1
|
Ouyang L, Yang F, Duan H, Wang C. Case Report and literature review: Delayed diagnosis of ARCL1B due to a newly reported homozygous mutation c.464A>C p. (Tyr155Ser) in the EFEMP2 gene. Front Genet 2024; 15:1453195. [PMID: 39764439 PMCID: PMC11701062 DOI: 10.3389/fgene.2024.1453195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 12/04/2024] [Indexed: 03/29/2025] Open
Abstract
Background Autosomal recessive cutis laxa type 1B (ARCL1B) is an extremely rare disease characterized by severe systemic connective tissue abnormalities, including cutis laxa, aneurysm and fragility of blood vessels, birth fractures and emphysema. The severity of this disease ranges from perinatal death to manifestations compatible with survival. To date, no cases have been reported in the Chinese population. Due to its rarity, the disease is susceptible to misdiagnosis or missed diagnosis by clinicians. By presenting this case and reviewing the relevant literature, the aim is to enhance clinicians' awareness and vigilance in diagnosing this disease. Case presentation We report a 7-month-old Chinese male infant who initially presented with severe respiratory infection, respiratory failure, and heart failure, and was misdiagnosed with Takayasu arteritis. Despite treatment, his condition did not improve. Due to the features of vascular malformations, developmental delay, and early onset of the disease, whole exome sequencing (WES) was performed, results revealed a homozygous mutation c.464A>C in exon 5 on the EFEMP2 gene p. (Tyr155Ser) that had never been reported before. Molecular protein prediction results suggest that this mutation site exhibits a high probability of pathogenicity. Combining the clinical manifestations, the results of cardiac color ultrasound and cardiac great vessels angiography, and the WES results, the patient was finally diagnosed with ARCL1B. Given the absence of established guidelines for the clinical manifestation, treatment, follow-up, and prognosis of ARCL1B, we searched the literatures of pubmed and web of science from inception to February 2024 to provide an essential reference for physicians to deepen the understanding of ARCL1B. Conclusion The EFEMP2 gene mutation identified in this patient has not been previously reported, expanding the mutation spectrum of the gene. This is the first documented case of this disease in the Chinese population. The diagnostic and therapeutic journey of this patient, along with the accompanying literature review, provides valuable insights. It highlights the importance of clinicians maintaining a high level of vigilance when encountering cases involving younger patients with multiple pulmonary artery aneurysms, as they may indicate the presence of this rare disease.
Collapse
Affiliation(s)
- Lixue Ouyang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fan Yang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, China
| | - Hongyu Duan
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, China
| | - Chuan Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Chengdu, China
- Key Laboratory of Development and Diseases of Women and Children of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Thomas P, Venugopalan A, Narayanan S, Mathew T, Cherukuwada LPD, Chandran S, Pradeep J, Fitzgibbons TP, George V. Case Report: Occurrence of Severe Thoracic Aortic Aneurysms (Involving the Ascending, Arch, and Descending Segments) as a Result of Fibulin-4 Deficiency: A Rare Pathology With Successful Management. Front Cardiovasc Med 2021; 8:756765. [PMID: 34901216 PMCID: PMC8652058 DOI: 10.3389/fcvm.2021.756765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Aortic diseases requiring surgery in childhood are distinctive and rare. Very few reports in the literature account for the occurrence of multiple thoracic aortic aneurysms in the same pediatric patient because of a genetic cause. We report a rare occurrence of severe thoracic aortic aneurysms (involving the ascending, arch and descending aortic segments) with severe aortic insufficiency in a 7-year-old female child secondary to the extremely rare and often lethal genetic disorder, cutis laxa. She was eventually identified as a carrier of a homozygous EFEMP2 (alias FBLN4) mutation. This gene encodes the extracellular matrix protein fibulin-4, and its mutation is associated with autosomal recessive cutis laxa type 1B that leads to severe aortopathy with aneurysm formation and vascular tortuosity. Parents of the child were not known to be consanguineous. Significant symptomatic improvement in the patient could be discerned after timely intervention with the valve-sparing aortic root replacement (David V procedure) and a concomitant aortic arch replacement. This is a unique report with a successful outcome that highlights the occurrence of a rare hereditary aortopathy associated with a high morbidity and mortality, and the importance of an early diagnosis and timely management. It also offers insight to physicians in having a very broad differential and multimodal approach in handling rare pediatric cardio-pathologies with a genetic predisposition.
