1
|
Ferreira PA. Personal essay of a rookie's journey with Bill Pak and his legacy: tales and perspectives on PI-PLC, NorpA and cyclophilin, NinaA - William L. Pak, PhD., 1932-2023: in memoriam. J Neurogenet 2024; 38:165-174. [PMID: 38913811 DOI: 10.1080/01677063.2024.2366455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
The neurogenetics and vision community recently mourned William L. Pak, PhD, whose pioneering work spearheaded the genetic, electrophysiological, and molecular bases of biological processes underpinning vision. This essay provides a historical background to the daunting challenges and personal experiences that carved the path to seminal findings. It also reflects on the intellectual framework, mentoring philosophy, and inspirational legacy of Bill Pak's research. An emphasis and perspectives are placed on the discoveries and implications to date of the phosphatidylinositol-specific phospholipase C (PI-PLC), NorpA, and the cyclophilin, NinaA of the fruit fly, Drosophila melanogaster, and their respective mammalian homologues, PI-PLCβ4, and cyclophilin-related protein, Ran-binding protein 2 (Ranbp2) in critical biological processes and diseases of photoreceptors and other neurons.
Collapse
Affiliation(s)
- Paulo A Ferreira
- Departments of Ophthalmology and Pathology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
2
|
Zhang Y, Zhao Y, Dai L, Liu Y, Shi Z. Auriculocondylar syndrome 2 caused by a novel PLCB4 variant in a male Chinese neonate: A case report and review of the literature. Mol Genet Genomic Med 2024; 12:e2441. [PMID: 38618928 PMCID: PMC11017300 DOI: 10.1002/mgg3.2441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Auriculocondylar syndrome (ARCND) is a rare congenital craniofacial developmental malformation syndrome of the first and second pharyngeal arches with external ear malformation at the junction between the lobe and helix, micromaxillary malformation, and mandibular condylar hypoplasia. Four subtypes of ARCND have been described so far, that is, ARCND1 (OMIM # 602483), ARCND2 (ARCND2A, OMIM # 614669; ARCND2B, OMIM # 620458), ARCND3 (OMIM # 615706), and ARCND4 (OMIM # 620457). METHODS This study reports a case of ARCND2 resulting from a novel pathogenic variant in the PLCB4 gene, and summarizes PLCB4 gene mutation sites and phenotypes of ARCND2. RESULTS The proband, a 5-day-old male neonate, was referred to our hospital for respiratory distress. Micrognathia, microstomia, distinctive question mark ears, as well as mandibular condyle hypoplasia were identified. Trio-based whole-exome sequencing identified a novel missense variant of NM_001377142.1:c.1928C>T (NP_001364071.1:p.Ser643Phe) in the PLCB4 gene, which was predicted to impair the local structural stability with a result that the protein function might be affected. From a review of the literature, only 36 patients with PLCB4 gene mutations were retrieved. CONCLUSION As with other studies examining familial cases of ARCND2, incomplete penetrance and variable expressivity were observed within different families' heterozygous mutations in PLCB4 gene. Although, motor and intellectual development are in the normal range in the vast majority of patients with ARCND2, long-term follow-up and assessment are still required.
Collapse
Affiliation(s)
- Yongli Zhang
- Department of NeonatologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| | - Yuwei Zhao
- Department of NeonatologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| | - Liying Dai
- Department of NeonatologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| | - Yu Liu
- Department of NeonatologyAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| | - Zifeng Shi
- Radiology Department, Center of Imaging DiagnosisAnhui Provincial Children's Hospital/Children's Hospital of Fudan University (Affiliated Anhui Branch)HefeiAnhuiChina
| |
Collapse
|
3
|
Lin Y, Zhang Y, Ma J, Liu S, Liu Y, Yang C, Zeng C, Luo X. Two Chinese Patients of Auriculocondylar Syndrome 2: A Novel PLCB4 Splicing Variant and 5-Year Follow-up. Cleft Palate Craniofac J 2024:10556656241234575. [PMID: 38414442 DOI: 10.1177/10556656241234575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024] Open
Abstract
OBJECTIVE Auriculocondylar syndrome (ARCND) is a set of rare craniofacial malformations characterized by variable micrognathia, ear malformations, and mandibular condyle hypoplasia, and other accompanying features with phenotypic complexity. ARCND2 caused by pathogenic variants in the PLCB4 gene is a very rare disease with less than 50 patients reported and only 36 different variants of the PLCB4 gene recorded in HGMD. This study aims to enrich the patient resources, clinical data and mutational spectrum of ARCND2. DESIGN Case series study. SETTING Guangzhou Women and Children's Medical Center and Guangdong Women and Children Hospital. PATIENTS Two Chinese patients with ARCND2. MAIN OUTCOME MEASURES Clinical, radiological and molecular findings. RESULTS Both the two patients presented with craniofacial and ear malformations, and feeding difficulties. Whole exome sequencing identified two different variants of the PLCB4 gene in these two patients with a heterozygous allele and a de novo mode of inheritance respectively. Patient 1 carried a known pathogenic c.1861C > T(p.Arg621Cys) missense variant, whereas Patient 2 had a novel c.225 + 1G > A splicing variant. Sanger sequencing confirmed the presence of PLCB4 variants in the proband and absence in the unaffected parents. These two PLCB4 variants were suggested as disease-causing candidates for these two patients. During a 5-year follow-up, Patient 2 gradually manifested crowded teeth, underweight, motor delay and intellectual disability. CONCLUSIONS In this study, we report two Chinese patients with ARCND2, describe their clinical and mutational features, and share a 5-year follow-up of one patient. Our study adds two additional patients to ARCND2, reveals a novel PLCB4 variant, and expands the phenotypic and genotypic spectrum.
