1
|
Oda S, Ushiama M, Nakamura W, Gotoh M, Tanabe N, Watanabe T, Odaka Y, Aoyagi K, Sakamoto H, Nakajima T, Sugano K, Yoshida T, Shiraishi Y, Hirata M. A complex rearrangement between APC and TP63 associated with familial adenomatous polyposis identified by multimodal genomic analysis: a case report. Front Oncol 2023; 13:1205847. [PMID: 37601671 PMCID: PMC10434623 DOI: 10.3389/fonc.2023.1205847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/11/2023] [Indexed: 08/22/2023] Open
Abstract
Genetic testing of the APC gene by sequencing analysis and MLPA is available across commercial laboratories for the definitive genetic diagnosis of familial adenomatous polyposis (FAP). However, some genetic alterations are difficult to detect using conventional analyses. Here, we report a case of a complex genomic APC-TP63 rearrangement, which was identified in a patient with FAP by a series of genomic analyses, including multigene panel testing, chromosomal analyses, and long-read sequencing. A woman in her thirties was diagnosed with FAP due to multiple polyps in her colon and underwent total colectomy. Subsequent examination revealed fundic gland polyposis. No family history suggesting FAP was noted except for a first-degree relative with desmoid fibromatosis. The conventional APC gene testing was performed by her former doctor, but no pathogenic variant was detected, except for 2 variants of unknown significance. The patient was referred to our hospital for further genetic analysis. After obtaining informed consent in genetic counseling, we conducted a multigene panel analysis. As insertion of a part of the TP63 sequence was detected within exon16 of APC, further analyses, including chromosomal analysis and long-read sequencing, were performed and a complex translocation between chromosomes 3 and 5 containing several breakpoints in TP63 and APC was identified. No phenotype associated with TP63 pathogenic variants, such as split-hand/foot malformation (SHFM) or ectrodactyly, ectodermal dysplasia, or cleft lip/palate syndrome (EEC) was identified in the patient or her relatives. Multimodal genomic analyses should be considered in cases where no pathogenic germline variants are detected by conventional genetic testing despite an evident medical or family history of hereditary cancer syndromes.
Collapse
Affiliation(s)
- Satoyo Oda
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Mineko Ushiama
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Wataru Nakamura
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Masahiro Gotoh
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Noriko Tanabe
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoko Watanabe
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
| | - Yoko Odaka
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Kazuhiko Aoyagi
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiromi Sakamoto
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Takeshi Nakajima
- Department Medical Ethics/Medical Genetics, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Clinical Genetics, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kokichi Sugano
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Genetic Medicine, Kyoundo Hospital, Sasaki Foundation, Tokyo, Japan
| | - Teruhiko Yoshida
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuichi Shiraishi
- Division of Genome Analysis Platform Development, National Cancer Center Research Institute, Tokyo, Japan
| | - Makoto Hirata
- Department of Genetic Medicine and Services, National Cancer Center Hospital, Tokyo, Japan
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
2
|
Bloch-Zupan A, Rey T, Jimenez-Armijo A, Kawczynski M, Kharouf N, Dure-Molla MDL, Noirrit E, Hernandez M, Joseph-Beaudin C, Lopez S, Tardieu C, Thivichon-Prince B, Dostalova T, Macek M, Alloussi ME, Qebibo L, Morkmued S, Pungchanchaikul P, Orellana BU, Manière MC, Gérard B, Bugueno IM, Laugel-Haushalter V. Amelogenesis imperfecta: Next-generation sequencing sheds light on Witkop's classification. Front Physiol 2023; 14:1130175. [PMID: 37228816 PMCID: PMC10205041 DOI: 10.3389/fphys.2023.1130175] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 05/27/2023] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic rare diseases disrupting enamel development (Smith et al., Front Physiol, 2017a, 8, 333). The clinical enamel phenotypes can be described as hypoplastic, hypomineralized or hypomature and serve as a basis, together with the mode of inheritance, to Witkop's classification (Witkop, J Oral Pathol, 1988, 17, 547-553). AI can be described in isolation or associated with others symptoms in syndromes. Its occurrence was estimated to range from 1/700 to 1/14,000. More than 70 genes have currently been identified as causative. Objectives: We analyzed using next-generation sequencing (NGS) a heterogeneous cohort of AI patients in order to determine the molecular etiology of AI and to improve diagnosis and disease management. Methods: Individuals presenting with so called "isolated" or syndromic AI were enrolled and examined at the Reference Centre for Rare Oral and Dental Diseases (O-Rares) using D4/phenodent protocol (www.phenodent.org). Families gave written informed consents for both phenotyping and molecular analysis and diagnosis using a dedicated NGS panel named GenoDENT. This panel explores currently simultaneously 567 genes. The study is registered under NCT01746121 and NCT02397824 (https://clinicaltrials.gov/). Results: GenoDENT obtained a 60% diagnostic rate. We reported genetics results for 221 persons divided between 115 AI index cases and their 106 associated relatives from a total of 111 families. From this index cohort, 73% were diagnosed with non-syndromic amelogenesis imperfecta and 27% with syndromic amelogenesis imperfecta. Each individual was classified according to the AI phenotype. Type I hypoplastic AI represented 61 individuals (53%), Type II hypomature AI affected 31 individuals (27%), Type III hypomineralized AI was diagnosed in 18 individuals (16%) and Type IV hypoplastic-hypomature AI with taurodontism concerned 5 individuals (4%). We validated the genetic diagnosis, with class 4 (likely pathogenic) or class 5 (pathogenic) variants, for 81% of the cohort, and identified candidate variants (variant of uncertain significance or VUS) for 19% of index cases. Among the 151 sequenced variants, 47 are newly reported and classified as class 4 or 5. The most frequently discovered genotypes were associated with MMP20 and FAM83H for isolated AI. FAM20A and LTBP3 genes were the most frequent genes identified for syndromic AI. Patients negative to the panel were resolved with exome sequencing elucidating for example the gene involved ie ACP4 or digenic inheritance. Conclusion: NGS GenoDENT panel is a validated and cost-efficient technique offering new perspectives to understand underlying molecular mechanisms of AI. Discovering variants in genes involved in syndromic AI (CNNM4, WDR72, FAM20A … ) transformed patient overall care. Unravelling the genetic basis of AI sheds light on Witkop's AI classification.
Collapse
Affiliation(s)
- Agnes Bloch-Zupan
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Université de Strasbourg, Institut d’études avancées (USIAS), Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Eastman Dental Institute, University College London, London, United Kingdom
| | - Tristan Rey
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| | - Alexandra Jimenez-Armijo
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
| | - Marzena Kawczynski
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
| | - Naji Kharouf
- Université de Strasbourg, Laboratoire de Biomatériaux et Bioingénierie, Inserm UMR_S 1121, Strasbourg, France
| | | | - Muriel de La Dure-Molla
- Rothschild Hospital, Public Assistance-Paris Hospitals (AP-HP), Reference Center for Rare Oral and Den-tal Diseases (O-Rares), Paris, France
| | - Emmanuelle Noirrit
- Centre Hospitalier Universitaire (CHU) Rangueil, Toulouse, Competence Center for Rare Oral and Den-tal Diseases, Toulouse, France
| | - Magali Hernandez
- Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Competence Center for Rare Oral and Dental Diseases, Nancy, France
| | - Clara Joseph-Beaudin
- Centre Hospitalier Universitaire de Nice, Competence Center for Rare Oral and Dental Diseases, Nice, France
| | - Serena Lopez
- Centre Hospitalier Universitaire de Nantes, Competence Center for Rare Oral and Dental Diseases, Nantes, France
| | - Corinne Tardieu
- APHM, Hôpitaux Universitaires de Marseille, Hôpital Timone, Competence Center for Rare Oral and Dental Diseases, Marseille, France
| | - Béatrice Thivichon-Prince
- Centre Hospitalier Universitaire de Lyon, Competence Center for Rare Oral and Dental Diseases, Lyon, France
| | | | - Tatjana Dostalova
- Department of Stomatology (TD) and Department of Biology and Medical Genetics (MM) Charles University 2nd Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | - Milan Macek
- Department of Stomatology (TD) and Department of Biology and Medical Genetics (MM) Charles University 2nd Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | | | - Mustapha El Alloussi
- Faculty of Dentistry, International University of Rabat, CReSS Centre de recherche en Sciences de la Santé, Rabat, Morocco
| | - Leila Qebibo
- Unité de génétique médicale et d’oncogénétique, CHU Hassan II, Fes, Morocco
| | | | | | - Blanca Urzúa Orellana
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Marie-Cécile Manière
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
| | - Bénédicte Gérard
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| | - Isaac Maximiliano Bugueno
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
| | - Virginie Laugel-Haushalter
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| |
Collapse
|
5
|
Childs AJ, Mabin DC, Turnpenny PD. Ectrodactyly-ectodermal dysplasia-clefting syndrome presenting with bilateral choanal atresia and rectal stenosis. Am J Med Genet A 2020; 182:1939-1943. [PMID: 32476291 DOI: 10.1002/ajmg.a.61628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 11/06/2022]
Abstract
We present the case of a male who shortly after birth developed acute respiratory distress due to bilateral choanal atresia, following which he was found to have rectal stenosis. Genetic testing for CHARGE syndrome was negative, but whole genome sequencing identified heterozygosity for a pathogenic missense variant in TP63 (c.727C > T, p.(Arg243Trp). He also has partial cutaneous syndactyly of the third and fourth fingers of the right hand, and bilateral lacrimal duct stenosis/aplasia. A later maxillofacial review identified a palpable submucousal cleft and his scalp hair is blond and slightly sparse. Choanal atresia and rectal stenosis are recognized features of ectrodactyly-ectodermal dysplasia-clefting syndrome, but we believe this is the first report of a case presenting with these features in the absence of the cardinal features.