Collapse
Affiliation(s)
- Paul Thomas
- Department of Cardiology, Government General Hospital, Ernakulam, India
| | | | - Siddharth Narayanan
- Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, United States
| | - Thomas Mathew
- Department of Cardiothoracic and Vascular Surgery, Government Medical College, Kottayam, India
| | | | - Shilpa Chandran
- Department of Radiodiagnosis, Government Medical College, Thiruvananthapuram, India
| | - Jithu Pradeep
- Department of Internal Medicine, Montefiore Hospitals, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Timothy P Fitzgibbons
- Department of Cardiology, University of Massachussetts Medical School, Worcester, MA, United States
| | - Vijo George
- Department of Cardiology, Government General Hospital, Ernakulam, India
| |
Collapse
|
3
|
Billar RJ, Manoubi W, Kant SG, Wijnen RMH, Demirdas S, Schnater JM. Association between pectus excavatum and congenital genetic disorders: A systematic review and practical guide for the treating physician. J Pediatr Surg 2021; 56:2239-2252. [PMID: 34039477 DOI: 10.1016/j.jpedsurg.2021.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Pectus excavatum (PE) could be part of a genetic disorder, which then has implications regarding comorbidity, the surgical correction of PE, and reproductive choices. However, referral of a patient presenting with PE for genetic analysis is often delayed because additional crucial clinical signs may be subtle or even missed in syndromic patients. We reviewed the literature to inventory known genetic disorders associated with PE and create a standardized protocol for clinical evaluation. METHODS A systematic literature search was performed in electronic databases. Genetic disorders were considered associated with PE if studies reported at least five cases with PE. Characteristics of each genetic disorder were extracted from the literature and the OMIM database in order to create a practical guide for the clinician. RESULTS After removal of duplicates from the initial search, 1632 citations remained. Eventually, we included 119 full text articles, representing 20 different genetic disorders. Relevant characteristics and important clinical signs of each genetic disorder were summarized providing a standardized protocol in the form of a scoring list. The most important clinical sign was a positive family history for PE and/or congenital heart defect. CONCLUSIONS Twenty unique genetic disorders have been found associated with PE. We have created a scoring list for the clinician that systematically evaluates crucial clinical signs, thereby facilitating decision making for referral to a clinical geneticist.
Collapse
Affiliation(s)
- Ryan J Billar
- Erasmus University Medical Center - Sophia Children's Hospital, department of Paediatric Surgery Rotterdam, Netherlands
| | - Wiem Manoubi
- Erasmus University Medical Centre, department of Neuroscience, Rotterdam, Netherlands
| | - Sarina G Kant
- Erasmus University Medical Centre, department of Clinical Genetics, Rotterdam, Netherlands
| | - René M H Wijnen
- Erasmus University Medical Center - Sophia Children's Hospital, department of Paediatric Surgery Rotterdam, Netherlands
| | - Serwet Demirdas
- Erasmus University Medical Centre, department of Clinical Genetics, Rotterdam, Netherlands
| | - Johannes M Schnater
- Erasmus University Medical Center - Sophia Children's Hospital, department of Paediatric Surgery Rotterdam, Netherlands.
| |
Collapse
|
4
|
Sasaki T, von der Mark K, Lanig H. Molecular dynamics simulations on human fibulin-4 mutants D203A and E126K reveal conformational changes in EGF domains potentially responsible for enhanced protease lability and impaired extracellular matrix assembly. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:748-756. [PMID: 31125616 DOI: 10.1016/j.bbapap.2019.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/12/2019] [Accepted: 05/17/2019] [Indexed: 10/26/2022]
Abstract
Fibulin-4 is a 50 kDa glycoprotein of elastic fibers and plays an important role in development and function of elastic tissues. Fibulin-4 consists of a tandem array of five calcium-binding epidermal growth factor-like modules flanked by N- and C-terminal domains. Mutations in the human fibulin-4 gene EFEMP2 have been identified in patients affected with various arteriopathies including aneurysm, arterial tortuosity, or stenosis, but the molecular basis of most genotype-phenotype correlations is unknown. Here we present biochemical and computer modelling approaches designed to gain further insight into changes in structure and function of two fibulin-4 mutations (E126K and D203A), which are potentially involved in Ca2+ binding in the EGF2 and EGF4 domain, respectively. Using recombinantly produced fibulin-4 mutant and wild type proteins we show that both mutations introduced additional protease cleavage sites, impaired extracellular assembly into fibers, and affected binding to to fibrillin-1, latent TGF-β-binding proteins, and the lysyl oxidase LOXL2. Molecular dynamics studies indicated that the E126K and D203A mutations do not necessarily result in a direct loss of the complexed Ca2+ ion after 500 ns simulation time, but in significantly enhanced fluctuations within the connecting loop between EGF3 and EGF4 domains and other conformational changes. In contrast, intentionally removing Ca2+ from EGF4 (D203A ΔCa) predicted dramatic changes in the protein structure. These results may explain the changes in protease cleavage sites, reduced secretion and impaired extracellular assembly of the E126K and D203A fibulin-4 mutants and provide further insight into understanding the molecular basis of the associated clinical phenotypes.