Collapse
Affiliation(s)
- Yunting Lin
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Ye Zhang
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Jian Ma
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Shu Liu
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Yongxi Liu
- Department of Radiology, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Chaoxiang Yang
- Department of Radiology, Guangdong Women and Children Hospital, Guangzhou 511442, China
| | - Chunhua Zeng
- Department of Genetics and Endocrinology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Xianqiong Luo
- Department of Pediatric Endocrinology and Inherited Metabolic Diseases, Guangdong Women and Children Hospital, Guangzhou 511442, China
| |
Collapse
|
4
|
El Fizazi K, Bouramtane A, Abbassi M, El Asri YA, Askander O, El Fahime M, Ouldim K, Ridal M, Bouguenouch L. A homozygous missense variant in the PLCB4 gene causes severe phenotype of auriculocondylar syndrome type 2. Am J Med Genet A 2023; 191:2673-2678. [PMID: 37596802 DOI: 10.1002/ajmg.a.63375] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/29/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Auriculocondylar syndrome (ARCND) is a rare craniofacial birth defect characterized by malformations in the mandible and external ear (Question Mark Ear). Genetically, three distinct subtypes of ARCND (ARCND1, ARCND2, and ARCND3) have been identified. ARCND2 is linked to pathogenic variants in the PLCB4 gene (phospholipase C β4). PLCB4 is a key effector of the EDN1-EDNRA pathway involved in craniofacial development via the induction, migration, and maintenance of neural crest cells. ARCND2 is typically inherited in an autosomal dominant pattern, with recessive inheritance pattern being rare. In this study, we report the first homozygous missense variant (NM_000933.4: c.2050G>A: p.(Gly684Arg)) in the PLCB4 gene causing ARCND in a 3-year-old patient with a severe clinical phenotype of the syndrome. The patient presented with typical craniofacial ARCND features, in addition to intestinal transit defect, macropenis, and hearing loss. These findings further delineate the phenotypic spectrum of ARCND associated with autosomal recessive PLCB4 loss of function variants. Notably, our results provide further evidence that these variants can result in a more severe and diverse manifestations of the syndrome. Clinicians should consider the rare features of this condition for better management of patients.
Collapse
Affiliation(s)
- Khawla El Fizazi
- Faculty of Medicine, Pharmacy and Dentistry, Laboratory of Biomedical and Translational Research, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Unit of Medical Genetics and Oncogenetics, Hassan II University Hospital, Fez, Morocco
| | - Abdelhamid Bouramtane
- Unit of Medical Genetics and Oncogenetics, Hassan II University Hospital, Fez, Morocco
| | - Meriame Abbassi
- Unit of Medical Genetics and Oncogenetics, Hassan II University Hospital, Fez, Morocco
| | - Yasser Ali El Asri
- Unit of Medical Genetics and Oncogenetics, Hassan II University Hospital, Fez, Morocco
| | - Omar Askander
- Superior Institute of Biological and Paramedical Sciences, Faculty of Medical Sciences, Mohamed VI Polytechnic University, Benguerir, Morocco
| | - Mustapha El Fahime
- National Center for Scientific and Technological Research, Rabat, Morocco
| | - Karim Ouldim
- Faculty of Medicine, Pharmacy and Dentistry, Laboratory of Biomedical and Translational Research, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Unit of Medical Genetics and Oncogenetics, Hassan II University Hospital, Fez, Morocco
| | - Mohammed Ridal
- Department of Otorhinolaryngology, Hassan II University Hospital, Fez, Morocco
- Faculty of Medicine, Pharmacy and Dentistry, Laboratory of Anatomy, Microsurgery and Experimental Surgery, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Laila Bouguenouch
- Faculty of Medicine, Pharmacy and Dentistry, Laboratory of Biomedical and Translational Research, Sidi Mohamed Ben Abdellah University, Fez, Morocco
- Unit of Medical Genetics and Oncogenetics, Hassan II University Hospital, Fez, Morocco
| |
Collapse
|
5
|
Li Q, Jiang Z, Zhang L, Cai S, Cai Z. Auriculocondylar syndrome: Pathogenesis, clinical manifestations and surgical therapies. J Formos Med Assoc 2023; 122:822-842. [PMID: 37208246 DOI: 10.1016/j.jfma.2023.04.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/09/2023] [Accepted: 04/26/2023] [Indexed: 05/21/2023] Open
Abstract
Auriculocondylar syndrome (ARCND) is a genetic and rare craniofacial condition caused by abnormal development of the first and second pharyngeal arches during the embryonic stage and is characterized by peculiar auricular malformations (question mark ears), mandibular condyle hypoplasia, micrognathia and other less-frequent features. GNAI3, PLCB4 and EDN1 have been identified as pathogenic genes in this syndrome so far, all of which are implicated in the EDN1-EDNRA signal pathway. Therefore, ARCND is genetically classified as ARCND1, ARCND2 and ARCND3 based on the mutations in GNAI3, PLCB4 and EDN1, respectively. ARCND is inherited in an autosomal dominant or recessive mode with significant intra- and interfamilial phenotypic variation and incomplete penetrance, rendering its diagnosis difficult and therapies individualized. To raise clinicians' awareness of the rare syndrome, we focused on the currently known pathogenesis, pathogenic genes, clinical manifestations and surgical therapies in this review.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Zhiyuan Jiang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Liyuan Zhang
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Siyuan Cai
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| | - Zhen Cai
- Department of Plastic Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China.
| |
Collapse
|
6
|
Kanemaru K, Nakamura Y. Activation Mechanisms and Diverse Functions of Mammalian Phospholipase C. Biomolecules 2023; 13:915. [PMID: 37371495 DOI: 10.3390/biom13060915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Phospholipase C (PLC) plays pivotal roles in regulating various cellular functions by metabolizing phosphatidylinositol 4,5-bisphosphate in the plasma membrane. This process generates two second messengers, inositol 1,4,5-trisphosphate and diacylglycerol, which respectively regulate the intracellular Ca2+ levels and protein kinase C activation. In mammals, six classes of typical PLC have been identified and classified based on their structure and activation mechanisms. They all share X and Y domains, which are responsible for enzymatic activity, as well as subtype-specific domains. Furthermore, in addition to typical PLC, atypical PLC with unique structures solely harboring an X domain has been recently discovered. Collectively, seven classes and 16 isozymes of mammalian PLC are known to date. Dysregulation of PLC activity has been implicated in several pathophysiological conditions, including cancer, cardiovascular diseases, and neurological disorders. Therefore, identification of new drug targets that can selectively modulate PLC activity is important. The present review focuses on the structures, activation mechanisms, and physiological functions of mammalian PLC.
