for providing a quick diagnosis, but also discriminates between trisomy 21 and a Robertsonian translocation involving chromosome 21. Thus, when replacing karyotyping by WGS, one must be aware of the rates and spectra of undetected abnormalities. In addition, it is equally important that requirements for cytogenetic follow-up studies are recognized.
Collapse
|
20
|
Gu S, Jernegan M, Van den Veyver IB, Peacock S, Smith J, Breman A. Chromosomal microarray analysis on uncultured chorionic villus sampling can be complicated by confined placental mosaicism for aneuploidy and microdeletions. Prenat Diagn 2018; 38:858-865. [PMID: 30094853 DOI: 10.1002/pd.5342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This study aims to establish the incidence and implications of confined placental mosaicism (CPM) in the context of prenatal chromosomal microarray analysis (CMA). METHODS We retrospectively reviewed prenatal array data on 1382 consecutive chorionic villus sampling (CVS) specimens spanning the past 6 years, focusing on those for which whole CVS biopsy (both cytotrophoblast and mesenchymal cells) was used for CMA and cultured cells (primarily mesenchyme) was also analyzed or amniotic fluid (AF)/newborn blood was used for confirmation, to determine the frequency of mosaic abnormal findings that were the result of CPM. RESULTS Out of a total of 1382 consecutive CVS cases, we identified 42 (42/1382 = 3.0%) cases with abnormal array findings suggestive of mosaicism. Among them, 10 cases were unequivocally interpreted as CPM based on a normal AF/newborn blood confirmatory result. In addition, another 10 cases were interpreted as provisional CPM based on normal results on cultured cells. Notably, 40% (8/20) of the cases revealed complex findings, including multiple mosaic aneuploidies, mosaic submicroscopic copy number variation (CNV), and mosaic aneuploidy plus mosaic CNV. CONCLUSION Abnormal CMA results from CVS specimens should be interpreted with caution when mosaicism is evident or suspected. Furthermore, confirmatory testing on amniotic fluid, which contains cells derived from the fetus, is recommended in these cases.
Collapse
Affiliation(s)
- Shen Gu
- Baylor Genetics Laboratories, Houston, Texas.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Madison Jernegan
- Department of Nursing, Northeastern Oklahoma A&M College, Miami, Oklahoma
| | - Ignatia B Van den Veyver
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas.,Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| | | | - Janice Smith
- Baylor Genetics Laboratories, Houston, Texas.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Amy Breman
- Baylor Genetics Laboratories, Houston, Texas.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
21
|
Waggoner D, Wain KE, Dubuc AM, Conlin L, Hickey SE, Lamb AN, Martin CL, Morton CC, Rasmussen K, Schuette JL, Schwartz S, Miller DT. Yield of additional genetic testing after chromosomal microarray for diagnosis of neurodevelopmental disability and congenital anomalies: a clinical practice resource of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2018; 20:1105-1113. [PMID: 29915380 PMCID: PMC6410698 DOI: 10.1038/s41436-018-0040-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 11/16/2022] Open
Abstract
Purpose: Chromosomal microarray (CMA) is recommended as the first tier test in evaluation of individuals with neurodevelopmental disability and congenital anomalies. CMA may not detect balanced cytogenomic abnormalities or uniparental disomy (UPD), and deletion/duplications and regions of homozygosity may require additional testing to clarify the mechanism and inform accurate counseling. We conducted an evidence review to synthesize data regarding the benefit of additional testing after CMA to inform a genetic diagnosis. Methods: The review was guided by key questions related to the detection of genomic events that may require additional testing. A PubMed search for original research articles, systematic reviews, and meta-analyses were evaluated from articles published between January 1, 1983 and March 31, 2017. Based on the key questions, articles were retrieved and data extracted in parallel with comparison of results and discussion to resolve discrepancies. Variables assessed included study design and outcomes. Results: A narrative synthesis was created for each question to describe the occurrence of, and clinical significance of, additional diagnostic findings from subsequent testing performed after CMA. Conclusion: These findings may be used to assist the laboratory and clinician when making recommendations about additional testing after CMA, as it impacts clinical care, counseling, and diagnosis.
Collapse
Affiliation(s)
- Darrel Waggoner
- Department of Human Genetics, University of Chicago, Chicago, Illinois, USA.
| | - Karen E Wain
- Autism & Developmental Medicine Institute, Geisinger Health System, Danville, Pennsylvania, USA
| | - Adrian M Dubuc
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Conlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Scott E Hickey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Allen N Lamb
- Department of Pathology, ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Christa Lese Martin
- Autism & Developmental Medicine Institute, Geisinger Health System, Danville, Pennsylvania, USA
| | - Cynthia C Morton
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Obstetrics and Gynecology and Reproductive Biology, Brigham and Women's Hospital, Broad Institute of MIT and Harvard, Harvard Medical School, Boston, Massachusetts, USA.,Division of Evolution and Genomics Science, School of Biological Sciences, Manchester Academic Health Science Center, Manchester, UK
| | - Kristen Rasmussen
- Department of Medical Genetics, Marshfield Clinic, Marshfield, Wisconsin, USA
| | - Jane L Schuette
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Stuart Schwartz
- Laboratory Corporation of America® Holdings, Burlington, North Carolina, USA
| | - David T Miller
- Division of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| | | |
Collapse
|
22
|
Fernández R, Guillamón A, Gómez-Gil E, Esteva I, Almaraz MC, Cortés-Cortés J, Lamas B, Lema E, Pásaro E. Analyses of karyotype by G-banding and high-resolution microarrays in a gender dysphoria population. Genes Genomics 2018; 40:465-473. [DOI: 10.1007/s13258-017-0646-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 12/29/2017] [Indexed: 12/31/2022]
|
23
|
Simon L, Emery BR, Carrell DT. Review: Diagnosis and impact of sperm DNA alterations in assisted reproduction. Best Pract Res Clin Obstet Gynaecol 2017; 44:38-56. [DOI: 10.1016/j.bpobgyn.2017.07.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/11/2017] [Accepted: 07/24/2017] [Indexed: 01/31/2023]
|
24
|
Oneda B, Asadollahi R, Azzarello-Burri S, Niedrist D, Baldinger R, Masood R, Schinzel A, Latal B, Jenni OG, Rauch A. Low-Level Chromosomal Mosaicism in Neurodevelopmental Disorders. Mol Syndromol 2017; 8:266-271. [PMID: 28878611 DOI: 10.1159/000477189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2017] [Indexed: 11/19/2022] Open
Abstract
Chromosomal mosaicism, which represents a diagnostic challenge for detection and interpretation, has been described in several genetic conditions. It can contribute to a large phenotypic variation in diseases. At analysis of a well-characterized cohort of 714 patients with neurodevelopmental disorders (NDDs) of unknown etiology using a high-resolution chromosomal microarray platform, we found 2 cases (0.28%) of low-level mosaicism and defined a previously detected extra chromosome in a third patient. Two of the cases were mosaics for segmental imbalances (a partial trisomy 3q26.1q27.3 and a partial monosomy 18q21.2qter with 14.6 and 20% mosaic ratios in lymphocytes, respectively), and 1 was a mosaic for an entire chromosome (trisomy 14, mosaic ratio 20%). Our diagnostic yield is in line with the ratios previously published in patients with intellectual disability. Notably, the partial trisomy 3q26.1q27.3 case is an example of a rare and unusual class of a rearranged neocentric ring chromosome, which can neither be categorized in class I, nor in class II of such rearrangements. Our cases further elucidate the phenotypes related to the aberrations of the specific chromosome segments observed and underline the important role of low-level mosaics in the pathogenesis of NDDs of unknown etiology even in the absence of clinical signs of mosaicism.