Collapse
Affiliation(s)
- Takako Sasaki
- Dept. of Biochemistry, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama machi, Yufu, 879-5503, Oita, Japan; Nikolaus-Fiebiger Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Glueckstr. 6, Erlangen, Germany
| | - Klaus von der Mark
- Nikolaus-Fiebiger Center of Molecular Medicine, Friedrich-Alexander University Erlangen-Nuremberg, Glueckstr. 6, Erlangen, Germany.
| | - Harald Lanig
- Central Institute for Scientific Computing (ZISC), Friedrich-Alexander University Erlangen-Nuremberg, Martensstr. 5a, Erlangen, Germany.
| |
Collapse
|
5
|
Roles of short fibulins, a family of matricellular proteins, in lung matrix assembly and disease. Matrix Biol 2018; 73:21-33. [DOI: 10.1016/j.matbio.2018.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/26/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022]
|
6
|
Hibino M, Sakai Y, Kato W, Tanaka K, Tajima K, Yokoyama T, Iwasa M, Morisaki H, Tsuzuki T, Usui A. Ascending Aortic Aneurysm in a Child With Fibulin-4 Deficiency. Ann Thorac Surg 2018; 105:e59-e61. [PMID: 29362193 DOI: 10.1016/j.athoracsur.2017.08.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/13/2017] [Accepted: 08/25/2017] [Indexed: 11/16/2022]
Abstract
EFEMP2 (alias FBLN4) encodes extracellular matrix protein fibulin-4, and its mutation is associated with autosomal recessive cutis laxa type 1B and leads to severe aortopathy with aneurysm formation and vascular tortuosity. A 4-month-old child presented with a large ascending aortic aneurysm, and genetic testing revealed an EFEMP2 mutation. We achieved successful repair of the ascending aortic aneurysm at 33 months of age and report the macroscopic and microscopic findings.
Collapse
Affiliation(s)
- Makoto Hibino
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Yoshimasa Sakai
- Department of Cardiovascular Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Wataru Kato
- Department of Cardiovascular Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Keisuke Tanaka
- Department of Cardiovascular Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Kazuyoshi Tajima
- Department of Cardiovascular Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Takehiko Yokoyama
- Department of Pediatrics, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Mitsuji Iwasa
- Department of Pediatrics, Nagoya Nishi Hospital, Nagoya, Japan
| | - Hiroko Morisaki
- Department of Medical Genetics, Sakakibara Heart Institute, Tokyo, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute, Japan
| | - Akihiko Usui
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
7
|
Letard P, Schepers D, Albuisson J, Bruneval P, Spaggiari E, Van de Beek G, Khung-Savatovsky S, Belarbi N, Capri Y, Delezoide AL, Loeys B, Guimiot F. Severe Phenotype of Cutis Laxa Type 1B with Antenatal Signs due to a Novel Homozygous Nonsense Mutation in EFEMP2. Mol Syndromol 2018; 9:190-196. [PMID: 30140196 DOI: 10.1159/000489838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2018] [Indexed: 01/18/2023] Open
Abstract
EFEMP2 mutations are known to be responsible for autosomal recessive cutis laxa type 1B (ARCL1B), a rare multisystem disease affecting skin, skeleton, and vascular structures. We report 2 additional related cases of ARCL1B of particular severity leading to termination of pregnancy. Cardinal signs of this connective tissue disease were already seen during the second trimester of pregnancy, then confirmed and clarified at autopsy. Anomalies included cutis laxa, arachnodactyly, clubfoot, wormian bones, moderate bowing of long bones with slender bone trabeculae, rib fractures, undermuscularized diaphragm, hiatal hernia, and arterial tortuosity with thick vascular walls and disorganized elastic fibers. Sequencing of the EFEMP2 gene revealed a novel homozygous nonsense mutation: c.639C>A (p.Cys213*). We performed a thorough histological analysis and discuss differential diagnoses, genotype-phenotype correlations, and the challenge of prenatal diagnosis of this disease.
Collapse
Affiliation(s)
| | - Dorien Schepers
- Unités Fonctionnelles de Center for Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | | | - Patrick Bruneval
- Unités Fonctionnelles de Service d'Anatomie et de Cytologie Pathologiques, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | | | - Gerarda Van de Beek
- Unités Fonctionnelles de Center for Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | | | - Nadia Belarbi
- Unités Fonctionnelles de Service de Radiologie Pédiatrique, Hôpital Robert Debré
| | - Yline Capri
- Unités Fonctionnelles de Génétique Clinique, Département de Génétique
| | | | - Bart Loeys
- Unités Fonctionnelles de Center for Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | | |
Collapse
|
8
|
Yetman AT, Hammel J, Sanmann JN, Starr LJ. Valve-Sparing Root and Total Arch Replacement for Cutis Laxa Aortopathy. World J Pediatr Congenit Heart Surg 2017; 10:376-379. [PMID: 28673110 DOI: 10.1177/2150135117698458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aortic aneurysms requiring surgery in early childhood are rare. Herein we describe the case of a three-year-old with massive aneurysmal aortic dilation secondary to the rare and often lethal genetic disorder, cutis laxa. Initial thoracic aortic aneurysm gene panel was negative. Parents of the child were not known to be consanguineous, but high-density SNP array revealed several regions of homozygosity. This prompted targeted sequence analysis that identified a novel homozygous missense mutation in the gene for cutis laxa, EFEMP2. The patient underwent aortic valve-sparing aortic root and ascending aorta replacement and total aortic arch replacement, with continuous, moderately hypothermic cardiopulmonary bypass, using a dual cannulation technique. He was discharged well on the third postoperative day and remains free of aneurysmal disease at two-year follow-up.
