1
|
Collins MD, Scott WJ. Thalidomide-induced limb malformations: an update and reevaluation. Arch Toxicol 2025:10.1007/s00204-024-03930-z. [PMID: 40198353 DOI: 10.1007/s00204-024-03930-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 04/10/2025]
Abstract
Historically, thalidomide-induced congenital malformations have served as an important example of the enhanced susceptibility of developing embryos to chemical perturbation. The compound produced a wide variety of congenital malformations in humans, which were initially detected by an association with a relatively rare limb defect labeled phocomelia. Although true phocomelia in the most severe form is a transverse defect with intercalary absence of limb regions, it is proposed that thalidomide produces a longitudinal limb phenotype in humans under usual circumstances that can become transverse in severe cases with a preferential sensitivity of forelimb over hindlimb, preaxial over postaxial, and left more impacted than the corresponding non-autopod limb bones on the right. The thalidomide-induced limb phenotype in humans is described and followed by a hierarchical comparison with various laboratory animal species. Mechanistic studies have been hampered by the fact that only non-human primates and rabbits have malformations that are anatomically similar to humans. Included in this review are unpublished data on limb malformations produced by thalidomide in rhesus monkeys from experiments performed more than 50 years ago. The critical period in gestation for the induction of phocomelia may initiate prior to the development of the embryonic limb bud, which contrasts with other chemical and physical agents that are known to produce this phenotype. The importance of toxicokinetic parameters is reviewed including dose, enantiomers, absorption, distribution, and both non-enzymatic and enzymatic biotransformations. The limb embryopathy mechanism that provides a partial explanation of the limb phenotype is that cereblon binds to thalidomide creating a protein complex that ubiquitinates protein substrates (CRL4CRBN) that are not targets for the complex in the absence of the thalidomide. One of these neosubstrates is SALL4 which when mutated causes a syndrome that phenocopies aspects of thalidomide embryopathy. Other candidate neosubstrates for the complex that have been found in non-human species may contribute to an understanding of the limb defect including PLZF, p63, and various zinc finger transcription factors. It is proposed that it is important to consider the species-specificity of the compound when considering potential mechanistic pathways and that some of the more traditional mechanisms for explaining the embryopathy, such as anti-angiogenesis and redox perturbation, may contribute to a full understanding of this teratogen.
Collapse
Affiliation(s)
- Michael D Collins
- Department of Environmental Health Sciences and Molecular Toxicology Interdisciplinary Program, UCLA School of Public Health, CHS 46-078, 650 Charles E. Young Drive South, Los Angeles, CA, 90095, USA.
| | - William J Scott
- Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, OH, 45229, USA
| |
Collapse
|
2
|
Brakta C, Tabet AC, Puel M, Pacault M, Stolzenberg MC, Goudet C, Merger M, Reumaux H, Lambert N, Alioua N, Malan V, Hanein S, Dupin-Deguine D, Treiner E, Lefèvre G, Farhat MM, Luca LE, Hureaux M, Li H, Chelloug N, Dehak R, Boussion S, Ouachée-Chardin M, Schleinitz N, Abou Chahla W, Barlogis V, Vély F, Oksenhendler E, Quartier P, Pasquet M, Suarez F, Bustamante J, Neven B, Picard C, Rieux-Laucat F, Lévy J, Rosain J. 2q33 Deletions Underlying Syndromic and Non-syndromic CTLA4 Deficiency. J Clin Immunol 2024; 45:46. [PMID: 39578275 DOI: 10.1007/s10875-024-01831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
PURPOSE CTLA4 deficiency is an inborn error of immunity (IEI) due to heterozygosity for germline loss-of-function variants of the CTLA4 gene located on chromosome 2q33.2. CTLA4 deficiency underlies pleiotropic immune and lymphoproliferation-mediated features with incomplete penetrance. It has been identified in hundreds of patients but copy number variants (CNVs) have been reported in only 12 kindreds, including nine which displayed large 2q33.1-2q33.2 deletions encompassing CTLA4. METHODS We conducted a nationwide study in France to identify patients with 2q33 deletions encompassing CTLA4. We investigated the clinical and immunological phenotypes and genotypes of these patients. RESULTS We identified 12 patients across six unrelated kindreds with clinical immunodeficiency. Neurological features were recorded in three patients, including one with syndromic neurodevelopmental disorder. Single-nucleotide polymorphism (SNP) or comparative genomic hybridization (CGH) array analysis, and targeted high-throughput sequencing revealed five different heterozygous 2q33 deletions of 26 kilobases to 7.12 megabases in size and encompassing one to 41 genes. We identified a contiguous gene syndrome (CGS) due to associated KLF7 deficiency in a kindred with a neurodevelopmental phenotype. CONCLUSION Deletions within the 2q33 region encompassing CTLA4 are rare and not extensively explored, and are probably underdiagnosed in cytogenetic practice. A literature review identified 14 different CGS loci including at least one gene responsible for an IEI. The deletions involved in IEIs should be systematically delimited, to facilitate screening for CGS.