Collapse
Affiliation(s)
- Kaori Kanemaru
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Yoshikazu Nakamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| |
Collapse
|
7
|
Vegas N, Demir Z, Gordon CT, Breton S, Romanelli Tavares V, Moisset H, Zechi-Ceide R, Kokitsu-Nakata NM, Kido Y, Marlin S, Gherbi Halem S, Meerschaut I, Callewaert B, Chung B, Revencu N, Lehalle D, Petit F, Propst EJ, Papsin BC, Phillips JH, Jakobsen L, Le Tanno P, Thévenon J, McGaughran J, Gerkes EH, Leoni C, Kroisel P, Yang Tan T, Henderson A, Terhal P, Basel-Salmon L, Alkindy A, White SM, Passos Bueno MR, Pingault V, De Pontual L, Amiel J. Further delineation of Auriculocondylar syndrome based on 14 novel cases and reassessment of 25 published cases. Hum Mutat 2022; 43:582-594. [PMID: 35170830 DOI: 10.1002/humu.24349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
Auriculocondylar syndrome (ACS) is a rare craniofacial disorder characterized by mandibular hypoplasia and an auricular defect at the junction between the lobe and helix, known as a "Question Mark Ear" (QME). Several additional features, originating from the first and second branchial arches and other tissues, have also been reported. ACS is genetically heterogeneous with autosomal dominant and recessive modes of inheritance. The mutations identified to date are presumed to dysregulate the endothelin 1 signalling pathway. Here we describe 14 novel cases and reassess 25 published cases of ACS through a questionnaire for systematic data collection. All patients harbour mutation(s) in PLCB4, GNAI3 or EDN1. This series of patients contributes to the characterization of additional features occasionally associated with ACS such as respiratory, costal, neurodevelopmental and genital anomalies, and provides management and monitoring recommendations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nancy Vegas
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France
| | - Zeynep Demir
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Unité d'hépatologie pédiatrie et transplantation, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France
| | - Sylvain Breton
- Service d'imagerie pédiatrie, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Vanessa Romanelli Tavares
- Centro de Pesquisas do Genoma Humano e Celulas Tronco, Departamento de Genetica e Biología Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Hugo Moisset
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France
| | - Roseli Zechi-Ceide
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao Paulo, Bauru, Brazil
| | - Nancy M Kokitsu-Nakata
- Department of Clinical Genetics, Hospital for Rehabilitation of Craniofacial Anomalies, University of Sao Paulo, Bauru, Brazil
| | - Yasuhiro Kido
- Department of Pediatrics, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| | - Sandrine Marlin
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Reference center for genetic hearing loss, Fédération de Génétique et de Médecine Génomique, Hôpital Necker, APHP.CUP, Paris, France
| | - Souad Gherbi Halem
- Reference center for genetic hearing loss, Fédération de Génétique et de Médecine Génomique, Hôpital Necker, APHP.CUP, Paris, France
| | - Ilse Meerschaut
- Center for Medical Genetics, Ghent University Hospital, and Department of Biomolecular Medicine, Ghent University, Belgium
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, and Department of Biomolecular Medicine, Ghent University, Belgium
| | - Brian Chung
- Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong
| | - Nicole Revencu
- Center for Human Genetics, Cliniques universitaires Saint Luc, Université catholique de Louvain, Brussels, Belgium
| | - Daphné Lehalle
- Centre de génétique- centre de référence des maladies rares, anomalies du développement et syndrome malformatifs, Centre Hospitalo-Universitaire de Dijon, Bourgogne, France.,UF de Génétique Médicale, Département de Génétique, Groupe Hospitalier Pitié-Salpêtrière, APHP Sorbonne Université, Paris, France
| | - Florence Petit
- CHU Lille, clinique de Génétique Guy Fontaine, F-59000, Lille, France
| | - Evan J Propst
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Canada
| | - Blake C Papsin
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Canada
| | - John H Phillips
- Department of Otolaryngology-Head and Neck Surgery, The Hospital for Sick Children, University of Toronto, Canada
| | - Linda Jakobsen
- Department of Plastic Surgery, Copenhagen University Hospital, Herlev, Denmark
| | - Pauline Le Tanno
- Service de Génétique et Université Grenoble-Alpes, Grenoble, France
| | - Julien Thévenon
- Service de Génétique et Université Grenoble-Alpes, Grenoble, France
| | - Julie McGaughran
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Herston and the University of Queensland, St Lucia, Brisbane, Australia
| | - Erica H Gerkes
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico A. Gemelli, IRCCS, Italy
| | - Peter Kroisel
- Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - Tiong Yang Tan
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Alex Henderson
- Northern Genetics Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Paulien Terhal
- Department of Medical Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Lina Basel-Salmon
- Pediatric Genetics, Schneider Children's Medical Center of Israel and Raphael Recanati Genetics Institute, Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Adila Alkindy
- Department of Genetics, Sultan Qaboos University Hospital, Muscat, Oman
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Children's Hospital, and Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Maria Rita Passos Bueno
- Centro de Pesquisas do Genoma Humano e Celulas Tronco, Departamento de Genetica e Biología Evolutiva, Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Véronique Pingault
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Fédération de Génétique et de Médecine Génomique, Hôpital Necker, APHP.CUP, Paris, France
| | - Loïc De Pontual
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Service de pédiatrie, Hôpital Jean Verdier, Bondy, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Université de Paris, Institut Imagine, Paris, France.,Fédération de Génétique et de Médecine Génomique, Hôpital Necker, APHP.CUP, Paris, France
| |
Collapse
|
8
|
Romanelli Tavares VL, Guimarães-Ramos SL, Zhou Y, Masotti C, Ezquina S, Moreira DDP, Buermans H, Freitas RS, Den Dunnen JT, Twigg SRF, Passos-Bueno MR. New locus underlying auriculocondylar syndrome (ARCND): 430 kb duplication involving TWIST1 regulatory elements. J Med Genet 2021; 59:895-905. [PMID: 34750192 PMCID: PMC9411924 DOI: 10.1136/jmedgenet-2021-107825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 09/29/2021] [Indexed: 11/13/2022]
Abstract