Collapse
Affiliation(s)
- Alexandra J Childs
- Department of Paediatrics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK.,University of Exeter, Exeter, UK
| | - David C Mabin
- Department of Paediatrics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Peter D Turnpenny
- Clinical Genetics, Royal Devon & Exeter NHS Foundation Trust, Exeter, UK
| |
Collapse
|
6
|
Rosa RFM, Moraes SAGD, Sulczinski LP, Silva FAD, Milner OG, Pires SRS, Artigalas OAP, Rosa RCM, Zen PRG. SIBLINGS AFFECTED BY ECTRODACTYLY-ECTODERMAL DYSPLASIA AND CLEFT LIP/PALATE (EEC) SYNDROME PRESENTING NORMAL PARENTS: GERMLINE MOSAICISM? ACTA ACUST UNITED AC 2017; 35:234-238. [PMID: 28977327 PMCID: PMC5496721 DOI: 10.1590/1984-0462/;2017;35;2;00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/15/2016] [Indexed: 11/24/2022]
Abstract
Objective: EEC is an acronym for an autosomal dominant syndrome clinically characterized by ectrodactyly (E), ectodermal dysplasia (E) and cleft lip/palate (C). Our aim was to describe a rare case of siblings affected by ectrodactyly, ectodermal dysplasia and cleft lip/palate (EEC) syndrome presenting normal parents. Case description: The patient was the third son of young and healthy parents. The parents did not present any minor or major anomaly of hands, feet or skin, hair and teeth. The couple had a previous history of two children with hands and feet malformations similar to the present patient. The first was a stillborn, and the second one a preterm infant that died in the first days after birth due to the consequences of prematurity. After birth, the patient presented respiratory distress with need of endotracheal intubation and mechanic ventilation. At physical examination, there were cleft lip/palate, hands and feet ectrodactyly, with absence of the second and third fingers in both hands, and reduction defects affecting mainly the second toes. The child presented pneumothorax and cardiorespiratory arrest and died at 1 month and 26 days. Comments: Herein we described a case of siblings with EEC syndrome, indicative of a germline mosaicism. In the literature review, there was the description of only three similar reports. The present case strengthens the possibility that germline mosaicism may be a more common inheritance mechanism than previously thought in cases of EEC syndrome.
Collapse
Affiliation(s)
| | | | | | - Filipe Augusto da Silva
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil
| | - Olga Gaio Milner
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brasil
| | | | | | | | | |
Collapse
|
9
|
Abstract
Acro-dermato-ungual-lacrimal-tooth (ADULT) syndrome is a rare, autosomal dominant form of ectodermal dysplasia due to TP63 mutations. ADULT syndrome is much less common than the more classical forms of TP63-associated ectodermal dysplasias, such as ectrodactyly-ectodermal dysplasia-cleft lip/palate (EEC) syndrome and ankyloblepharon-ectodermal defects-cleft lip/palate syndrome. ADULT syndrome is characterized by ectrodactyly, syndactyly, and excessive freckling, in addition to more typical ectodermal defects, including hypodontia, lacrimal duct anomalies, hypotrichosis, and onychodysplasia. Unlike some of the other TP63-associated ectodermal dysplasias, ADULT syndrome lacks clefting and ankyloblepharon. Here, we report a three-generation family with ADULT syndrome due to an R243W mutation in TP63, a mutation that has previously been described in one patient with ADULT syndrome and eight unrelated patients with EEC syndrome.
Collapse
Affiliation(s)
- David R Berk
- Departments of Internal Medicine and Pediatrics, Division of Dermatology and Division of Genetics and Genomic Medicine, Washington University School of Medicine and St Louis Children's Hospital, St Louis, MO 63110, USA.
| | | | | | | |
Collapse
|