Collapse
Affiliation(s)
- Beatrice Oneda
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | | | - Dunja Niedrist
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Rosa Baldinger
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Rahim Masood
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Albert Schinzel
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Bea Latal
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Oskar G Jenni
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Lei TY, Wang HT, Li F, Cui YQ, Fu F, Li R, Liao C. Application of high resolution SNP arrays in patients with congenital oral clefts in south China. J Genet 2017; 95:801-809. [PMID: 27994178 DOI: 10.1007/s12041-016-0696-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chromosome microarray analysis (CMA) has proven to be a powerful tool in postnatal patients with intellectual disabilities. However, the diagnostic capability of CMA in patients with congenital oral clefts remain mysterious. Here, we present our clinical experience in implementing whole-genome high-resolution SNP arrays to investigate 33 patients with syndromic and nonsyndromic oral clefts in whom standard karyotyping analyses showed normal karyotypes. We aim to identify the genomic aetiology and candidate genes in patients with congenital oral clefts. CMA revealed copy number variants (CNVs) in every patient, which ranged from 2 to 9 per sample. The size of detected CNVs varied from 100 to 3.2 Mb. In 33 patients, we identified six clinically significant CNVs. The incidence of clinically significant CNVs was 18.2% (6/33). Three of these six CNVs were detected in patients with nonsyndromic clefts, including one who presented with isolated cleft lip with cleft palate (CLP) and two with cleft palate only (CPO). The remaining three CNVs were detected in patients with syndromic clefts. However, no CNV was detected in patients with cleft lip only (CLO). The six clinically significant CNVs were as follows: 8p23.1 microduplication (198 kb); 10q22.2-q22.3 microdeletion (1766 kb); 18q12.3 microduplication (638 kb); 20p12.1 microdeletion (184 kb); 6q26 microdeletion (389 kb); and 22q11.21-q11.23 microdeletion (3163 kb). In addition, two novel candidate genes for oral clefts, KAT6B and MACROD2, were putatively identified. We also found a CNV of unknown clinical significance with a detection rate of 3.0% (1/33). Our results further support the notion that CNVs significantly contributed to the genetic aetiology of oral clefts and emphasize the efficacy of whole-genome high-resolution SNP arrays to detect novel candidate genes in patients with syndromic and nonsyndromic clefts.
Collapse
Affiliation(s)
- Ting-Ying Lei
- Department of Prenatal Diagnostic Center Guangzhou Medical University, Guangdong, 510623, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Conconi D, Redaelli S, Bovo G, Leone BE, Filippi E, Ambrosiani L, Cerrito MG, Grassilli E, Giovannoni R, Dalprà L, Lavitrano M. Unexpected frequency of genomic alterations in histologically normal colonic tissue from colon cancer patients. Tumour Biol 2016; 37:13831-13842. [PMID: 27481518 PMCID: PMC5097093 DOI: 10.1007/s13277-016-5181-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/12/2016] [Indexed: 02/06/2023] Open
Abstract
As shown by genomic studies, colorectal cancer (CRC) is a highly heterogeneous disease, where copy number alterations (CNAs) may greatly vary among different patients. To explore whether CNAs may be present also in histologically normal tissues from patients affected by CRC, we performed CGH + SNP Microarray on 15 paired tumoral and normal samples. Here, we report for the first time the occurrence of CNAs as a common feature of the histologically normal tissue from CRC patients, particularly CNAs affecting different oncogenes and tumor-suppressor genes, including some not previously reported in CRC and others known as being involved in tumor progression. Moreover, from the comparison of normal vs paired tumoral tissue, we were able to identify three groups: samples with an increased number of CNAs in tumoral vs normal tissue, samples with a similar number of CNAs in both tissues, and samples with a decrease of CNAs in tumoral vs normal tissue, which may be likely due to a selection of the cell population within the tumor. In conclusion, our approach allowed us to uncover for the first time an unexpected frequency of genetic alteration in normal tissue, suggesting that tumorigenic genetic lesions are already present in histologically normal colonic tissue and that the use in array comparative genomic hybridization (CGH) studies of normal samples as reference for the paired tumors can lead to misrepresented genomic data, which may be incomplete or limited, especially if used for the research of target molecules for personalized therapy and for the possible correlation with clinical outcome.
Collapse
Affiliation(s)
- Donatella Conconi
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy.