Collapse
Affiliation(s)
- Anji T Yetman
- 1 Cardiology, Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - James Hammel
- 2 Cardiovascular Surgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jennifer N Sanmann
- 3 Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lois J Starr
- 4 Genetic Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
9
|
Halabi CM, Broekelmann TJ, Lin M, Lee VS, Chu ML, Mecham RP. Fibulin-4 is essential for maintaining arterial wall integrity in conduit but not muscular arteries. SCIENCE ADVANCES 2017; 3:e1602532. [PMID: 28508064 PMCID: PMC5415335 DOI: 10.1126/sciadv.1602532] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/28/2017] [Indexed: 06/07/2023]
Abstract
Homozygous or compound heterozygous mutations in fibulin-4 (FBLN4) lead to autosomal recessive cutis laxa type 1B (ARCL1B), a multisystem disorder characterized by significant cardiovascular abnormalities, including abnormal elastin assembly, arterial tortuosity, and aortic aneurysms. We sought to determine the consequences of a human disease-causing mutation in FBLN4 (E57K) on the cardiovascular system and vascular elastic fibers in a mouse model of ARCL1B. Fbln4E57K/E57K mice were hypertensive and developed arterial elongation, tortuosity, and ascending aortic aneurysms. Smooth muscle cell organization within the arterial wall of large conducting vessels was abnormal, and elastic fibers were fragmented and had a moth-eaten appearance. In contrast, vessel wall structure and elastic fiber integrity were normal in resistance/muscular arteries (renal, mesenteric, and saphenous). Elastin cross-linking and total elastin content were unchanged in large or small arteries, whereas elastic fiber architecture was abnormal in large vessels. While the E57K mutation did not affect Fbln4 mRNA levels, FBLN4 protein was lower in the ascending aorta of mutant animals compared to wild-type arteries but equivalent in mesenteric arteries. We found a differential role of FBLN4 in elastic fiber assembly, where it functions mainly in large conduit arteries. These results suggest that elastin assembly has different requirements depending on vessel type. Normal levels of elastin cross-links in mutant tissue call into question FBLN4's suggested role in mediating lysyl oxidase-elastin interactions. Future studies investigating tissue-specific elastic fiber assembly may lead to novel therapeutic interventions for ARCL1B and other disorders of elastic fiber assembly.
Collapse
Affiliation(s)
- Carmen M. Halabi
- Division of Nephrology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas J. Broekelmann
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michelle Lin
- Division of Nephrology, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Vivian S. Lee
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mon-Li Chu
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Robert P. Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
10
|
AT1-receptor blockade, but not renin inhibition, reduces aneurysm growth and cardiac failure in fibulin-4 mice. J Hypertens 2016; 34:654-65. [PMID: 26828783 DOI: 10.1097/hjh.0000000000000845] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Increasing evidence supports a role for the angiotensin II-AT1-receptor axis in aneurysm development. Here, we studied whether counteracting this axis via stimulation of AT2 receptors is beneficial. Such stimulation occurs naturally during AT1-receptor blockade with losartan, but not during renin inhibition with aliskiren. METHODS AND RESULTS Aneurysmal homozygous fibulin-4 mice, displaying a four-fold reduced fibulin-4 expression, were treated with placebo, losartan, aliskiren, or the β-blocker propranolol from day 35 to 100. Their phenotype includes cystic media degeneration, aortic regurgitation, left ventricular dilation, reduced ejection fraction, and fractional shortening. Although losartan and aliskiren reduced hemodynamic stress and increased renin similarly, only losartan increased survival. Propranolol had no effect. No drug rescued elastic fiber fragmentation in established aneurysms, although losartan did reduce aneurysm size. Losartan also increased ejection fraction, decreased LV diameter, and reduced cardiac pSmad2 signaling. None of these effects were seen with aliskiren or propranolol. Longitudinal micro-CT measurements, a novel method in which each mouse serves as its own control, revealed that losartan reduced LV growth more than aneurysm growth, presumably because the heart profits both from the local (cardiac) effects of losartan and its effects on aortic root remodeling. CONCLUSION Losartan, but not aliskiren or propranolol, improved survival in fibulin-4 mice. This most likely relates to its capacity to improve structure and function of both aorta and heart. The absence of this effect during aliskiren treatment, despite a similar degree of blood pressure reduction and renin-angiotensin system blockade, suggests that it might be because of AT2-receptor stimulation.