Collapse
Affiliation(s)
- Charlyne Brakta
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Anne-Claude Tabet
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, EU, France
| | - Mathilde Puel
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Mathilde Pacault
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, EU, France
| | - Marie-Claude Stolzenberg
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, UMR 1163, Imagine Institute, INSERM, Paris, EU, France
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
| | - Claire Goudet
- Pediatric Hematology Department, Timone Enfant, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, EU, France
| | - Marguerite Merger
- Department of Internal Medicine and Clinical Immunology, University of Lille, Lille, EU, France
| | - Héloïse Reumaux
- Pediatric Rheumatology Unit, Jeanne de Flandre Hospital, University of Lille, Lille, EU, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Najiba Alioua
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Valérie Malan
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
- Laboratory of Genomic Medicine for Rare Diseases, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Sylvain Hanein
- Bioinformatic Platform, Institute of Genetic Diseases, Université Paris-Cité and Structure Fédérative de Recherche Necker, INSERM UMR1163, Imagine, Paris, EU, France
| | - Delphine Dupin-Deguine
- Medical Genetics Department, University of Toulouse, CHU Purpan, Toulouse, EU, France
- Otoneurosurgery and Pediatric ENT Department, University of Toulouse, CHU Purpan, Toulouse, EU, France
| | - Emmanuel Treiner
- Faculty of Medicine, University Toulouse III Paul Sabatier, Toulouse, France
- Laboratory of Immunology, University Hospital of Toulouse, Toulouse, France
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Inserm UMR1291, Toulouse, EU, France
| | - Guillaume Lefèvre
- Institute for Translational Research in Inflammation (INFINITE), Inserm U1286, University of Lille, Lille, EU, France
- Laboratory of Immunology, University of Lille, Lille, EU, France
| | - Méryem-Maud Farhat
- Department of Internal Medicine and Clinical Immunology, University of Lille, Lille, EU, France
| | - Luminita Elena Luca
- Department of Internal Medicine, Infectious and Tropical Diseases, University Hospital Center of Poitiers, Poitiers, EU, France
| | - Marguerite Hureaux
- Department of Genetics, Georges-Pompidou European Hospital, AP-HP, Paris, EU, France
- Reference Center for Hereditary Kidney Diseases in Children and Adults (MARHEA), University of Paris Cité, Paris, EU, France
| | - Hailun Li
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Necker Branch, Inserm U1163, Paris, EU, France
| | - Nora Chelloug
- Medical Genetics Department, University of Toulouse, CHU Purpan, Toulouse, EU, France
| | - Rabha Dehak
- Department of Pediatrics, Calais Hospital, Calais, EU, France
| | - Simon Boussion
- Clinical Genetics Department, University of Lille, Lille, EU, France
| | - Marie Ouachée-Chardin
- Department of Pediatric Hematology, IHOPe, Hospices Civils de Lyon, Lyon, EU, France
| | - Nicolas Schleinitz
- Department of Internal Medicine La Timone, Aix-Marseille University, Assistance Publique - AP-HM, Marseille, EU, France
| | - Wadih Abou Chahla
- Department of Pediatric Hematology, Jeanne de Flandre Hospital, University of Lille, Lille, EU, France
| | - Vincent Barlogis
- Pediatric Hematology Department, Timone Enfant, Assistance Publique Hôpitaux de Marseille (AP-HM), Marseille, EU, France
| | - Frédéric Vély
- Aix Marseille Université, CNRS, Inserm, Centre d'Immunologie de Marseille-Luminy, Marseille, EU, France
- Departement of Immunology, Assistance Publique Des Hôpitaux de Marseille, Hôpital de La Timone, Marseille Immunopole, Marseille, EU, France
| | - Eric Oksenhendler
- Clinical Immunology Department, Saint-Louis Hospital, Paris-Diderot University, Paris, EU, France
| | - Pierre Quartier
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, AP-HP, Paris, EU, France
- Université Paris-Cité, Paris, EU, France
| | - Marlène Pasquet
- Department of Pediatric Hematology and Immunology, Children's Hospital, University Hospital, Toulouse, EU, France
| | - Felipe Suarez
- Université Paris-Cité, Paris, EU, France
- Department of Clinical Hematology, Necker Hospital for Sick Children, AP-HP, Paris, EU, France
- Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Jacinta Bustamante
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Necker Branch, Inserm U1163, Paris, EU, France
- Université Paris-Cité, Paris, EU, France
- St.Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, Rockefeller Branch, New York, NY, USA
| | - Bénédicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, UMR 1163, Imagine Institute, INSERM, Paris, EU, France
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades University Hospital, AP-HP, Paris, EU, France
- Université Paris-Cité, Paris, EU, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
- Université Paris-Cité, Paris, EU, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, Inserm U1163, Imagine Institute, Paris, EU, France
- Centre de Référence Des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, UMR 1163, Imagine Institute, INSERM, Paris, EU, France
- Inserm U1163, Imagine Institute, University of Paris Cité, Paris, Paris, EU, France
| | - Jonathan Lévy
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, EU, France
| | - Jérémie Rosain
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, EU, France.