Background Auriculocondylar syndrome (ARCND) is a rare genetic disease that affects structures derived from the first and second pharyngeal arches, mainly resulting in micrognathia and auricular malformations. To date, pathogenic variants have been identified in three genes involved in the EDN1-DLX5/6 pathway (PLCB4, GNAI3 and EDN1) and some cases remain unsolved. Here we studied a large unsolved four-generation family. Methods We performed linkage analysis, resequencing and Capture-C to investigate the causative variant of this family. To test the pathogenicity of the CNV found, we modelled the disease in patient craniofacial progenitor cells, including induced pluripotent cell (iPSC)-derived neural crest and mesenchymal cells. Results This study highlights a fourth locus causative of ARCND, represented by a tandem duplication of 430 kb in a candidate region on chromosome 7 defined by linkage analysis. This duplication segregates with the disease in the family (LOD score=2.88) and includes HDAC9, which is located over 200 kb telomeric to the top candidate gene TWIST1. Notably, Capture-C analysis revealed multiple cis interactions between the TWIST1 promoter and possible regulatory elements within the duplicated region. Modelling of the disease revealed an increased expression of HDAC9 and its neighbouring gene, TWIST1, in neural crest cells. We also identified decreased migration of iPSC-derived neural crest cells together with dysregulation of osteogenic differentiation in iPSC-affected mesenchymal stem cells. Conclusion Our findings support the hypothesis that the 430 kb duplication is causative of the ARCND phenotype in this family and that deregulation of TWIST1 expression during craniofacial development can contribute to the phenotype.
Collapse
Affiliation(s)
| | | | - Yan Zhou
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Cibele Masotti
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil.,Molecular Oncology Center, Hospital Sírio-Libanês, Sao Paulo, Brazil
| | - Suzana Ezquina
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil.,Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Danielle de Paula Moreira
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil
| | - Henk Buermans
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Renato S Freitas
- Centro de Atendimento Integral ao Fissurado Lábio Palatal, Curitiba, Brazil
| | - Johan T Den Dunnen
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephen R F Twigg
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Maria Rita Passos-Bueno
- Genética e Biologia Evolutiva, Universidade de São Paulo Instituto de Biociências, Sao Paulo, Brazil
| |
Collapse
|
9
|
Liu Z, Sun H, Dai J, Xue X, Sun J, Wang X. ITPR1 Mutation Contributes to Hemifacial Microsomia Spectrum. Front Genet 2021; 12:616329. [PMID: 33747042 PMCID: PMC7971309 DOI: 10.3389/fgene.2021.616329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Hemifacial microsomia (HM) is a craniofacial congenital defect involving the first and second branchial arch, mainly characterized by ocular, ear, maxilla-zygoma complex, mandible, and facial nerve malformation. HM follows autosomal dominant inheritance. Whole-exome sequencing of a family revealed a missense mutation in a highly conserved domain of ITPR1. ITPR1 is a calcium ion channel. By studying ITPR1's expression pattern, we found that ITPR1 participated in craniofacial development, especially the organs that corresponded to the phenotype of HM. In zebrafish, itpr1b, which is homologous to human ITPR1, is closely related to craniofacial bone formation. The knocking down of itpr1b in zebrafish could lead to a remarkable decrease in craniofacial skeleton formation. qRT-PCR suggested that knockdown of itpr1b could increase the expression of plcb4 while decreasing the mRNA level of Dlx5/6. Our findings highlighted ITPR1's role in craniofacial formation for the first time and suggested that ITPR1 mutation contributes to human HM.
Collapse
Affiliation(s)
- Zhixu Liu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji University, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hao Sun
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiewen Dai
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiaochen Xue
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jian Sun
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xudong Wang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
10
|
Katan M, Cockcroft S. Phospholipase C families: Common themes and versatility in physiology and pathology. Prog Lipid Res 2020; 80:101065. [PMID: 32966869 DOI: 10.1016/j.plipres.2020.101065] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Phosphoinositide-specific phospholipase Cs (PLCs) are expressed in all mammalian cells and play critical roles in signal transduction. To obtain a comprehensive understanding of these enzymes in physiology and pathology, a detailed structural, biochemical, cell biological and genetic information is required. In this review, we cover all these aspects to summarize current knowledge of the entire superfamily. The families of PLCs have expanded from 13 enzymes to 16 with the identification of the atypical PLCs in the human genome. Recent structural insights highlight the common themes that cover not only the substrate catalysis but also the mechanisms of activation. This involves the release of autoinhibitory interactions that, in the absence of stimulation, maintain classical PLC enzymes in their inactive forms. Studies of individual PLCs provide a rich repertoire of PLC function in different physiologies. Furthermore, the genetic studies discovered numerous mutated and rare variants of PLC enzymes and their link to human disease development, greatly expanding our understanding of their roles in diverse pathologies. Notably, substantial evidence now supports involvement of different PLC isoforms in the development of specific cancer types, immune disorders and neurodegeneration. These advances will stimulate the generation of new drugs that target PLC enzymes, and will therefore open new possibilities for treatment of a number of diseases where current therapies remain ineffective.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
11
|
Bukowska-Olech E, Sowińska-Seidler A, Łojek F, Popiel D, Walczak-Sztulpa J, Jamsheer A. Further phenotypic delineation of the auriculocondylar syndrome type 2 with literature review. J Appl Genet 2020; 62:107-113. [PMID: 33131036 PMCID: PMC7822771 DOI: 10.1007/s13353-020-00591-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 11/28/2022]
Abstract
Auriculocondylar syndrome (ACS) is an ultra-rare disorder that arises from developmental defects of the first and second pharyngeal arches. Three subtypes of ACS have been described so far, i.e., ACS1 (MIM: 602483), ACS2 (MIM: 600810), and ACS3 (MIM: 131240). The majority of patients, however, are affected by ACS2, which results from the mutations in the PLCB4 gene. Herein, we have described an 8-year-old male patient presenting with ACS2 and summarized the molecular and phenotypic spectrum of the syndrome. We have also compared the clinical features of our case to three other previously described cases (one sporadic and two familial) harboring the same heterozygous missense variant c.1862G>A, p.Arg621His in the PLCB4 gene. The mutation was detected using whole-exome sequencing (WES). Due to low coverage of WES and suspicion of somatic mosaicism, the variant was additionally reassessed by deep targeted next-generation sequencing panel of genes related to the craniofacial disorders, and next confirmed by Sanger sequencing. ACS2 presents high intra- and interfamilial phenotypic heterogeneity that impedes reaching an exact clinical and molecular diagnosis. Thus, describing additional cases, carrying even the known mutation, but resulting in variable phenotypes, is essential for better understanding of such orphan Mendelian diseases.