| | - Serena Redaelli
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Giorgio Bovo
- Unit of Pathology, San Gerardo Hospital, Monza, Italy
| | - Biagio Eugenio Leone
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy.,Section of Pathology, Desio Hospital, Desio, Italy
| | | | | | - Maria Grazia Cerrito
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Emanuela Grassilli
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Roberto Giovannoni
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| | - Leda Dalprà
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy.,Medical Genetics Laboratory, San Gerardo Hospital, Monza, Italy
| | - Marialuisa Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900, Monza, Italy
| |
Collapse
|
27
|
Lupski JR. Clinical genomics: from a truly personal genome viewpoint. Hum Genet 2016; 135:591-601. [PMID: 27221143 DOI: 10.1007/s00439-016-1682-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 05/11/2016] [Indexed: 12/23/2022]
Abstract
The path to Clinical Genomics is punctuated by our understanding of what types of DNA structural and sequence variation contribute to disease, the many technical challenges to detect such variation genome-wide, and the initial struggles to interpret personal genome variation in the context of disease. This review describes one perspective of the development of clinical genomics; whereas the experimental challenges, and hurdles to overcoming them, might be deemed readily apparent, the non-technical issues for clinical implementation may be less obvious. Some of these latter challenges, including: (1) informed consent, (2) privacy, (3) what constitutes potentially pathogenic variation contributing to disease, (4) disease penetrance in populations, and (5) the genetic architecture of disease, and the struggles sometimes faced for solutions, are highlighted using illustrative examples.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, 604B, One Baylor Plaza, Houston, TX, 77030, USA. .,Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA. .,Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
28
|
Daly AF, Yuan B, Fina F, Caberg JH, Trivellin G, Rostomyan L, de Herder WW, Naves LA, Metzger D, Cuny T, Rabl W, Shah N, Jaffrain-Rea ML, Zatelli MC, Faucz FR, Castermans E, Nanni-Metellus I, Lodish M, Muhammad A, Palmeira L, Potorac I, Mantovani G, Neggers SJ, Klein M, Barlier A, Liu P, Ouafik L, Bours V, Lupski JR, Stratakis CA, Beckers A. Somatic mosaicism underlies X-linked acrogigantism syndrome in sporadic male subjects. Endocr Relat Cancer 2016; 23:221-33. [PMID: 26935837 PMCID: PMC4877443 DOI: 10.1530/erc-16-0082] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 12/15/2022]
Abstract
Somatic mosaicism has been implicated as a causative mechanism in a number of genetic and genomic disorders. X-linked acrogigantism (XLAG) syndrome is a recently characterized genomic form of pediatric gigantism due to aggressive pituitary tumors that is caused by submicroscopic chromosome Xq26.3 duplications that include GPR101 We studied XLAG syndrome patients (n= 18) to determine if somatic mosaicism contributed to the genomic pathophysiology. Eighteen subjects with XLAG syndrome caused by Xq26.3 duplications were identified using high-definition array comparative genomic hybridization (HD-aCGH). We noted that males with XLAG had a decreased log2ratio (LR) compared with expected values, suggesting potential mosaicism, whereas females showed no such decrease. Compared with familial male XLAG cases, sporadic males had more marked evidence for mosaicism, with levels of Xq26.3 duplication between 16.1 and 53.8%. These characteristics were replicated using a novel, personalized breakpoint junction-specific quantification droplet digital polymerase chain reaction (ddPCR) technique. Using a separate ddPCR technique, we studied the feasibility of identifying XLAG syndrome cases in a distinct patient population of 64 unrelated subjects with acromegaly/gigantism, and identified one female gigantism patient who had had increased copy number variation (CNV) threshold for GPR101 that was subsequently diagnosed as having XLAG syndrome on HD-aCGH. Employing a combination of HD-aCGH and novel ddPCR approaches, we have demonstrated, for the first time, that XLAG syndrome can be caused by variable degrees of somatic mosaicism for duplications at chromosome Xq26.3. Somatic mosaicism was shown to occur in sporadic males but not in females with XLAG syndrome, although the clinical characteristics of the disease were similarly severe in both sexes.
Collapse
Affiliation(s)
- Adrian F Daly
- Department of Endocrinology, Centre Hospitalier Universitaire de Liege, University of Liege, Liege, Belgium
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TexasUSA
| | - Frederic Fina
- Assistance Publique Hôpitaux de Marseille (AP-HM), Hôpital Nord, Service de Transfert d'Oncologie Biologique, Marseille, France Laboratoire de Biologie Médicale, and Aix-Marseille UniversitéInserm, CRO2 UMR_S 911, Marseille, France
| | - Jean-Hubert Caberg
- Department of Human Genetics, Centre Hospitalier Universitaire de Liege, University of Liege, Liege, Belgium
| | - Giampaolo Trivellin
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Liliya Rostomyan
- Department of Endocrinology, Centre Hospitalier Universitaire de Liege, University of Liege, Liege, Belgium
| | - Wouter W de Herder
- Section of Endocrinology, Department of Medicine, Erasmus University Medical Center Rotterdam and Pituitary Center Rotterdam, Rotterdam, The Netherlands
| | - Luciana A Naves
- Department of Endocrinology, University of Brasilia, Brasilia, Brazil
| | - Daniel Metzger
- Endocrinology and Diabetes Unit, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Thomas Cuny
- Department of Endocrinology, University Hospital, Nancy, France
| | - Wolfgang Rabl
- Kinderklinik, Technische Universität München, Munich, Germany
| | - Nalini Shah
- Department of Endocrinology, KEM Hospital, Mumbai, India
| | - Marie-Lise Jaffrain-Rea
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila and Neuromed Institute, IRCCS, Pozzilli, Italy
| | - Maria Chiara Zatelli
- Section of Endocrinology, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fabio R Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Emilie Castermans
- Department of Human Genetics, Centre Hospitalier Universitaire de Liege, University of Liege, Liege, Belgium
| | - Isabelle Nanni-Metellus
- Assistance Publique Hôpitaux de Marseille (AP-HM), Hôpital Nord, Service de Transfert d'Oncologie Biologique, Marseille, France
| | - Maya Lodish
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Ammar Muhammad
- Section of Endocrinology, Department of Medicine, Erasmus University Medical Center Rotterdam and Pituitary Center Rotterdam, Rotterdam, The Netherlands
| | - Leonor Palmeira
- Department of Endocrinology, Centre Hospitalier Universitaire de Liege, University of Liege, Liege, Belgium
| | - Iulia Potorac
- Department of Endocrinology, Centre Hospitalier Universitaire de Liege, University of Liege, Liege, Belgium Department of Human GeneticsCentre Hospitalier Universitaire de Liege, University of Liege, Liege, Belgium
| | - Giovanna Mantovani
- Endocrinology and Diabetology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Sebastian J Neggers
- Section of Endocrinology, Department of Medicine, Erasmus University Medical Center Rotterdam and Pituitary Center Rotterdam, Rotterdam, The Netherlands
| | - Marc Klein
- Department of Endocrinology, University Hospital, Nancy, France
| | - Anne Barlier
- Laboratory of Molecular Biology, APHM, Hopital la Conception, Aix Marseille Universite, Marseilles, France CRNSCRN2M-UMR 7286, Marseille, France
| | - Pengfei Liu
- Assistance Publique Hôpitaux de Marseille (AP-HM), Hôpital Nord, Service de Transfert d'Oncologie Biologique, Marseille, France
| | - L'Houcine Ouafik
- Laboratoire de Biologie Médicale, and Aix-Marseille Université, Inserm, CRO2 UMR_S 911, Marseille, France
| | - Vincent Bours
- Department of Human Genetics, Centre Hospitalier Universitaire de Liege, University of Liege, Liege, Belgium
| | - James R Lupski
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Albert Beckers
- Department of Endocrinology, Centre Hospitalier Universitaire de Liege, University of Liege, Liege, Belgium
| |
Collapse
|
29
|
Wou K, Levy B, Wapner RJ. Chromosomal Microarrays for the Prenatal Detection of Microdeletions and Microduplications. Clin Lab Med 2016; 36:261-76. [PMID: 27235911 DOI: 10.1016/j.cll.2016.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chromosomal microarray analysis has replaced conventional G-banded karyotype in prenatal diagnosis as the first-tier test for the cytogenetic detection of copy number imbalances in fetuses with/without major structural abnormalities. This article reviews the basic technology of microarray; the value and clinical significance of the detection of microdeletions, microduplications, and other copy number variants; as well as the importance of genetic counseling for prenatal diagnosis. It also discusses the current status of noninvasive screening for some of these microdeletion and microduplication syndromes.