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, Necker Branch, Inserm U1163, Paris, EU, France.
- Université Paris-Cité, Paris, EU, France.
- St.Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, Rockefeller Branch, New York, NY, USA.
| |
Collapse
|
3
|
Li Y, Liu P, Wang W, Jia H, Bai Y, Yuan Z, Yang Z. A novel genotype-phenotype between persistent-cloaca-related VACTERL and mutations of 8p23 and 12q23.1. Pediatr Res 2024; 95:1246-1253. [PMID: 38135728 DOI: 10.1038/s41390-023-02928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/02/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023]
Abstract
The mechanism underlying anorectal malformations (ARMs)-related VACTERL (vertebral defects, anal atresia, cardiac defects, tracheo-esophageal fistula, and renal and limb abnormalities) remains unclear. Copy number variation (CNV) contributed to VACTERL pathogenicity. Here, we report a novel CNV in 8p23 and 12q23.1 identified in a case of ARMs-related VACTERL association. This 12-year-old girl presented a cloaca (urethra, vagina, and rectum opening together and sharing a single tube length), an isolated kidney, and a perpetuation of the left superior vena cava at birth. Her intelligence, growth, and development were slightly lower than those of normal children of the same age. Array comparative genomic hybridization revealed a 9.6-Mb deletion in 8p23.1-23.3 and a 0.52-Mb duplication in 12q23.1 in her genome. Furthermore, we reviewed the cases involving CNVs in patients with VACTERL, 8p23 deletion, and 12q23.1 duplication, and our case was the first displaying ARMs-related VACTERL association with CNV in 8p23 and 12q23.1. These findings enriched our understanding between VACTERL association and the mutations of 8p23 deletion and 12q23.1 duplication. IMPACT: This is a novel case of a Chinese girl with anorectal malformations (ARMs)-related VACTERL with an 8p23.1-23.3 deletion and 12q23.1 duplication. Cloaca malformation is presented with novel copy number variation in 8p23.1-23.3 deletion and 12q23.1 duplication.
Collapse
Affiliation(s)
- Yue Li
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peiqi Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weilin Wang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Huimin Jia
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuzuo Bai
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Zhonghua Yang
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
4
|
Sy MR, Chauhan J, Prescott K, Imam A, Kraus A, Beleza A, Salkeld L, Hosdurga S, Parker M, Vasudevan P, Islam L, Goel H, Bain N, Park SM, Mohammed S, Dieterich K, Coutton C, Satre V, Vieville G, Donaldson A, Beneteau C, Ghoumid J, Bogaert KVD, Boogaerts A, Boudry E, Vanlerberghe C, Petit F, Bernardini L, Torres B, Mattina T, Carli D, Mandrile G, Pinelli M, Brunetti-Pierri N, Neas K, Beddow R, Tørring PM, Faletra F, Spedicati B, Gasparini P, Mussa A, Ferrero GB, Lampe A, Lam W, Bi W, Bacino CA, Kuwahara A, Bush JO, Zhao X, Luna PN, Shaw CA, Rosenfeld JA, Scott DA. Exome sequencing efficacy and phenotypic expansions involving esophageal atresia/tracheoesophageal fistula plus. Am J Med Genet A 2022; 188:3492-3504. [PMID: 36135330 PMCID: PMC9669235 DOI: 10.1002/ajmg.a.62976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/31/2023]
Abstract
Esophageal atresia/tracheoesophageal fistula (EA/TEF) is a life-threatening birth defect that often occurs with other major birth defects (EA/TEF+). Despite advances in genetic testing, a molecular diagnosis can only be made in a minority of EA/TEF+ cases. Here, we analyzed clinical exome sequencing data and data from the DECIPHER database to determine the efficacy of exome sequencing in cases of EA/TEF+ and to identify phenotypic expansions involving EA/TEF. Among 67 individuals with EA/TEF+ referred for clinical exome sequencing, a definitive or probable diagnosis was made in 11 cases for an efficacy rate of 16% (11/67). This efficacy rate is significantly lower than that reported for other major birth defects, suggesting that polygenic, multifactorial, epigenetic, and/or environmental factors may play a particularly important role in EA/TEF pathogenesis. Our cohort included individuals with pathogenic or likely pathogenic variants that affect TCF4 and its downstream target NRXN1, and FANCA, FANCB, and FANCC, which are associated with Fanconi anemia. These cases, previously published case reports, and comparisons to other EA/TEF genes made using a machine learning algorithm, provide evidence in support of a potential pathogenic role for these genes in the development of EA/TEF.