Collapse
Affiliation(s)
- Ewelina Bukowska-Olech
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8 Street, 60-806, Poznan, Poland
| | - Anna Sowińska-Seidler
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8 Street, 60-806, Poznan, Poland
| | - Filip Łojek
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8 Street, 60-806, Poznan, Poland
| | - Delfina Popiel
- Centers for Medical Genetics GENESIS, Dąbrowskiego 77A Street, 60-529, Poznan, Poland
| | - Joanna Walczak-Sztulpa
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8 Street, 60-806, Poznan, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Rokietnicka 8 Street, 60-806, Poznan, Poland. .,Centers for Medical Genetics GENESIS, Dąbrowskiego 77A Street, 60-529, Poznan, Poland.
| |
Collapse
|
12
|
Neurocristopathies: New insights 150 years after the neural crest discovery. Dev Biol 2018; 444 Suppl 1:S110-S143. [PMID: 29802835 DOI: 10.1016/j.ydbio.2018.05.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 12/12/2022]
Abstract
The neural crest (NC) is a transient, multipotent and migratory cell population that generates an astonishingly diverse array of cell types during vertebrate development. These cells, which originate from the ectoderm in a region lateral to the neural plate in the neural fold, give rise to neurons, glia, melanocytes, chondrocytes, smooth muscle cells, odontoblasts and neuroendocrine cells, among others. Neurocristopathies (NCP) are a class of pathologies occurring in vertebrates, especially in humans that result from the abnormal specification, migration, differentiation or death of neural crest cells during embryonic development. Various pigment, skin, thyroid and hearing disorders, craniofacial and heart abnormalities, malfunctions of the digestive tract and tumors can also be considered as neurocristopathies. In this review we revisit the current classification and propose a new way to classify NCP based on the embryonic origin of the affected tissues, on recent findings regarding the molecular mechanisms that drive NC formation, and on the increased complexity of current molecular embryology techniques.
Collapse
|
13
|
Ben-Salem S, Robbins SM, Sobreira NLM, Lyon A, Al-Shamsi AM, Islam BK, Akawi NA, John A, Thachillath P, Hamed SA, Valle D, Ali BR, Al-Gazali L. Defect in phosphoinositide signalling through a homozygous variant in PLCB3 causes a new form of spondylometaphyseal dysplasia with corneal dystrophy. J Med Genet 2018; 55:122-130. [PMID: 29122926 PMCID: PMC8215682 DOI: 10.1136/jmedgenet-2017-104827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/19/2017] [Accepted: 10/06/2017] [Indexed: 02/05/2023]
Abstract
BACKGROUND Bone dysplasias are a large group of disorders affecting the growth and structure of the skeletal system. METHODS In the present study, we report the clinical and molecular delineation of a new form of syndromic autosomal recessive spondylometaphyseal dysplasia (SMD) in two Emirati first cousins. They displayed postnatal growth deficiency causing profound limb shortening with proximal and distal segments involvement, narrow chest, radiological abnormalities involving the spine, pelvis and metaphyses, corneal clouding and intellectual disability. Whole genome homozygosity mapping localised the genetic cause to 11q12.1-q13.1, a region spanning 19.32 Mb with ~490 genes. Using whole exome sequencing, we identified four novel homozygous variants within the shared block of homozygosity. Pathogenic variants in genes involved in phospholipid metabolism, such as PLCB4 and PCYT1A, are known to cause bone dysplasia with or without eye anomalies, which led us to select PLCB3 as a strong candidate. This gene encodes phospholipase C β 3, an enzyme that converts phosphatidylinositol 4,5 bisphosphate (PIP2) to inositol 1,4,5 triphosphate (IP3) and diacylglycerol. RESULTS The identified variant (c.2632G>T) substitutes a serine for a highly conserved alanine within the Ha2' element of the proximal C-terminal domain. This disrupts binding of the Ha2' element to the catalytic core and destabilises PLCB3. Here we show that this hypomorphic variant leads to elevated levels of PIP2 in patient fibroblasts, causing disorganisation of the F-actin cytoskeleton. CONCLUSIONS Our results connect a homozygous loss of function variant in PLCB3 with a new SMD associated with corneal dystrophy and developmental delay (SMDCD).