Collapse
Affiliation(s)
- Karen Wou
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Medical Center, 3959 Broadway, CHN 718, New York, NY 10032, USA
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University Medical Center, 3959 Broadway, CHC 406b, New York, NY 10032, USA
| | - Ronald J Wapner
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Columbia University Medical Center, 622 West 168th Street, PH 16-66, New York, NY 10032, USA.
| |
Collapse
|
30
|
Kovaleva NV, Cotter PD. Somatic/gonadal mosaicism for structural autosomal rearrangements: female predominance among carriers of gonadal mosaicism for unbalanced rearrangements. Mol Cytogenet 2016; 9:8. [PMID: 26823686 PMCID: PMC4730740 DOI: 10.1186/s13039-015-0211-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/21/2015] [Indexed: 01/23/2023] Open
Abstract
Background Mosaicism for chromosomal structural rearrangements (Rea) is rare and the timing and mechanisms of mosaic Rea formation, maintenance, and clinical manifestation are poorly understood. To date, there are no published data on the cytogenetic profile of mosaic Reas. The question as to whether the proportion of abnormal cells in the carrier’s cultured blood is clinically significant remains unanswered. A previous study showed a strong female preponderance among carriers of mosaicism for Rea with pericentromeric breaks, indicating female-specific instability in early embryos. However, there is no corresponding study on male to female sex ratio (SR) among carriers of somatic and/or gonadal mosaicism for non-centromeric Rea. Population rates of mosaic Rea carriers calculated from consecutive series of patients referred for various reasons and from prenatal samples have not been established. Therefore the objectives of the present study were several-fold: (1) a study on profiles of Rea involved, (2) comparative analysis of the proportion of cells with unbalanced Rea in blood cultures from asymptomatic and affected carriers, (3) comparative analysis of SR in carriers of mosaicism for balanced and unbalanced Rea, and (4) determination of the population frequency of mosaicism for autosomal Rea. Results One hundred and three cases of mosaicism for autosomal non-centromeric Rea (N/Rea; normal line/structural rearrangement) in which the sex of the carrier had been specified were identified in the literature. Among balanced Rea, there was a prevalence of reciprocal translocations (89 %) over inversions (11 %). Among unbalanced Rea, deletions were the most frequent (40 %), followed by duplications (25 %) and rings (16 %). Derivatives and other chromosome abnormalities were less frequent (9 and 10 %). Eight of eleven (73 %) affected carriers of unbalanced Rea displayed a high proportion (>50 %) of abnormal cells compared to 4/37 (11 %) in asymptomatic carriers, p < 0.0001. Among carriers of mosaicism for balanced Rea there was a slight male predominance, 24 M/22 F, unlike the strong female predominance among carriers of mosaicism for unbalanced Rea, 11 M/46 F, p < 0.0001. Among ten carriers of unbalanced Rea with reproductive failure, only one was a male with infertility, and one was a partner of a woman experiencing recurrent spontaneous abortion. Population rates of mosaics for reciprocal translocaton (N/rcp), inversion (N/inv), and unbalanced Rea (N/unbal Rea) calculated from published data on consecutive series of patients with reproductive failures were 0.02 ‰, 0.005 ‰, and 0.002 ‰, correspondingly. Among 30,376 infertile patients three carriers of mosaicism for balanced Rea were identified (two cases of N/rcp and one case of N/inv), whereas among 26,384 patients with habitual abortion seven carriers were detected (five N/rcp and two N/inv). Among all 56,760 tested patients with reproductive failures only one was found to be a carrier of mosaicism for an unbalanced Rea (N/del, mosaicism for deletion). Conclusions A high proportion of Rea cells (>50 %) detected in cultured T-lymphocytes is associated with clinical manifestation of chromosomal imbalance. A strong female prevalence among carriers of mosaicism for unbalanced Rea suggests male-specific selection against abnormal cells rather than impairment of male gametogenesis, as the latter suggests a better prognosis for male fetuses. These findings should be taken into consideration when genetic counseling of patients referred after a diagnosis of mosaicism for an unbalanced rearrangement in a fetus.
Collapse
Affiliation(s)
- Natalia V Kovaleva
- Department of Inherited Diseases, The Turner's Scientific and Research Orthopaedic Institute for Children, Parkovaya Str. 64-68, St. Petersburg, 196603 Russian Federation
| | - Philip D Cotter
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94143 USA ; ResearchDx Inc., Irvine, CA 92618 USA
| |
Collapse
|
31
|
Malan V, Lapierre JM, Egloff M, Goidin D, Beaujard MP, Maurin ML, Attié-Bitach T, Bessières B, Bernard JP, Roth P, Stirnemann J, Salomon L, Romana S, Vekemans M, Ville Y, Turleau C. A French Approach to Test Fetuses with Ultrasound Abnormalities Using a Customized Microarray as First-Tier Genetic Test. Cytogenet Genome Res 2016; 147:103-10. [DOI: 10.1159/000442904] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2015] [Indexed: 11/19/2022] Open
Abstract
Cytogenetic microarray analysis is now the first-tier genetic test used in a postnatal clinical setting to explore genomic imbalances in individuals with developmental disability and/or birth defects. However, in a prenatal setting, this technique is not widely implemented, largely because the clinical impact of some copy number variants (CNVs) remains difficult to assess. This limitation is especially true in France where termination of pregnancy for medical reasons may be performed at any stage of gestation. During a period of 15 months, we investigated 382 fetuses presenting with ultrasound anomalies, using a customized microarray designed to avoid the detection of CNVs raising challenges for genetic counseling. After excluding common aneuploidies, 20/374 (5.3%) fetuses had a pathogenic CNV, among which 12/374 (3.2%) could have been detected by karyotyping, whereas 8/374 (2.1%) were cryptic. Within these 374 cases, 300 were ongoing pregnancies at the time of array comparative genomic hybridization (aCGH) testing. For these pregnancies, we detected 18/300 (6%) pathogenic CNVs, among which 6/300 (2%) were cryptic. Using this approach, only 2/300 (0.6%) of the detected CNVs raised difficulties for genetic counseling. This study confirms the added value of this strategy in a prenatal clinical setting to minimize ethical issues for genetic counseling while enhancing the detection of genomic imbalances.
Collapse
|
32
|
Unrevealed mosaicism in the next-generation sequencing era. Mol Genet Genomics 2015; 291:513-30. [PMID: 26481646 PMCID: PMC4819561 DOI: 10.1007/s00438-015-1130-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 10/07/2015] [Indexed: 12/19/2022]
Abstract
Mosaicism refers to the presence in an individual of normal and abnormal cells that are genotypically distinct and are derived from a single zygote. The incidence of mosaicism events in the human body is underestimated as the genotypes in the mosaic ratio, especially in the low-grade mosaicism, stay unrevealed. This review summarizes various research outcomes and diagnostic questions in relation to different types of mosaicism. The impact of both tested biological material and applied method on the mosaicism detection rate is especially highlighted. As next-generation sequencing technologies constitute a promising methodological solution in mosaicism detection in the coming years, revisions in current diagnostic protocols are necessary to increase the detection rate of the unrevealed mosaicism events. Since mosaicism identification is a complex process, numerous examples of multistep mosaicism investigations are presented and discussed.