Collapse
|
11
|
Sasaki T, Hanisch FG, Deutzmann R, Sakai LY, Sakuma T, Miyamoto T, Yamamoto T, Hannappel E, Chu ML, Lanig H, von der Mark K. Functional consequence of fibulin-4 missense mutations associated with vascular and skeletal abnormalities and cutis laxa. Matrix Biol 2016; 56:132-149. [PMID: 27339457 DOI: 10.1016/j.matbio.2016.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 06/06/2016] [Accepted: 06/14/2016] [Indexed: 01/17/2023]
Abstract
Fibulin-4 is a 60kDa calcium binding glycoprotein that has an important role in development and integrity of extracellular matrices. It interacts with elastin, fibrillin-1 and collagen IV as well as with lysyl oxidases and is involved in elastogenesis and cross-link formation. To date, several mutations in the fibulin-4 gene (FBLN4/EFEMP2) are known in patients whose major symptoms are vascular deformities, aneurysm, cutis laxa, joint laxity, or arachnodactyly. The pathogenetic mechanisms how these mutations translate into the clinical phenotype are, however, poorly understood. In order to elucidate these mechanisms, we expressed fibulin-4 mutants recombinantly in HEK293 cells, purified the proteins in native forms and analyzed alterations in protein synthesis, secretion, matrix assembly, and interaction with other proteins in relation to wild type fibulin-4. Our studies show that different mutations affect these properties in multiple ways, resulting in fibulin-4 deficiency and/or impaired ability to form elastic fibers. The substitutions E126K and C267Y impaired secretion of the protein, but not mRNA synthesis. Furthermore, the E126K mutant showed less resistance to proteases, reduced binding to collagen IV and fibrillin-1, as well as to LTBP1s and LTBP4s. The A397T mutation introduced an extra O-glycosylation site and deleted binding to LTBP1s. We show that fibulin-4 binds stronger than fibulin-3 and -5 to LTBP1s, 3, and 4s, and to the lysyl oxidases LOX and LOXL1; the binding of fibulin-4 to the LOX propeptide was strongly reduced by the mutation E57K. These findings show that different mutations in the fibulin-4 gene result in different molecular defects affecting secretion rates, protein stability, LOX-induced cross-linking, or binding to other ECM components and molecules of the TGF-β pathway, and thus illustrate the complex role of fibulin-4 in connective tissue assembly.
Collapse
Affiliation(s)
- Takako Sasaki
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nürnberg, 91054 Erlangen, Germany; Department of Biochemistry II, Faculty of Medicine, Oita University, Oita 879-5593, Japan.
| | - Franz-Georg Hanisch
- Institute for Biochemistry II, Medical Faculty, Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Rainer Deutzmann
- Institute of Biochemistry, Microbiology and Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Lynn Y Sakai
- Shriners Hospital for Children, Portland Research Center, Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Tatsuo Miyamoto
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Ewald Hannappel
- Institut für Biochemie, Emil-Fischer-Zentrum, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Mon-Li Chu
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Harald Lanig
- Central Institute for Scientific Computing (ZISC), University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Klaus von der Mark
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center of Molecular Medicine, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
12
|
Forelimb contractures and abnormal tendon collagen fibrillogenesis in fibulin-4 null mice. Cell Tissue Res 2015; 364:637-646. [PMID: 26711913 DOI: 10.1007/s00441-015-2346-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/10/2015] [Indexed: 12/13/2022]
Abstract
Fibulin-4 is an extracellular matrix glycoprotein essential for elastic fiber formation. Mice deficient in fibulin-4 die perinatally because of severe pulmonary and vascular defects associated with the lack of intact elastic fibers. Patients with fibulin-4 mutations demonstrate similar defects, and a significant number die shortly after birth or in early childhood from cardiopulmonary failure. The patients also demonstrate skeletal and other systemic connective tissue abnormalities, including joint laxity and flexion contractures of the wrist. A fibulin-4 null mouse strain was generated and used to analyze the roles of fibulin-4 in tendon fibrillogenesis. This mouse model displayed bilateral forelimb contractures, in addition to pulmonary and cardiovascular defects. The forelimb and hindlimb tendons exhibited disruption in collagen fibrillogenesis in the absence of fibulin-4 as analyzed by transmission electron microscopy. Fewer fibrils were assembled, and fibrils were disorganized compared with wild-type controls. The organization of developing tenocytes and compartmentalization of the extracellular space was also disrupted. Fibulin-4 was co-localized with fibrillin-1 and fibrillin-2 in limb tendons by using immunofluorescence microscopy. Thus, fibulin-4 seems to play a role in regulating tendon collagen fibrillogenesis, in addition to its essential function in elastogenesis.