Collapse
Affiliation(s)
- Salma Ben-Salem
- Department of Pathology, College of Medicine and Heath Sciences, University Al-Ain, Al Ain, AbuDhabi, United Arab Emirates
| | - Sarah M Robbins
- Human genetics and Molecular Biology, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nara LM Sobreira
- Human genetics and Molecular Biology, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Angeline Lyon
- Chemistry and Biological Sciences, West Lafayette, USA
| | - Aisha M Al-Shamsi
- Department of Paediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Barira K Islam
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Nadia A Akawi
- Division of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, Oxfordshire, UK
| | - Anne John
- Department of Pathology, College of Medicine and Heath Sciences, University Al-Ain, Al Ain, AbuDhabi, United Arab Emirates
| | - Pramathan Thachillath
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sania Al Hamed
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - David Valle
- Human genetics and Molecular Biology, Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Heath Sciences, University Al-Ain, Al Ain, AbuDhabi, United Arab Emirates
| | - Lihadh Al-Gazali
- Department of Paediatrics, College of Medicine and Heath Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
14
|
Romanelli Tavares VL, Zechi-Ceide RM, Bertola DR, Gordon CT, Ferreira SG, Hsia GSP, Yamamoto GL, Ezquina SAM, Kokitsu-Nakata NM, Vendramini-Pittoli S, Freitas RS, Souza J, Raposo-Amaral CA, Zatz M, Amiel J, Guion-Almeida ML, Passos-Bueno MR. Targeted molecular investigation in patients within the clinical spectrum of Auriculocondylar syndrome. Am J Med Genet A 2017; 173:938-945. [PMID: 28328130 DOI: 10.1002/ajmg.a.38101] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/05/2016] [Indexed: 11/10/2022]
Abstract
Auriculocondylar syndrome, mainly characterized by micrognathia, small mandibular condyle, and question mark ears, is a rare disease segregating in an autosomal dominant pattern in the majority of the families reported in the literature. So far, pathogenic variants in PLCB4, GNAI3, and EDN1 have been associated with this syndrome. It is caused by a developmental abnormality of the first and second pharyngeal arches and it is associated with great inter- and intra-familial clinical variability, with some patients not presenting the typical phenotype of the syndrome. Moreover, only a few patients of each molecular subtype of Auriculocondylar syndrome have been reported and sequenced. Therefore, the spectrum of clinical and genetic variability is still not defined. In order to address these questions, we searched for alterations in PLCB4, GNAI3, and EDN1 in patients with typical Auriculocondylar syndrome (n = 3), Pierre Robin sequence-plus (n = 3), micrognathia with additional craniofacial malformations (n = 4), or non-specific auricular dysplasia (n = 1), which could represent subtypes of Auriculocondylar syndrome. We found novel pathogenic variants in PLCB4 only in two of three index patients with typical Auriculocondylar syndrome. We also performed a detailed comparative analysis of the patients presented in this study with those previously published, which showed that the pattern of auricular abnormality and full cheeks were associated with molecularly characterized individuals with Auriculocondylar syndrome. Finally, our data contribute to a better definition of a set of parameters for clinical classification that may be used as a guidance for geneticists ordering molecular testing for Auriculocondylar syndrome. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vanessa L Romanelli Tavares
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Roseli M Zechi-Ceide
- Departamento de Genética Clínica, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo (HRAC-USP), Bauru, São Paulo, Brazil
| | - Debora R Bertola
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil.,Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, São Paulo, Brazil
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U11163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France
| | - Simone G Ferreira
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Gabriella S P Hsia
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Guilherme L Yamamoto
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil.,Instituto da Criança do Hospital das Clínicas da Faculdade de Medicina da USP, São Paulo, São Paulo, Brazil
| | - Suzana A M Ezquina
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Nancy M Kokitsu-Nakata
- Departamento de Genética Clínica, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo (HRAC-USP), Bauru, São Paulo, Brazil
| | - Siulan Vendramini-Pittoli
- Departamento de Genética Clínica, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo (HRAC-USP), Bauru, São Paulo, Brazil
| | - Renato S Freitas
- Centro de Atendimento Integral ao Fissurado Lábio Palatal (CAIF), Curitiba, Paraná, Brazil
| | - Josiane Souza
- Centro de Atendimento Integral ao Fissurado Lábio Palatal (CAIF), Curitiba, Paraná, Brazil
| | - Cesar A Raposo-Amaral
- Hospital de Crânio e Face, Sociedade Brasileira de Pesquisa e Assistência para Reabilitação Craniofacial (SOBRAPAR), Campinas, São Paulo, Brazil
| | - Mayana Zatz
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Congenital Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) U11163, Institut Imagine, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Institut Imagine, Paris, France.,Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Maria L Guion-Almeida
- Departamento de Genética Clínica, Hospital de Reabilitação de Anomalias Craniofaciais, Universidade de São Paulo (HRAC-USP), Bauru, São Paulo, Brazil
| | - Maria Rita Passos-Bueno
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Al-Qattan MM, Al-Qattan NM. Question mark ear deformity-revisited. EUROPEAN JOURNAL OF PLASTIC SURGERY 2017; 40:149-152. [PMID: 28615800 PMCID: PMC5434133 DOI: 10.1007/s00238-016-1260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/15/2016] [Indexed: 11/07/2022]
Abstract
We report on two unusual cases of Cosman (question mark) ear; both required modifications of the standard techniques for surgical correction. The first patient presented with a unilateral question mark ear and concurrent ear prominence and bulging of the cartilage of the anti-helix. Simultaneous correction was done using a combination of cartilage suturing/scoring (for the prominence and the cartilage bulge) as well as Al-Qattan’s “v-y skin flap-cartilage graft-z-plasty” technique (for the correction of the ear cleft deformity). The second patient had aurico-condylar syndrome with bilateral ear deformity and complete separation of ear lobes from the external ear. Staged transposition followed by Al-Qattan’s technique resulted in a satisfactory outcome. Level of evidence: Level V, therapeutic study.