Collapse
|
33
|
Chen CP, Peng CR, Chern SR, Kuo YL, Wu PS, Town DD, Pan CW, Yang CW, Wang W. Interphase fluorescence in situ hybridization characterization of mosaicism using uncultured amniocytes and cultured stimulated cord blood lymphocytes in prenatally detected Pallister-Killian syndrome. Taiwan J Obstet Gynecol 2015; 53:566-71. [PMID: 25510702 DOI: 10.1016/j.tjog.2014.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2014] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE This study aims to present molecular cytogenetic characterization of Pallister-Killian syndrome (PKS). MATERIALS AND METHODS A 37-year-old woman underwent amniocentesis at 18 weeks of gestation. Amniocentesis revealed a karyotype of 47,XY,+i(12)(p10)[6]/48,XY,+i(12)(p10)×2[1]/46,XY[6]. Repeated amniocentesis was performed at 20 weeks of gestation. Array comparative genomic hybridization (aCGH) was performed using uncultured amniocytes, cord blood, and skin. Quantitative fluorescent polymerase chain reaction (QF-PCR) was performed using uncultured amniocytes and parental bloods. Interphase fluorescence in situ hybridization (FISH) analysis was performed using uncultured amniocytes and cultured stimulated cord blood lymphocytes. Conventional cytogenetic analysis was performed using cultured cells from amniotic fluid, skin, placenta, umbilical cord, and cord blood. RESULTS Repeated amniocentesis revealed a mosaic tetrasomy 12p level of 25% (10/40), cultured cord blood lymphocytes had no mosaicism, cultured skin fibroblasts had a mosaic tetrasomy 12p level of 52.5% (21/40), umbilical cord fibroblasts had a mosaic tetrasomy 12p level of 72.5% (29/40), and the placental cells had a mosaic tetrasomy 12p level of 2.5% (1/40) on conventional cytogenetics. An aCGH analysis revealed that the increases in gene dosage in 12p for uncultured amniocytes, skin, and cord blood were the log2 ratios of 0.9, 0.7, and 0.7, respectively. Interphase FISH on uncultured amniocytes revealed a mosaic level of 73.1% (49/67) (tetrasomy 12p: 33; hexasomy 12p: 16). Interphase FISH analysis of stimulated cultured cord blood lymphocytes revealed a mosaic level of 58.3% (60/103) (tetrasomy 12p: 51; hexasomy 12p: 9). CONCLUSION In the diagnosis of PKS by conventional culture cytogenetics, cord blood samplings and placental samplings are prone to a negative result when compared with amniocentesis. Whenever cord blood sampling is applied for prenatal diagnosis of PKS, aCGH on uncultured cord blood or interphase FISH on cultured cord blood can be used for the diagnosis, in addition to conventional cytogenetics.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Cheng-Ran Peng
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yu-Ling Kuo
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | - Dai-Dyi Town
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Wen Pan
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chien-Wen Yang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
34
|
Mehrotra M, Luthra R, Ravandi F, Sargent RL, Barkoh BA, Abraham R, Mishra BM, Medeiros LJ, Patel KP. Identification of clinically important chromosomal aberrations in acute myeloid leukemia by array-based comparative genomic hybridization. Leuk Lymphoma 2015; 55:2538-48. [PMID: 24446873 DOI: 10.3109/10428194.2014.883073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Array-based comparative genomic hybridization (aCGH) chromosomal analysis facilitates rapid detection of cytogenetic abnormalities previously undetectable by conventional cytogenetics. In this study, we analyzed 48 uniformly treated patients with acute myeloid leukemia (AML) by 44K aCGH and correlated the findings with clinical outcome. aCGH identified previously undetected aberrations, as small as 5 kb, of currently unknown significance. The 36.7 Mb minimally deleted region on chromosome 5 lies between 5q14.3 and 5q33.3 and contains 634 genes and 15 microRNAs, whereas loss of chromosome 17 spans 3194 kb and involves 342 genes and 12 microRNAs. Loss of a 155 kb region on 5q33.3 (p < 0.05) was associated with achievement of complete remission (CR). In contrast, loss of 17p11.2-q11.1 was associated with a lower CR rate and poorer overall survival (Kaplan-Meier analysis, p < 0.0096). aCGH detected loss of 17p in 12/48 patients as compared to 9/48 by conventional karyotyping. In conclusion, aCGH analysis adds to the prognostic stratification of patients with AML.
Collapse
Affiliation(s)
- Meenakshi Mehrotra
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center , Houston, TX , USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Lupski JR. Structural variation mutagenesis of the human genome: Impact on disease and evolution. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:419-36. [PMID: 25892534 PMCID: PMC4609214 DOI: 10.1002/em.21943] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 05/19/2023]
Abstract
Watson-Crick base-pair changes, or single-nucleotide variants (SNV), have long been known as a source of mutations. However, the extent to which DNA structural variation, including duplication and deletion copy number variants (CNV) and copy number neutral inversions and translocations, contribute to human genome variation and disease has been appreciated only recently. Moreover, the potential complexity of structural variants (SV) was not envisioned; thus, the frequency of complex genomic rearrangements and how such events form remained a mystery. The concept of genomic disorders, diseases due to genomic rearrangements and not sequence-based changes for which genomic architecture incite genomic instability, delineated a new category of conditions distinct from chromosomal syndromes and single-gene Mendelian diseases. Nevertheless, it is the mechanistic understanding of CNV/SV formation that has promoted further understanding of human biology and disease and provided insights into human genome and gene evolution. Environ. Mol. Mutagen. 56:419-436, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza Room 604B, Houston, Texas
| |
Collapse
|
37
|
Somatic mosaicism: implications for disease and transmission genetics. Trends Genet 2015; 31:382-92. [PMID: 25910407 DOI: 10.1016/j.tig.2015.03.013] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 11/21/2022]
Abstract
Nearly all of the genetic material among cells within an organism is identical. However, single-nucleotide variants (SNVs), small insertions/deletions (indels), copy-number variants (CNVs), and other structural variants (SVs) continually accumulate as cells divide during development. This process results in an organism composed of countless cells, each with its own unique personal genome. Thus, every human is undoubtedly mosaic. Mosaic mutations can go unnoticed, underlie genetic disease or normal human variation, and may be transmitted to the next generation as constitutional variants. We review the influence of the developmental timing of mutations, the mechanisms by which they arise, methods for detecting mosaic variants, and the risk of passing these mutations on to the next generation.