Collapse
Affiliation(s)
- Mary R. Sy
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, USA
| | - Jaynee Chauhan
- Yorkshire Regional Genetics Service, Leeds Teaching
Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Katrina Prescott
- Yorkshire Regional Genetics Service, Leeds Teaching
Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Aliza Imam
- Yorkshire Regional Genetics Service, Leeds Teaching
Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Alison Kraus
- Yorkshire Regional Genetics Service, Leeds Teaching
Hospitals NHS Trust, Chapel Allerton Hospital, Leeds, UK
| | - Ana Beleza
- Clinical Genetics Department, University Hospitals Bristol
and Weston, Bristol NHS Foundation, Bristol, UK
| | - Lee Salkeld
- Whiteladies Medical Group, Whatley Road, Clifton, Bristol,
UK
| | - Saraswati Hosdurga
- Community Children’s Health Partnership, Sirona
Health and Care, Bristol, UK
| | - Michael Parker
- Sheffield Children’s NHS Foundation Trust,
Sheffield, UK
| | | | - Lily Islam
- Birmingham Women’s and Children’s Hospital
NHS Foundation Trust, Birmingham, UK
| | - Himanshu Goel
- Hunter New England Local Health District, Hunter Genetics,
Waratah, NSW, Australia
- University of Newcastle, Callaghan, NSW, Australia
| | - Nicole Bain
- Department of Molecular Medicine, New South Wales Health
Pathology, Newcastle, Australia
| | - Soo-Mi Park
- East Anglian Medical Genetics Service, Cambridge
University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Klaus Dieterich
- Département de Génétique et
Procréation, Hôpital Couple Enfant, CHU Grenoble, Grenoble Cedex,
France
- INSERM U1216 Grenoble Institut des Neurosciences,
Cellular Myology and Pathology, Grenoble, France
| | - Charles Coutton
- Département de Génétique et
Procréation, Hôpital Couple Enfant, CHU Grenoble, Grenoble Cedex,
France
- Genetic Epigenetic and Therapies of Infertility team,
Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université
Grenoble Alpes, Grenoble, France
| | - Véronique Satre
- Département de Génétique et
Procréation, Hôpital Couple Enfant, CHU Grenoble, Grenoble Cedex,
France
- Genetic Epigenetic and Therapies of Infertility team,
Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université
Grenoble Alpes, Grenoble, France
| | - Gaëlle Vieville
- Département de Génétique et
Procréation, Hôpital Couple Enfant, CHU Grenoble, Grenoble Cedex,
France
| | - Alan Donaldson
- Clinical Genetics Department, St Michaels Hospital,
Bristol, UK
| | - Claire Beneteau
- Nantes Université, CHU de Nantes, UF 9321 de
Fœtopathologie et Génétique, Nantes, France
| | - Jamal Ghoumid
- Université de Lille, ULR7364 RADEME, CHU Lille,
Clinique de Génétique Guy Fontaine, Lille, France
| | - Kris Van Den Bogaert
- Center for Human Genetics, University Hospitals
Leuven–KU Leuven, Leuven, Belgium
| | - Anneleen Boogaerts
- Center for Human Genetics, University Hospitals
Leuven–KU Leuven, Leuven, Belgium
| | - Elise Boudry
- CHU Lille, Institut de Génétique
Médicale, Lille, France
| | - Clémence Vanlerberghe
- Université de Lille, ULR7364 RADEME, CHU Lille,
Clinique de Génétique Guy Fontaine, Lille, France
| | - Florence Petit
- Université de Lille, ULR7364 RADEME, CHU Lille,
Clinique de Génétique Guy Fontaine, Lille, France
| | - Laura Bernardini
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo
della Sofferenza, San Giovanni Rotondo, Italy
| | - Barbara Torres
- Medical Genetics Unit, Fondazione IRCCS Casa Sollievo
della Sofferenza, San Giovanni Rotondo, Italy
| | - Teresa Mattina
- Department of Biomedical and Biotechnological Sciences,
Medical Genetics, University of Catania, Catania, Italy
- Scientific Foundation and Clinic G. B. Morgagni,
Catania, Italy
| | - Diana Carli
- Department of Public Health and Pediatrics, University
of Torino, Torino, Italy
| | - Giorgia Mandrile
- Medical Genetics Unit, San Luigi University Hospital,
University of Torino, Orbassano, Italy
| | - Michele Pinelli
- Department of Molecular Medicine and Medical
Biotechnology, University of Naples Federico II, Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM),
Pozzuoli, Italy
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM),
Pozzuoli, Italy
- Department of Translational Medicine, University of