Collapse
Affiliation(s)
| | - Noha M Al-Qattan
- Division of Plastic Surgery, National (Care) Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Asafo-Agyei SB, Ameyaw E, Chanoine JP, Nguah SB. Normative penile anthropometry in term newborns in Kumasi, Ghana: a cross-sectional prospective study. INTERNATIONAL JOURNAL OF PEDIATRIC ENDOCRINOLOGY 2017; 2017:2. [PMID: 28149308 PMCID: PMC5270225 DOI: 10.1186/s13633-017-0042-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/19/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Genital measurements are a useful adjunct in the early detection of various endocrine conditions including hypopituitarism and disorders of sexual differentiation. Standards for genital sizes have been published but racial/ethnic differences exist. This study was done to establish norms for genital sizes in term Ghanaian male newborns. METHODS This was a cross-sectional study of all apparently well full-term newborns of postnatal age < 48 h and birth weight between 2.5 and 4.0 kg delivered at Komfo Anokye Teaching Hospital within the study period. Anthropometric and genital parameters were documented for study subjects as well as parental socio-demographic indices. RESULTS A total of 644 male newborns were recruited between May and September 2014. The mean penile length (MPL) was 3.3 ± 0.5 cm and the mean penile width (MPW) was 1.05 ± 0.1 cm. An inverse relationship was found between maternal age and MPL (correlation coefficient -0.062, 95% CI -0.121 to -0.002; p = 0.04). MPL was also significantly different (p = 0.04) by mode of delivery, with babies delivered by caesarean section having the lowest MPL. MPL correlated positively with both gestational age (p = 0.04) and birth length (p < 0.001), while MPW correlated proportionally with birth weight and length (p < 0.001 for both). CONCLUSIONS Using the conventional definition of micropenis as stretched penile length (SPL) < 2.5 standard deviation (SD) below the mean and macropenis as an SPL > 2.5 SD, a Ghanaian term newborn may warrant investigation if he has an MPL < 2.1 cm or > 4.4 cm.
Collapse
Affiliation(s)
| | - Emmanuel Ameyaw
- Department of Child Health, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| | - Jean-Pierre Chanoine
- Endocrinology and Diabetes Unit, British Columbia's Children's Hospital, University of British Columbia, Vancouver, BC Canada
| | - Samuel Blay Nguah
- Department of Child Health, Komfo Anokye Teaching Hospital, Kumasi, Ghana
| |
Collapse
|
17
|
Smeeton J, Askary A, Crump JG. Building and maintaining joints by exquisite local control of cell fate. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:10.1002/wdev.245. [PMID: 27581688 PMCID: PMC5877473 DOI: 10.1002/wdev.245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 12/18/2022]
Abstract
We owe the flexibility of our bodies to sophisticated articulations between bones. Establishment of these joints requires the integration of multiple tissue types: permanent cartilage that cushions the articulating bones, synovial membranes that enclose a lubricating fluid-filled cavity, and a fibrous capsule and ligaments that provide structural support. Positioning the prospective joint region involves establishment of an "interzone" region of joint progenitor cells within a nascent cartilage condensation, which is achieved through the interplay of activators and inhibitors of multiple developmental signaling pathways. Within the interzone, tight regulation of BMP and TGFβ signaling prevents the hypertrophic maturation of joint chondrocytes, in part through downstream transcriptional repressors and epigenetic modulators. Synovial cells then acquire further specializations through expression of genes that promote lubrication, as well as the formation of complex structures such as cavities and entheses. Whereas genetic investigations in mice and humans have uncovered a number of regulators of joint development and homeostasis, recent work in zebrafish offers a complementary reductionist approach toward understanding joint positioning and the regulation of chondrocyte fate at joints. The complexity of building and maintaining joints may help explain why there are still few treatments for osteoarthritis, one of the most common diseases in the human population. A major challenge will be to understand how developmental abnormalities in joint structure, as well as postnatal roles for developmental genes in joint homeostasis, contribute to birth defects and degenerative diseases of joints. WIREs Dev Biol 2017, 6:e245. doi: 10.1002/wdev.245 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Joanna Smeeton
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Amjad Askary
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - J. Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
18
|
Marivin A, Leyme A, Parag-Sharma K, DiGiacomo V, Cheung AY, Nguyen LT, Dominguez I, Garcia-Marcos M. Dominant-negative Gα subunits are a mechanism of dysregulated heterotrimeric G protein signaling in human disease. Sci Signal 2016; 9:ra37. [PMID: 27072656 DOI: 10.1126/scisignal.aad2429] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Auriculo-condylar syndrome (ACS), a rare condition that impairs craniofacial development, is caused by mutations in a G protein-coupled receptor (GPCR) signaling pathway. In mice, disruption of signaling by the endothelin type A receptor (ET(A)R), which is mediated by the G protein (heterotrimeric guanine nucleotide-binding protein) subunit Gα(q/11) and subsequently phospholipase C (PLC), impairs neural crest cell differentiation that is required for normal craniofacial development. Some ACS patients have mutations inGNAI3, which encodes Gα(i3), but it is unknown whether this G protein has a role within the ET(A)R pathway. We used a Xenopus model of vertebrate development, in vitro biochemistry, and biosensors of G protein activity in mammalian cells to systematically characterize the phenotype and function of all known ACS-associated Gα(i3) mutants. We found that ACS-associated mutations in GNAI3 produce dominant-negative Gα(i3) mutant proteins that couple to ET(A)R but cannot bind and hydrolyze guanosine triphosphate, resulting in the prevention of endothelin-mediated activation of Gα(q/11) and PLC. Thus, ACS is caused by functionally dominant-negative mutations in a heterotrimeric G protein subunit.