Collapse
|
13
|
Ramnath NWM, Hawinkels LJAC, van Heijningen PM, te Riet L, Paauwe M, Vermeij M, Danser AHJ, Kanaar R, ten Dijke P, Essers J. Fibulin-4 deficiency increases TGF-β signalling in aortic smooth muscle cells due to elevated TGF-β2 levels. Sci Rep 2015; 5:16872. [PMID: 26607280 PMCID: PMC4660353 DOI: 10.1038/srep16872] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/19/2015] [Indexed: 12/18/2022] Open
Abstract
Fibulins are extracellular matrix proteins associated with elastic fibres. Homozygous Fibulin-4 mutations lead to life-threatening abnormalities such as aortic aneurysms. Aortic aneurysms in Fibulin-4 mutant mice were associated with upregulation of TGF-β signalling. How Fibulin-4 deficiency leads to deregulation of the TGF-β pathway is largely unknown. Isolated aortic smooth muscle cells (SMCs) from Fibulin-4 deficient mice showed reduced growth, which could be reversed by treatment with TGF-β neutralizing antibodies. In Fibulin-4 deficient SMCs increased TGF-β signalling was detected using a transcriptional reporter assay and by increased SMAD2 phosphorylation. Next, we investigated if the increased activity was due to increased levels of the three TGF-β isoforms. These data revealed slightly increased TGF-β1 and markedly increased TGF-β2 levels. Significantly increased TGF-β2 levels were also detectable in plasma from homozygous Fibulin-4(R/R) mice, not in wild type mice. TGF-β2 levels were reduced after losartan treatment, an angiotensin-II type-1 receptor blocker, known to prevent aortic aneurysm formation. In conclusion, we have shown increased TGF-β signalling in isolated SMCs from Fibulin-4 deficient mouse aortas, not only caused by increased levels of TGF-β1, but especially TGF-β2. These data provide new insights in the molecular interaction between Fibulin-4 and TGF-β pathway regulation in the pathogenesis of aortic aneurysms.
Collapse
Affiliation(s)
- N W M Ramnath
- Department of Genetics, Cancer Genomics Centre Netherlands, Erasmus MC, Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - L J A C Hawinkels
- Department of Molecular Cell Biology Leiden University Medical Centre, Leiden, The Netherlands, Cancer Genomics Centre.,Department of Gastroenterology-Hepatology, Leiden University Medical Centre, Leiden, The Netherlands
| | - P M van Heijningen
- Department of Genetics, Cancer Genomics Centre Netherlands, Erasmus MC, Rotterdam, The Netherlands
| | - L te Riet
- Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands.,Department of Pharmacology, Erasmus MC, Rotterdam, The Netherlands
| | - M Paauwe
- Department of Molecular Cell Biology Leiden University Medical Centre, Leiden, The Netherlands, Cancer Genomics Centre
| | - M Vermeij
- Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - A H J Danser
- Department of Pharmacology, Erasmus MC, Rotterdam, The Netherlands
| | - R Kanaar
- Department of Genetics, Cancer Genomics Centre Netherlands, Erasmus MC, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - P ten Dijke
- Department of Molecular Cell Biology Leiden University Medical Centre, Leiden, The Netherlands, Cancer Genomics Centre
| | - J Essers
- Department of Genetics, Cancer Genomics Centre Netherlands, Erasmus MC, Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus MC, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Papke CL, Tsunezumi J, Ringuette LJ, Nagaoka H, Terajima M, Yamashiro Y, Urquhart G, Yamauchi M, Davis EC, Yanagisawa H. Loss of fibulin-4 disrupts collagen synthesis and maturation: implications for pathology resulting from EFEMP2 mutations. Hum Mol Genet 2015. [PMID: 26220971 DOI: 10.1093/hmg/ddv308] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Homozygous recessive mutations in either EFEMP2 (encoding fibulin-4) or FBLN5 (encoding fibulin-5), critical genes for elastogenesis, lead to autosomal recessive cutis laxa types 1B and 1A, respectively. Previously, fibulin-4 was shown to bind lysyl oxidase (LOX), an elastin/collagen cross-linking enzyme, in vitro. Consistently, reported defects in humans with EFEMP2 mutations are more severe and broad in range than those due to FBLN5 mutations and encompass both elastin-rich and collagen-rich tissues. However, the underlying disease mechanism in EFEMP2 mutations has not been fully addressed. Here, we show that fibulin-4 is important for the integrity of aortic collagen in addition to elastin. Smooth muscle-specific Efemp2 loss in mouse (termed SMKO) resulted in altered fibrillar collagen localization with larger, poorly organized fibrils. LOX activity was decreased in Efemp2-null cells, and collagen cross-linking was diminished in SMKO aortas; however, elastin cross-linking was unaffected and the level of mature LOX was maintained to that of wild-type aortas. Proteomic screening identified multiple proteins involved in procollagen processing and maturation as potential fibulin-4-binding partners. We showed that fibulin-4 binds procollagen C-endopeptidase enhancer 1 (Pcolce), which enhances proteolytic cleavage of the procollagen C-terminal propeptide during procollagen processing. Interestingly, however, procollagen cleavage was not affected by the presence or absence of fibulin-4 in vitro. Thus, our data indicate that fibulin-4 serves as a potential scaffolding protein during collagen maturation in the extracellular space. Analysis of collagen in other tissues affected by fibulin-4 loss should further increase our understanding of underlying pathologic mechanisms in patients with EFEMP2 mutations.