Naples Federico II, Naples, Italy
| | | | - Rachel Beddow
- Wellington Regional Genetics laboratory, Wellington, New
Zealand
| | - Pernille M. Tørring
- Department of Clinical Genetics, Odense University
Hospital, Odense C, Denmark
| | - Flavio Faletra
- Institute for Maternal and Child Health - IRCCS Burlo
Garofolo, Trieste, Italy
| | - Beatrice Spedicati
- Department of Medicine, Surgery and Health Sciences,
University of Trieste, Trieste, Italy
| | - Paolo Gasparini
- Institute for Maternal and Child Health - IRCCS Burlo
Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences,
University of Trieste, Trieste, Italy
| | - Alessandro Mussa
- Department of Public Health and Pediatrics, University
of Torino, Torino, Italy
- Pediatric Clinical Genetics Unit, Regina Margherita
Childrens Hospital, Torino, Italy
| | | | - Anne Lampe
- South East Scotland Clinical Genetics Service, Western
General Hospital, Edinburgh, UK
| | - Wayne Lam
- Department of Clinical Genetics, Western General
Hospital, Edinburgh, UK
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, 77021, USA
| | - Carlos A. Bacino
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, USA
| | - Akela Kuwahara
- Department of Cell and Tissue Biology, University of
California San Francisco, San Francisco, USA
- Institute for Human Genetics, University of California
San Francisco, San Francisco, USA
- Eli and Edythe Broad Center of Regeneration Medicine and
Stem Cell Research, University of California San Francisco, San Francisco, USA
| | - Jeffrey O. Bush
- Department of Cell and Tissue Biology, University of
California San Francisco, San Francisco, USA
- Institute for Human Genetics, University of California
San Francisco, San Francisco, USA
- Eli and Edythe Broad Center of Regeneration Medicine and
Stem Cell Research, University of California San Francisco, San Francisco, USA
| | - Xiaonan Zhao
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, 77021, USA
| | - Pamela N. Luna
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, USA
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, USA
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics,
Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Jung M, Ramanagoudr-Bhojappa R, van Twest S, Rosti RO, Murphy V, Tan W, Donovan FX, Lach FP, Kimble DC, Jiang CS, Vaughan R, Mehta PA, Pierri F, Dufour C, Auerbach AD, Deans AJ, Smogorzewska A, Chandrasekharappa SC. Association of clinical severity with FANCB variant type in Fanconi anemia. Blood 2020; 135:1588-1602. [PMID: 32106311 PMCID: PMC7193183 DOI: 10.1182/blood.2019003249] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/12/2020] [Indexed: 01/05/2023] Open
Abstract
Fanconi anemia (FA) is the most common genetic cause of bone marrow failure and is caused by inherited pathogenic variants in any of 22 genes. Of these, only FANCB is X-linked. We describe a cohort of 19 children with FANCB variants, from 16 families of the International Fanconi Anemia Registry. Those with FANCB deletion or truncation demonstrate earlier-than-average onset of bone marrow failure and more severe congenital abnormalities compared with a large series of FA individuals in published reports. This reflects the indispensable role of FANCB protein in the enzymatic activation of FANCD2 monoubiquitination, an essential step in the repair of DNA interstrand crosslinks. For FANCB missense variants, more variable severity is associated with the extent of residual FANCD2 monoubiquitination activity. We used transcript analysis, genetic complementation, and biochemical reconstitution of FANCD2 monoubiquitination to determine the pathogenicity of each variant. Aberrant splicing and transcript destabilization were associated with 2 missense variants. Individuals carrying missense variants with drastically reduced FANCD2 monoubiquitination in biochemical and/or cell-based assays tended to show earlier onset of hematologic disease and shorter survival. Conversely, variants with near-normal FANCD2 monoubiquitination were associated with more favorable outcome. Our study reveals a genotype-phenotype correlation within the FA-B complementation group of FA, where severity is associated with level of residual FANCD2 monoubiquitination.