Collapse
|
38
|
Campos-Galindo I, García-Herrero S, Martínez-Conejero JA, Ferro J, Simón C, Rubio C. Molecular analysis of products of conception obtained by hysteroembryoscopy from infertile couples. J Assist Reprod Genet 2015; 32:839-48. [PMID: 25779005 DOI: 10.1007/s10815-015-0460-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/05/2015] [Indexed: 11/27/2022] Open
Abstract
PURPOSE To analyze the molecular cytogenetic data obtained from products of conception (POC) obtained by selective biopsy of first trimester miscarriages and to estimate the rate of chromosomal anomalies in miscarriages from pregnancies achieved by natural conception (NC) or by assisted reproductive technology (ART) interventions. METHODS We used KaryoLite™ BoBs™ (PerkinElmer LAS, Wallac, Turku, Finland) technology to analyze 189 samples from ART or NC pregnancies. RESULTS All POC were successfully evaluated. A higher incidence of chromosomal abnormalities was observed in POC after ART using the patient's own oocytes than from NC pregnancies (62.7% vs. 40.6%; p < 0.05). The lowest incidence of chromosomal abnormalities was observed in POCs ART using donor eggs from women younger than 35 years (12.8%). No statistical differences in the percentage of abnormal miscarriages were observed in correlation with sperm concentration: a sperm concentration less than 5 million/mL produced 75% abnormal results and a concentration higher than 5 million/mL produced 51%. CONCLUSIONS POC analysis is essential to determine the cause of pregnancy loss. Using culture-independent molecular biology techniques to analyze POCs avoids limitations such as growth failure and reduces the time required for analysis. Selective biopsy of fetal tissue by hysteroembryoscopy avoids the risk of misdiagnosis due to maternal cell contamination. Our results show that maternal age, sperm quality, and ART-assisted pregnancies are risk factors for abnormal gestations.
Collapse
|
39
|
King DA, Jones WD, Crow YJ, Dominiczak AF, Foster NA, Gaunt TR, Harris J, Hellens SW, Homfray T, Innes J, Jones EA, Joss S, Kulkarni A, Mansour S, Morris AD, Parker MJ, Porteous DJ, Shihab HA, Smith BH, Tatton-Brown K, Tolmie JL, Trzaskowski M, Vasudevan PC, Wakeling E, Wright M, Plomin R, Timpson NJ, Hurles ME. Mosaic structural variation in children with developmental disorders. Hum Mol Genet 2015; 24:2733-45. [PMID: 25634561 PMCID: PMC4406290 DOI: 10.1093/hmg/ddv033] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/27/2015] [Indexed: 01/01/2023] Open
Abstract
Delineating the genetic causes of developmental disorders is an area of active investigation. Mosaic structural abnormalities, defined as copy number or loss of heterozygosity events that are large and present in only a subset of cells, have been detected in 0.2–1.0% of children ascertained for clinical genetic testing. However, the frequency among healthy children in the community is not well characterized, which, if known, could inform better interpretation of the pathogenic burden of this mutational category in children with developmental disorders. In a case–control analysis, we compared the rate of large-scale mosaicism between 1303 children with developmental disorders and 5094 children lacking developmental disorders, using an analytical pipeline we developed, and identified a substantial enrichment in cases (odds ratio = 39.4, P-value 1.073e − 6). A meta-analysis that included frequency estimates among an additional 7000 children with congenital diseases yielded an even stronger statistical enrichment (P-value 1.784e − 11). In addition, to maximize the detection of low-clonality events in probands, we applied a trio-based mosaic detection algorithm, which detected two additional events in probands, including an individual with genome-wide suspected chimerism. In total, we detected 12 structural mosaic abnormalities among 1303 children (0.9%). Given the burden of mosaicism detected in cases, we suspected that many of the events detected in probands were pathogenic. Scrutiny of the genotypic–phenotypic relationship of each detected variant assessed that the majority of events are very likely pathogenic. This work quantifies the burden of structural mosaicism as a cause of developmental disorders.
Collapse
Affiliation(s)
- Daniel A King
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Wendy D Jones
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Yanick J Crow
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals, NHS Foundation Trust, Manchester Academic Health Science Centre (MAHSC), Manchester M13 9WL, UK
| | - Anna F Dominiczak
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Nicola A Foster
- University Hospitals of Leicester, NHS Trust, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Jade Harris
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals, NHS Foundation Trust, Manchester Academic Health Science Centre (MAHSC), Manchester M13 9WL, UK
| | - Stephen W Hellens
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne NE1 3BZ, UK
| | - Tessa Homfray
- Southwest Thames Regional Genetics Centre, St George's Healthcare NHS Trust, London SW17 0RE, UK
| | - Josie Innes
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals, NHS Foundation Trust, Manchester Academic Health Science Centre (MAHSC), Manchester M13 9WL, UK
| | - Elizabeth A Jones
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals, NHS Foundation Trust, Manchester Academic Health Science Centre (MAHSC), Manchester M13 9WL, UK, Manchester Centre for Genomic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, MAHSC, Manchester M13 9WL, UK
| | - Shelagh Joss
- West of Scotland Clinical Genetics Service, Southern General Hospital, Glasgow DD1 9SY, UK
| | - Abhijit Kulkarni
- Southwest Thames Regional Genetics Centre, St George's Healthcare NHS Trust, London SW17 0RE, UK
| | - Sahar Mansour
- Southwest Thames Regional Genetics Centre, St George's Healthcare NHS Trust, London SW17 0RE, UK
| | - Andrew D Morris
- School of Molecular, Genetic and Population Health Sciences, University of Edinburgh Medical School, Teviot Place, Edinburgh EH8 9AG, UK
| | - Michael J Parker
- Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Western Bank, Sheffield, UK
| | - David J Porteous
- Medical Genetics Section, Molecular Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Hashem A Shihab
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Blair H Smith
- School of Medicine, Dundee University, Mackenzie Building, Kirsty Semple Way, Ninewells Hospital and Medical School, Dundee DD2 4RB, UK
| | - Katrina Tatton-Brown
- Southwest Thames Regional Genetics Centre, St George's Healthcare NHS Trust, London SW17 0RE, UK
| | - John L Tolmie
- West of Scotland Clinical Genetics Service, Southern General Hospital, Glasgow DD1 9SY, UK
| | - Maciej Trzaskowski
- King's College London, MRC Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London SE5 8AF, UK and
| | - Pradeep C Vasudevan
- University Hospitals of Leicester, NHS Trust, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | - Emma Wakeling
- North West Thames Regional Genetics Service, North West London Hospitals NHS Trust, Watford Rd, Harrow HA1 3UJ, UK
| | - Michael Wright
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne NE1 3BZ, UK
| | - Robert Plomin
- King's College London, MRC Social, Genetic and Developmental Psychiatry Research Centre, Institute of Psychiatry, Psychology & Neuroscience, De Crespigny Park, London SE5 8AF, UK and
| | - Nicholas J Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | | | | |
Collapse
|
40
|
Hochstenbach R, Krijtenburg PJ, van der Veken LT, van der Smagt J, Roeleveld-Versteegh A, Visser G, Terhal P. Monosomy 20 Mosaicism Revealed by Extensive Karyotyping in Blood and Skin Cells: Case Report and Review of the Literature. Cytogenet Genome Res 2014; 144:155-62. [DOI: 10.1159/000369606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2014] [Indexed: 11/19/2022] Open
|
41
|
Mosaikbefunde in der Microarray-Diagnostik bei prä- und postnatalen Untersuchungen. MED GENET-BERLIN 2014. [DOI: 10.1007/s11825-014-0012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Zusammenfassung
Die molekulare Karyotypisierung mithilfe der „Array“-basierten genomischen Hybridisierung (Microarrays) ermöglicht nicht nur den genomweiten, hochauflösenden Nachweis von Kopienzahlveränderungen, -zugewinnen und -verlusten, sondern auch die Detektion bestimmter Mosaike. Der Beitrag gibt eine Übersicht über Einflussgrößen beim Nachweis von Mosaiken mit Microarrays und über verschiedene Mosaikfälle, die sowohl mit Array-CGH (CGH: „comparative genomic hybridization“) als auch mit SNP-Arrays (SNP: „single nucleotide polymorphism“) erhoben wurden. Dabei wird anhand der Array-CGH eine Möglichkeit aufgezeigt, wie der Prozentsatz eines Mosaiks bestimmt werden kann.