Collapse
Affiliation(s)
- Christina L Papke
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Tsunezumi
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Léa-Jeanne Ringuette
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Hideaki Nagaoka
- NC Oral Health Institute, University of North Carolina, Chapel Hill, NC 27599, USA and
| | - Masahiko Terajima
- NC Oral Health Institute, University of North Carolina, Chapel Hill, NC 27599, USA and
| | - Yoshito Yamashiro
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA, Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Greg Urquhart
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mitsuo Yamauchi
- NC Oral Health Institute, University of North Carolina, Chapel Hill, NC 27599, USA and
| | - Elaine C Davis
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Hiromi Yanagisawa
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA, Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
15
|
Simvastatin Increases Fibulin-2 Expression in Human Coronary Artery Smooth Muscle Cells via RhoA/Rho-Kinase Signaling Pathway Inhibition. PLoS One 2015. [PMID: 26207907 PMCID: PMC4514789 DOI: 10.1371/journal.pone.0133875] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The composition and structure of the extracellular matrix (ECM) in the vascular wall and in the atherosclerotic plaque are important factors that determine plaque stability. Statins can stabilize atherosclerotic plaques by modulating ECM protein expression. Fibulins are important components of the ECM. We evaluated the in vitro effect of simvastatin on the expression of fibulin-1, -2, -4 and -5 in human coronary artery smooth muscle cells (SMCs) and the mechanisms involved. Cells were incubated with simvastatin (0.05–1 μM), mevalonate (100 and 200 μM), geranylgeranyl pyrophosphate (GGPP) (15 μM), farnesyl pyrophosphate (FPP) (15 μM), the Rho kinase (ROCK) inhibitor Y-27632 (15 and 20 μM), the Rac-1 inhibitor (another member of Rho family) NSC23766 (100 μM), arachidonic acid (a RhoA/ROCK activator, 25–100 μM) and other fatty acids that are not activators of RhoA/ROCK (25–100 μM). Gene expression was analyzed by quantitative real-time PCR, and fibulin protein levels were analyzed by western blotting and ELISA. Simvastatin induced a significant increase in mRNA and protein levels of fibulin-2 at 24 hours of incubation (p<0.05), but it did not affect fibulin-1, -4, and -5 expression. Mevalonate and GGPP were able to reverse simvastatin’s effect, while FPP did not. In addition, Y-27632, but not NSC23766, significantly increased fibulin-2 expression. Furthermore, activation of the RhoA/ROCK pathway with arachidonic acid decreased fibulin-2 mRNA. Simvastatin increased mRNA levels and protein expression of the ECM protein fibulin-2 through a RhoA and Rho-Kinase-mediated pathway. This increase could affect the composition and structure of the ECM.
Collapse
|
16
|
Igoucheva O, Alexeev V, Halabi CM, Adams SM, Stoilov I, Sasaki T, Arita M, Donahue A, Mecham RP, Birk DE, Chu ML. Fibulin-4 E57K Knock-in Mice Recapitulate Cutaneous, Vascular and Skeletal Defects of Recessive Cutis Laxa 1B with both Elastic Fiber and Collagen Fibril Abnormalities. J Biol Chem 2015; 290:21443-59. [PMID: 26178373 DOI: 10.1074/jbc.m115.640425] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 12/13/2022] Open
Abstract
Fibulin-4 is an extracellular matrix protein essential for elastic fiber formation. Frameshift and missense mutations in the fibulin-4 gene (EFEMP2/FBLN4) cause autosomal recessive cutis laxa (ARCL) 1B, characterized by loose skin, aortic aneurysm, arterial tortuosity, lung emphysema, and skeletal abnormalities. Homozygous missense mutations in FBLN4 are a prevalent cause of ARCL 1B. Here we generated a knock-in mouse strain bearing a recurrent fibulin-4 E57K homozygous missense mutation. The mutant mice survived into adulthood and displayed abnormalities in multiple organ systems, including loose skin, bent forelimb, aortic aneurysm, tortuous artery, and pulmonary emphysema. Biochemical studies of dermal fibroblasts showed that fibulin-4 E57K mutant protein was produced but was prone to dimer formation and inefficiently secreted, thereby triggering an endoplasmic reticulum stress response. Immunohistochemistry detected a low level of fibulin-4 E57K protein in the knock-in skin along with altered expression of selected elastic fiber components. Processing of a precursor to mature lysyl oxidase, an enzyme involved in cross-linking of elastin and collagen, was compromised. The knock-in skin had a reduced level of desmosine, an elastin-specific cross-link compound, and ultrastructurally abnormal elastic fibers. Surprisingly, structurally aberrant collagen fibrils and altered organization into fibers were characteristics of the knock-in dermis and forelimb tendons. Type I collagen extracted from the knock-in skin had decreased amounts of covalent intermolecular cross-links, which could contribute to the collagen fibril abnormalities. Our studies provide the first evidence that fibulin-4 plays a role in regulating collagen fibril assembly and offer a preclinical platform for developing treatments for ARCL 1B.