Collapse
Affiliation(s)
- Moonjung Jung
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY
| | - Ramanagouda Ramanagoudr-Bhojappa
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Sylvie van Twest
- Genome Stability Unit, St Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Rasim Ozgur Rosti
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY
| | - Vincent Murphy
- Genome Stability Unit, St Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Winnie Tan
- Genome Stability Unit, St Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Frank X Donovan
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Francis P Lach
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY
| | - Danielle C Kimble
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Caroline S Jiang
- Department of Biostatistics, The Rockefeller University Hospital, The Rockefeller University, New York, NY
| | - Roger Vaughan
- Department of Biostatistics, The Rockefeller University Hospital, The Rockefeller University, New York, NY
| | - Parinda A Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH
| | | | - Carlo Dufour
- Hematology Unit, IRCSS G. Gaslini, Genoa, Italy; and
| | - Arleen D Auerbach
- Human Genetics and Hematology Program, The Rockefeller University, New York, NY
| | - Andrew J Deans
- Genome Stability Unit, St Vincent's Institute of Medical Research, Melbourne, VIC, Australia
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY
| | - Settara C Chandrasekharappa
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
6
|
Fiesco-Roa MO, Giri N, McReynolds LJ, Best AF, Alter BP. Genotype-phenotype associations in Fanconi anemia: A literature review. Blood Rev 2019; 37:100589. [PMID: 31351673 DOI: 10.1016/j.blre.2019.100589] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/21/2019] [Accepted: 07/15/2019] [Indexed: 11/17/2022]
Abstract
Fanconi anemia (FA) is a genomic instability syndrome with predisposition to congenital abnormalities, bone marrow failure, and cancer. Classical and most frequent congenital abnormalities include all those seen in VACTERL-H association and those described under the PHENOS acronym. Pathogenic variants in at least 22 genes are associated with FA, which code for proteins that comprise the FA/BRCA DNA repair pathway. We reviewed 187 publications and 1101 cases of FA in which the gene or complementation group was identified and analyzed those in whom physical findings were sought. We conducted genotype-phenotype analyses considering the specific gene, the location in the FA/BRCA DNA repair pathway, and the type of variant (null or hypomorphic) as exposures. The outcomes were the presence of any physical abnormality or specific categories of abnormalities. Seventy-nine percent of the patients had at least one physical abnormality. Pathogenic variants in FANCB, FANCD2, the ID complex and downstream genes were associated with several specific anomalies. Patients with biallelic or hemizygous null variants had a higher proportion of at least one abnormality, renal malformations, microcephaly, short stature and the combination of VACTERL-H compared with those with hypomorphic genotypes. VACTERL-H alone or in combination with PHENOS is highly associated with FA, but the absence of those features does not rule out the diagnosis of FA.
Collapse
Affiliation(s)
- Moisés O Fiesco-Roa
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA; Laboratorio de Citogenética, Instituto Nacional de Pediatría, Mexico City, Mexico; Programa de Maestría y Doctorado en Ciencias Médicas, UNAM, Posgrados, Zona Cultural Ciudad Universitaria, Del. Coyoacan, Mexico City 14510, Mexico.
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA.
| | - Lisa J McReynolds
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA.
| | - Ana F Best
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA.
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD 20850, USA.
| |
Collapse
|
7
|
Mori M, Hira A, Yoshida K, Muramatsu H, Okuno Y, Shiraishi Y, Anmae M, Yasuda J, Tadaka S, Kinoshita K, Osumi T, Noguchi Y, Adachi S, Kobayashi R, Kawabata H, Imai K, Morio T, Tamura K, Takaori-Kondo A, Yamamoto M, Miyano S, Kojima S, Ito E, Ogawa S, Matsuo K, Yabe H, Yabe M, Takata M. Pathogenic mutations identified by a multimodality approach in 117 Japanese Fanconi anemia patients. Haematologica 2019; 104:1962-1973. [PMID: 30792206 PMCID: PMC6886416 DOI: 10.3324/haematol.2018.207241] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/15/2019] [Indexed: 11/09/2022] Open
Abstract
Fanconi anemia is a rare recessive disease characterized by multiple congenital abnormalities, progressive bone marrow failure, and a predisposition to malignancies. It results from mutations in one of the 22 known FANC genes. The number of Japanese Fanconi anemia patients with a defined genetic diagnosis was relatively limited. In this study, we reveal the genetic subtyping and the characteristics of mutated FANC genes in Japan and clarify the genotype-phenotype correlations. We studied 117 Japanese patients and successfully subtyped 97% of the cases. FANCA and FANCG pathogenic variants accounted for the disease in 58% and 25% of Fanconi anemia patients, respectively. We identified one FANCA and two FANCG hot spot mutations, which are found at low percentages (0.04-0.1%) in the whole-genome reference panel of 3,554 Japanese individuals (Tohoku Medical Megabank). FANCB was the third most common complementation group and only one FANCC case was identified in our series. Based on the data from the Tohoku Medical Megabank, we estimate that approximately 2.6% of Japanese are carriers of disease-causing FANC gene variants, excluding missense mutations. This is the largest series of subtyped Japanese Fanconi anemia patients to date and the results will be useful for future clinical management.