Collapse
|
42
|
Conconi D, Panzeri E, Redaelli S, Bovo G, Viganò P, Strada G, Dalprà L, Bentivegna A. Chromosomal imbalances in human bladder urothelial carcinoma: similarities and differences between biopsy samples and cancer stem-like cells. BMC Cancer 2014; 14:646. [PMID: 25178926 PMCID: PMC4162911 DOI: 10.1186/1471-2407-14-646] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 08/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The existence of two distinct groups of tumors with different clinical characteristic is a remarkable feature of transitional cell carcinomas (TCCs) of the bladder. More than 70% are low-grade (LG) non-infiltrating (NI) cancers at diagnosis, but 60-80% of them recur at least one time and 10-20% progress in stage and grade. On the other hand, about 20% of tumors show muscle invasion (IN) and have a poor prognosis with <50% survival after 5 years. This study focuses on the complexity of the bladder cancer genome, and for the first time to our knowledge, on the possibility to compare genomic alterations of in vitro selected cancer stem-like cells (CSCs), and their original biopsy in order to identify different genomic signature already present in the early stages of tumorigenesis of LG and HG tumors. METHODS We initially used conventional chromosome analysis on TCC biopsies with different histotypes (LG vs HG) in order to detect rough differences between them. Then, we performed array comparative genomic hybridization (aCGH) on 10 HG and 10 LG tumors providing an overview of copy number alterations (CNAs). Finally, we made a comparison of the overall CNAs in 16 biopsies and their respective CSCs isolated from them. RESULTS Our findings indicate that LG and HG bladder cancer differ with regard to their genomic profile even in the early stage of tumorigenesis; moreover, we identified a subgroup of LG samples with a higher tendency to lose genomic regions which could represent a more aggressive phenotype. CONCLUSIONS The outcomes not only provide valuable information to deeper studying TCC carcinogenesis, but also could help in the clinic for diagnosis and prognosis of patients who will benefit from a more aggressive therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Angela Bentivegna
- Department of Surgery and Translational Medicine, University of Milan-Bicocca, via Cadore 48, 20052 Monza, Italy.
| |
Collapse
|
43
|
Clinical utility of chromosomal microarray analysis of DNA from buccal cells: detection of mosaicism in three patients. J Genet Couns 2014; 23:922-7. [PMID: 25120037 DOI: 10.1007/s10897-014-9751-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/24/2014] [Indexed: 02/01/2023]
Abstract
Mosaic chromosomal abnormalities are relatively common. However, mosaicism may be missed due to multiple factors including failure to recognize clinical indications and order appropriate testing, technical limitations of diagnostic assays, or sampling tissue (s) in which mosaicism is either not present, or present at very low levels. Blood leukocytes have long been the "gold standard" sample for cytogenetic analysis; however, the culturing process for routine chromosome analysis can complicate detection of mosaicism since the normal cell line may have a growth advantage in culture, or may not be present in the cells that produce metaphases (the lymphocytes). Buccal cells are becoming increasingly utilized for clinical analyses and are proving to have many advantages. Buccal swabs allow for simple and noninvasive DNA collection. When coupled with a chromosomal microarray that contains single nucleotide polymorphic probes, analysis of buccal cells can maximize a clinician's opportunity to detect cytogenetic mosaicism. We present three cases of improved diagnosis of mosaic aberrations using buccal specimens for chromosomal microarray analysis. In each case, the aberration was either undetectable in blood or present at such a low level it likely could have gone undetected. These cases highlight the limitations of certain laboratory methodologies for identifying mosaicism. We also present practice implications for genetic counselors, including clinic workflow changes and counseling approaches based on increasing use of buccal samples.
Collapse
|
44
|
Paulo JD, Andrade JGRD, Santos APD, Gil-da-Silva-Lopes VL, Guerra-Júnior G, Maciel-Guerra AT. [The use of FISH on buccal smear to investigate mosaicism with a 45,X cell line: study on healthy men and patients with disorders of sex development]. ACTA ACUST UNITED AC 2014; 58:328-34. [PMID: 24936726 DOI: 10.1590/0004-2730000002853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 11/25/2013] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To verify whether fluorescence in situ hybridization (FISH) of cells from the buccal epithelium could be employed to detect cryptomosaicism with a 45,X lineage in 46,XY patients. SUBJECTS AND METHODS Samples of nineteen 46,XY healthy young men and five patients with disorders of sex development (DSD), four 45,X/46,XY and one 46,XY were used. FISH analysis with X and Y specific probes on interphase nuclei from blood lymphocytes and buccal epithelium were analyzed to investigate the proportion of nuclei containing only the signal of the X chromosome. RESULTS The frequency of nuclei containing only the X signal in the two tissues of healthy men did not differ (p = 0.69). In all patients with DSD this frequency was significantly higher, and there was no difference between the two tissues (p = 0.38), either. CONCLUSIONS Investigation of mosaicism with a 45,X cell line in patients with 46,XY DSD or sterility can be done by FISH directly using cells from the buccal epithelium.