Collapse
Affiliation(s)
- Olga Igoucheva
- From the Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Vitali Alexeev
- From the Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Carmen M Halabi
- the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Sheila M Adams
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida 33612, and
| | - Ivan Stoilov
- the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Takako Sasaki
- the Department of Biochemistry, Faculty of Medicine, Oita University, Yufu, Oita 879-5593, Japan
| | - Machiko Arita
- From the Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Adele Donahue
- From the Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Robert P Mecham
- the Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida 33612, and
| | - Mon-Li Chu
- From the Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107,
| |
Collapse
|
17
|
Clinical utility gene card for: Arterial tortuosity syndrome. Eur J Hum Genet 2015; 23:ejhg2014294. [PMID: 25604859 DOI: 10.1038/ejhg.2014.294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 11/10/2014] [Accepted: 12/09/2014] [Indexed: 11/09/2022] Open
|
18
|
Severe aortopathy due to fibulin-4 deficiency: molecular insights, surgical strategy, and a review of the literature. Eur J Pediatr 2014; 173:671-5. [PMID: 24276535 DOI: 10.1007/s00431-013-2217-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 12/21/2022]
Abstract
UNLABELLED Mutations in the EFEMP2 (alias FBLN4) gene, which encodes the extracellular matrix protein fibulin-4, lead to severe aortopathy with aneurysm formation and vascular tortuosity. The disease phenotype, termed autosomal recessive cutis laxa type 1B (ARCL 1B), is rare among heritable connective tissue diseases but becomes more likely when noting family consanguinity and loose, inelastic skin in the patient. Our patient presented with an intercurrent illness exacerbating upper airway obstruction due to compression from a large aortic aneurysm. Genetic testing eventually revealed the causative mutation. She was initially treated with an angiotensin II receptor blocker and beta-blocker and eventually underwent total thoracic aortic replacement via a two-stage elephant trunk-type procedure. She recovered well and is currently asymptomatic but will require lifetime follow-up due to residual vascular tortuosity and aneurysm risk. CONCLUSION Better understanding of the importance of transforming growth factor beta signaling in the pathophysiology of aortopathies such as ARCL 1B has led to targeted medical therapies. Specific surgical techniques can lead to optimal outcomes in these patients.
Collapse
|
19
|
Papke CL, Yanagisawa H. Fibulin-4 and fibulin-5 in elastogenesis and beyond: Insights from mouse and human studies. Matrix Biol 2014; 37:142-9. [PMID: 24613575 DOI: 10.1016/j.matbio.2014.02.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 02/25/2014] [Accepted: 02/26/2014] [Indexed: 01/03/2023]
Abstract
The fibulin family of extracellular matrix/matricellular proteins is composed of long fibulins (fibulin-1, -2, -6) and short fibulins (fibulin-3, -4, -5, -7) and is involved in protein-protein interaction with the components of basement membrane and extracellular matrix proteins. Fibulin-1, -2, -3, -4, and -5 bind the monomeric form of elastin (tropoelastin) in vitro and fibulin-2, -3, -4, and -5 are shown to be involved in various aspects of elastic fiber development in vivo. In particular, fibulin-4 and -5 are critical molecules for elastic fiber assembly and play a non-redundant role during elastic fiber formation. Despite manifestation of systemic elastic fiber defects in all elastogenic tissues, fibulin-5 null (Fbln5(-/-)) mice have a normal lifespan. In contrast, fibulin-4 null (Fbln4(-/-)) mice die during the perinatal period due to rupture of aortic aneurysms, indicating differential functions of fibulin-4 and fibulin-5 in normal development. In this review, we will update biochemical characterization of fibulin-4 and fibulin-5 and discuss their roles in elastogenesis and outside of elastogenesis based on knowledge obtained from loss-of-function studies in mouse and in human patients with FBLN4 or FBLN5 mutations. Finally, we will evaluate therapeutic options for matrix-related diseases.
Collapse
Affiliation(s)
- Christina L Papke
- Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA
| | - Hiromi Yanagisawa
- Department of Molecular Biology, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148, USA.
| |
Collapse
|