Collapse
Affiliation(s)
- Minako Mori
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Asuka Hira
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, The Institute of Medical Science, University of Tokyo, Tokyo Japan
| | - Michiko Anmae
- Medical Genetics Laboratory, Graduate School of Science and Engineering, Kindai University, Osaka, Japan
| | - Jun Yasuda
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Shu Tadaka
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kengo Kinoshita
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai, Japan.,Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan
| | - Tomoo Osumi
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Yasushi Noguchi
- Department of Pediatrics, Japanese Red Cross Narita Hospital, Chiba, Japan
| | - Souichi Adachi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryoji Kobayashi
- Department of Pediatrics and Adolescence, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Hiroshi Kawabata
- Department of Hematology and Immunology, Kanazawa Medical University, Uchinada-machi, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuo Tamura
- Medical Genetics Laboratory, Graduate School of Science and Engineering, Kindai University, Osaka, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Yamamoto
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, The Institute of Medical Science, University of Tokyo, Tokyo Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Etsuro Ito
- Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Hiromasa Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Miharu Yabe
- Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
8
|
Asur RS, Kimble DC, Lach FP, Jung M, Donovan FX, Kamat A, Noonan RJ, Thomas JW, Park M, Chines P, Vlachos A, Auerbach AD, Smogorzewska A, Chandrasekharappa SC. Somatic mosaicism of an intragenic FANCB duplication in both fibroblast and peripheral blood cells observed in a Fanconi anemia patient leads to milder phenotype. Mol Genet Genomic Med 2018; 6:77-91. [PMID: 29193904 PMCID: PMC5823675 DOI: 10.1002/mgg3.350] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 09/28/2017] [Accepted: 10/23/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Fanconi anemia (FA) is a rare disorder characterized by congenital malformations, progressive bone marrow failure, and predisposition to cancer. Patients harboring X-linked FANCB pathogenic variants usually present with severe congenital malformations resembling VACTERL syndrome with hydrocephalus. METHODS We employed the diepoxybutane (DEB) test for FA diagnosis, arrayCGH for detection of duplication, targeted capture and next-gen sequencing for defining the duplication breakpoint, PacBio sequencing of full-length FANCB aberrant transcript, FANCD2 ubiquitination and foci formation assays for the evaluation of FANCB protein function by viral transduction of FANCB-null cells with lentiviral FANCB WT and mutant expression constructs, and droplet digital PCR for quantitation of the duplication in the genomic DNA and cDNA. RESULTS We describe here an FA-B patient with a mild phenotype. The DEB diagnostic test for FA revealed somatic mosaicism. We identified a 9154 bp intragenic duplication in FANCB, covering the first coding exon 3 and the flanking regions. A four bp homology (GTAG) present at both ends of the breakpoint is consistent with microhomology-mediated duplication mechanism. The duplicated allele gives rise to an aberrant transcript containing exon 3 duplication, predicted to introduce a stop codon in FANCB protein (p.A319*). Duplication levels in the peripheral blood DNA declined from 93% to 7.9% in the span of eleven years. Moreover, the patient fibroblasts have shown 8% of wild-type (WT) allele and his carrier mother showed higher than expected levels of WT allele (79% vs. 50%) in peripheral blood, suggesting that the duplication was highly unstable. CONCLUSION Unlike sequence point variants, intragenic duplications are difficult to precisely define, accurately quantify, and may be very unstable, challenging the proper diagnosis. The reversion of genomic duplication to the WT allele results in somatic mosaicism and may explain the relatively milder phenotype displayed by the FA-B patient described here.