Collapse
Affiliation(s)
- Juliana de Paulo
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | - Ana Paula dos Santos
- Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | | | | |
Collapse
|
45
|
Abstract
The field of cytogenetics has focused on studying the number, structure, function and origin of chromosomal abnormalities and the evolution of chromosomes. The development of fluorescent molecules that either directly or via an intermediate molecule bind to DNA has led to the development of fluorescent in situ hybridization (FISH), a technology linking cytogenetics to molecular genetics. This technique has a wide range of applications that increased the dimension of chromosome analysis. The field of cytogenetics is particularly important for medical diagnostics and research as well as for gene ordering and mapping. Furthermore, the increased application of molecular biology techniques, such as array-based technologies, has led to improved resolution, extending the recognized range of microdeletion/microduplication syndromes and genomic disorders. In adopting these newly expanded methods, cytogeneticists have used a range of technologies to study the association between visible chromosome rearrangements and defects at the single nucleotide level. Overall, molecular cytogenetic techniques offer a remarkable number of potential applications, ranging from physical mapping to clinical and evolutionary studies, making a powerful and informative complement to other molecular and genomic approaches. This manuscript does not present a detailed history of the development of molecular cytogenetics; however, references to historical reviews and experiments have been provided whenever possible. Herein, the basic principles of molecular cytogenetics, the technologies used to identify chromosomal rearrangements and copy number changes, and the applications for cytogenetics in biomedical diagnosis and research are presented and discussed.
Collapse
Affiliation(s)
- Mariluce Riegel
- Serviço de Genética Médica, Hospital de Clínicas, Porto Alegre, RS, Brazil . ; Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
46
|
Carey L, Scott F, Murphy K, Mansfield N, Barahona P, Leigh D, Robertson R, McLennan A. Prenatal diagnosis of chromosomal mosaicism in over 1600 cases using array comparative genomic hybridization as a first line test. Prenat Diagn 2014; 34:478-86. [PMID: 24453008 DOI: 10.1002/pd.4332] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/08/2014] [Accepted: 01/14/2014] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The aim of this study was to assess the detection of chromosomal mosaicism in chorionic villus (CVS) and amniotic fluid (AF) samples using array comparative genomic hybridization (aCGH) and quantitative fluorescent polymerase chain reaction. METHODS All patients undergoing invasive prenatal testing by aCGH at a specialist prenatal screening service were included in the study. A total of 1609 samples (953 CVS and 656 AF) underwent quantitative fluorescent polymerase chain reaction and targeted aCGH without concurrent conventional G-banded karyotyping. RESULTS Chromosomal mosaicism was detected in 20 of the 1609 cases (1.24%); of which 17 were derived from 953 CVS (1.78%), and three from 656 AF (0.46%). Mosaicism was observed at a level as low as 9%. Four cases were likely confined placental mosaicism, 12 were likely true fetal mosaicism, and four cases were unable to be classified into either group. CONCLUSIONS This study demonstrates that the use of aCGH as a first line test is able to identify chromosomal mosaicism down to 9%, which is lower than the level reliably detected using standard cytogenetic analysis. aCGH avoids the disadvantages of culturing, which include culture bias, artifact, and culture failure.
Collapse
|
47
|
Strassberg M, Fruhman G, Van den Veyver IB. Copy-number changes in prenatal diagnosis. Expert Rev Mol Diagn 2014; 11:579-92. [DOI: 10.1586/erm.11.43] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Somatic mosaicism detected by exon-targeted, high-resolution aCGH in 10,362 consecutive cases. Eur J Hum Genet 2014; 22:969-78. [PMID: 24398791 PMCID: PMC4350600 DOI: 10.1038/ejhg.2013.285] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 11/08/2013] [Accepted: 11/20/2013] [Indexed: 11/09/2022] Open
Abstract
Somatic chromosomal mosaicism arising from post-zygotic errors is known to cause several well-defined genetic syndromes as well as contribute to phenotypic variation in diseases. However, somatic mosaicism is often under-diagnosed due to challenges in detection. We evaluated 10 362 patients with a custom-designed, exon-targeted whole-genome oligonucleotide array and detected somatic mosaicism in a total of 57 cases (0.55%). The mosaicism was characterized and confirmed by fluorescence in situ hybridization (FISH) and/or chromosome analysis. Different categories of abnormal cell lines were detected: (1) aneuploidy, including sex chromosome abnormalities and isochromosomes (22 cases), (2) ring or marker chromosomes (12 cases), (3) single deletion/duplication copy number variations (CNVs) (11 cases), (4) multiple deletion/duplication CNVs (5 cases), (5) exonic CNVs (4 cases), and (6) unbalanced translocations (3 cases). Levels of mosaicism calculated based on the array data were in good concordance with those observed by FISH (10–93%). Of the 14 cases evaluated concurrently by chromosome analysis, mosaicism was detected solely by the array in 4 cases (29%). In summary, our exon-targeted array further expands the diagnostic capability of high-resolution array comparative genomic hybridization in detecting mosaicism for cytogenetic abnormalities as well as small CNVs in disease-causing genes.
Collapse
|
49
|
Bartnik M, Nowakowska B, Derwińska K, Wiśniowiecka-Kowalnik B, Kędzior M, Bernaciak J, Ziemkiewicz K, Gambin T, Sykulski M, Bezniakow N, Korniszewski L, Kutkowska-Kaźmierczak A, Klapecki J, Szczałuba K, Shaw CA, Mazurczak T, Gambin A, Obersztyn E, Bocian E, Stankiewicz P. Application of array comparative genomic hybridization in 256 patients with developmental delay or intellectual disability. J Appl Genet 2013; 55:125-44. [PMID: 24297458 PMCID: PMC3909616 DOI: 10.1007/s13353-013-0181-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/17/2013] [Accepted: 10/20/2013] [Indexed: 12/22/2022]
Abstract
We used whole-genome exon-targeted oligonucleotide array comparative genomic hybridization (array CGH) in a cohort of 256 patients with developmental delay (DD)/intellectual disability (ID) with or without dysmorphic features, additional neurodevelopmental abnormalities, and/or congenital malformations. In 69 patients, we identified 84 non-polymorphic copy-number variants, among which 41 are known to be clinically relevant, including two recently described deletions, 4q21.21q21.22 and 17q24.2. Chromosomal microarray analysis revealed also 15 potentially pathogenic changes, including three rare deletions, 5q35.3, 10q21.3, and 13q12.11. Additionally, we found 28 copy-number variants of unknown clinical significance. Our results further support the notion that copy-number variants significantly contribute to the genetic etiology of DD/ID and emphasize the efficacy of the detection of novel candidate genes for neurodevelopmental disorders by whole-genome array CGH.
Collapse
Affiliation(s)
- Magdalena Bartnik
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Lopez-Rangel E, Mickelson ECR, Suzanne Lewis ME. The Value of a Genetic Diagnosis for Individuals with Intellectual Disabilities: Optimising Healthcare and Function Across the Lifespan. ACTA ACUST UNITED AC 2013. [DOI: 10.1179/096979508799103215] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|