Collapse
Affiliation(s)
- Rajalakshmi S. Asur
- Cancer Genetics and Comparative Genomics BranchNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Danielle C. Kimble
- Cancer Genetics and Comparative Genomics BranchNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Francis P. Lach
- Laboratory of Genome MaintenanceThe Rockefeller UniversityNew YorkNYUSA
| | - Moonjung Jung
- Laboratory of Genome MaintenanceThe Rockefeller UniversityNew YorkNYUSA
| | - Frank X. Donovan
- Cancer Genetics and Comparative Genomics BranchNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Aparna Kamat
- Cancer Genetics and Comparative Genomics BranchNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Raymond J. Noonan
- Laboratory of Genome MaintenanceThe Rockefeller UniversityNew YorkNYUSA
| | - James W. Thomas
- NIH Intramural Sequencing CenterNational Human Genome Research InstituteNIHRockvilleMDUSA
| | - Morgan Park
- NIH Intramural Sequencing CenterNational Human Genome Research InstituteNIHRockvilleMDUSA
| | - Peter Chines
- Medical Genomics and Metabolic Genetics BranchNational Human Genome Research InstituteNIHBethesdaMDUSA
| | - Adrianna Vlachos
- Hematology/Oncology and Stem Cell TransplantationCohen Children's Medical CenterNew Hyde ParkNYUSA
- The Feinstein Institute for Medical Research of Northwell HealthManhassetNYUSA
| | - Arleen D. Auerbach
- Human Genetics and Hematology ProgramThe Rockefeller UniversityNew YorkNYUSA
| | | | | |
Collapse
|
9
|
Chetta K, Morice C, Merchant N, Welty S, Bacino CA, Potocki L, Dinu D. Severe Pancytopenia in a Premature Infant. Clin Pediatr (Phila) 2017; 56:795-797. [PMID: 27884942 DOI: 10.1177/0009922816678817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | | | | | - Stephen Welty
- 3 School of Medicine, University of Washington, Seattle, Washington, USA
| | | | | | | |
Collapse
|
10
|
Clinical and etiological heterogeneity in patients with tracheo-esophageal malformations and associated anomalies. Eur J Med Genet 2014; 57:440-52. [DOI: 10.1016/j.ejmg.2014.05.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/20/2014] [Indexed: 12/12/2022]
|
11
|
Winberg J, Gustavsson P, Papadogiannakis N, Sahlin E, Bradley F, Nordenskjöld E, Svensson PJ, Annerén G, Iwarsson E, Nordgren A, Nordenskjöld A. Mutation screening and array comparative genomic hybridization using a 180K oligonucleotide array in VACTERL association. PLoS One 2014; 9:e85313. [PMID: 24416387 PMCID: PMC3887047 DOI: 10.1371/journal.pone.0085313] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/25/2013] [Indexed: 01/18/2023] Open
Abstract
In order to identify genetic causes of VACTERL association (V vertebral defects, A anorectal malformations, C cardiac defects, T tracheoesofageal fistula, E esophageal atresia, R renal anomalies, L limb deformities), we have collected DNA samples from 20 patients diagnosed with VACTERL or with a VACTERL-like phenotype as well as samples from 19 aborted fetal cases with VACTERL. To investigate the importance of gene dose alterations in the genetic etiology of VACTERL association we have performed a systematic analysis of this cohort using a 180K array comparative genomic hybridization (array-CGH) platform. In addition, to further clarify the significance of PCSK5, HOXD13 and CHD7 genes in the VACTERL phenotype, mutation screening has been performed. We identified pathogenic gene dose imbalances in two fetal cases; a hemizygous deletion of the FANCB gene and a (9;18)(p24;q12) unbalanced translocation. In addition, one pathogenic mutation in CHD7 was detected, while no apparent disease-causing mutations were found in HOXD13 or PCSK5. Our study shows that although large gene dose alterations do not seem to be a common cause in VACTERL association, array-CGH is still important in clinical diagnostics to identify disease cause in individual cases.
Collapse
Affiliation(s)
- Johanna Winberg
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Peter Gustavsson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Nikos Papadogiannakis
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Ellika Sahlin
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Frideborg Bradley
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edvard Nordenskjöld
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pär-Johan Svensson
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Göran Annerén
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Erik Iwarsson
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics Unit, Karolinska University Hospital, Stockholm, Sweden
| | - Agneta Nordenskjöld
- Department of Women's and Children's Health and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Pediatric Surgery, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Solomon BD, Bear KA, Kimonis V, de Klein A, Scott DA, Shaw-Smith C, Tibboel D, Reutter H, Giampietro PF. Clinical geneticists' views of VACTERL/VATER association. Am J Med Genet A 2012; 158A:3087-100. [PMID: 23165726 PMCID: PMC3507421 DOI: 10.1002/ajmg.a.35638] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 08/02/2012] [Indexed: 01/07/2023]
Abstract
VACTERL association (sometimes termed "VATER association" depending on which component features are included) is typically defined by the presence of at least three of the following congenital malformations, which tend to statistically co-occur in affected individuals: Vertebral anomalies, Anal atresia, Cardiac malformations, Tracheo-Esophageal fistula, Renal anomalies, and Limb abnormalities. Although the clinical criteria for VACTERL association may appear to be straightforward, there is wide variability in the way clinical geneticists define the disorder and the genetic testing strategy they use when confronted with an affected patient. In order to describe this variability and determine the most commonly used definitions and testing modalities, we present the results of survey responses by 121 clinical geneticists. We discuss the results of the survey responses, provide a literature review and commentary from a group of physicians who are currently involved in clinical and laboratory-based research on VACTERL association, and offer an algorithm for genetic testing in patients with this association.
Collapse
Affiliation(s)
- Benjamin D Solomon
- Medical Genetics Branch, National Human Genome Research Institute, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|