Collapse
Affiliation(s)
- Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anthony Leyme
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Kshitij Parag-Sharma
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Vincent DiGiacomo
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Anthony Y Cheung
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Lien T Nguyen
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Isabel Dominguez
- Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
19
|
Leoni C, Gordon CT, Della Marca G, Giorgio V, Onesimo R, Perrino F, Cianfoni A, Cerchiari A, Amiel J, Zampino G. Respiratory and gastrointestinal dysfunctions associated with auriculo-condylar syndrome and a homozygous PLCB4 loss-of-function mutation. Am J Med Genet A 2016; 170:1471-8. [PMID: 27007857 DOI: 10.1002/ajmg.a.37625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/26/2016] [Indexed: 11/08/2022]
Abstract
Auriculo-Condylar Syndrome (ACS) is a craniofacial malformation syndrome characterized by external ear anomalies, hypoplasia of the mandibular condyle, temporomandibular joint abnormalities, micrognathia, and microstomia. Glossoptosis, masticatory abnormalities, orthodontic problems, and malocclusion occur in a majority of affected subjects. The clinical diagnosis is usually suggested by the pathognomonic ear appearance ("question mark ear"), consisting of a variable degree of clefting between the helix and earlobe. The genetic mechanisms underlying ACS have recently been identified. Both autosomal dominant and recessive inheritance of mutations in phospholipase C, beta 4 (PLCB4) and endothelin 1 (EDN1) have been reported along with autosomal dominant mutations in guanine nucleotide-binding protein (G protein) α inhibiting activity polypeptide 3 (GNAI3). We report 6 years of follow-up of a child with a clinical phenotype consistent with ACS due to a homozygous frameshift mutation in PLCB4. The baby presented feeding difficulties associated with failure to thrive and a complex sleep-related respiratory disorder, characterized by central and obstructive apnoeas. Our observations of this case further delineate the phenotype of ACS associated with autosomal recessive PLCB4 loss-of-function mutations, underscoring gastrointestinal dysfunction and severe sleep-related breathing abnormalities as additional features when compared to patients with heterozygous mutations with a presumed dominant negative effect. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Chiara Leoni
- Department of Pediatrics, Center for Rare Diseases, Catholic University, Rome, Italy
| | - Christopher T Gordon
- INSERM UMR 1163 and Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France
| | | | - Valentina Giorgio
- Department of Pediatrics, Center for Rare Diseases, Catholic University, Rome, Italy
| | - Roberta Onesimo
- Department of Pediatrics, Center for Rare Diseases, Catholic University, Rome, Italy
| | - Francesca Perrino
- Department of Pediatrics, Center for Rare Diseases, Catholic University, Rome, Italy
| | | | - Antonella Cerchiari
- Department of Neuroscience and Neurorehabilitation, Speech Language Pathology Unit, Bambino Gesù Children's Hospital, Rome, Italy
| | - Jeanne Amiel
- INSERM UMR 1163 and Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France.,APHP, Hôpital Necker-Enfants Malades, Paris, France
| | - Giuseppe Zampino
- Department of Pediatrics, Center for Rare Diseases, Catholic University, Rome, Italy
| |
Collapse
|
20
|
Yan YB, Liang SX, Shen J, Zhang JC, Zhang Y. Current concepts in the pathogenesis of traumatic temporomandibular joint ankylosis. Head Face Med 2014; 10:35. [PMID: 25189735 PMCID: PMC4158390 DOI: 10.1186/1746-160x-10-35] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 08/25/2014] [Indexed: 01/10/2023] Open
Abstract
Traumatic temporomandibular joint (TMJ) ankylosis can be classified into fibrous, fibro-osseous and bony ankylosis. It is still a huge challenge for oral and maxillofacial surgeons due to the technical difficulty and high incidence of recurrence. The poor outcome of disease may be partially attributed to the limited understanding of its pathogenesis. The purpose of this article was to comprehensively review the literature and summarise results from both human and animal studies related to the genesis of TMJ ankylosis.
Collapse
Affiliation(s)
- Ying-Bin Yan
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China
| | - Su-Xia Liang
- Department of Operative Dentistry and Endodontics, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China
| | - Jun Shen
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China
| | - Jian-Cheng Zhang
- Department of Oral and Maxillofacial Surgery, Tianjin Stomatological Hospital, 75 Dagu Road, Heping District, Tianjin 300041, PR China
| | - Yi Zhang
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Nandajie, Haidian District, Beijing 100081, PR China
| |
Collapse
|
21
|
Dong R, Du J, Wang L, Wang J, Ding G, Wang S, Fan Z. Comparison of long noncoding RNA and mRNA expression profiles in mesenchymal stem cells derived from human periodontal ligament and bone marrow. BIOMED RESEARCH INTERNATIONAL 2014; 2014:317853. [PMID: 24790996 PMCID: PMC3985196 DOI: 10.1155/2014/317853] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/16/2014] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) in different anatomic locations possess diverse biological activities. Maintaining the pluripotent state and differentiation depend on the expression and regulation of thousands of genes, but it remains unclear which molecular mechanisms underlie MSC diversity. Thus, potential MSC applications are restricted. Long noncoding RNAs (lncRNAs) are implicated in the complex molecular circuitry of cellular processes. We investigated differences in lncRNA and mRNA expression profiles between bone marrow stem cells (BMSCs) and periodontal ligament stem cells (PDLSCs) with lncRNA microarray assays and bioinformatics analysis. In PDLSCs, numerous lncRNAs were significantly upregulated (n = 457) or downregulated (n = 513) compared to BMSCs. Furthermore, 1,578 mRNAs were differentially expressed. These genes implicated cellular pathways that may be associated with MSC characteristics, including apoptosis, MAPK, cell cycle, and Wnt signaling pathway. Signal-net analysis indicated that phospholipase C beta 4, filamin B beta, calcium/calmodulin-dependent protein kinase II gamma, and the ionotropic glutamate receptor, AMPA 1, had the highest betweenness centrality among significant genes in the differential gene profile network. A comparison between the coding-noncoding gene coexpression networks of PDLSCs and BMSCs identified chemokine (C-X-C motif) ligand 12 as a core regulatory factor in MSC biology. These results provided insight into the mechanisms underlying MSC biology.
Collapse
Affiliation(s)
- Rui Dong
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, China
| | - Juan Du
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, China
| | - Liping Wang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, China
| | - Jinsong Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, China
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing 100069, China
| | - Gang Ding
- Department of Stomatology, Yidu Central Hospital, Weifang Medical University, No. 4138 Linglong Mountain South Road, Qinzhou 262500, China
| | - Songlin Wang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, China
- Department of Biochemistry and Molecular Biology, Capital Medical University School of Basic Medical Sciences, Beijing 100069, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, China
| |
Collapse
|
22
|
Gordon C, Petit F, Kroisel P, Jakobsen L, Zechi-Ceide R, Oufadem M, Bole-Feysot C, Pruvost S, Masson C, Tores F, Hieu T, Nitschké P, Lindholm P, Pellerin P, Guion-Almeida M, Kokitsu-Nakata N, Vendramini-Pittoli S, Munnich A, Lyonnet S, Holder-Espinasse M, Amiel J. Mutations in endothelin 1 cause recessive auriculocondylar syndrome and dominant isolated question-mark ears. Am J Hum Genet 2013; 93:1118-25. [PMID: 24268655 DOI: 10.1016/j.ajhg.2013.10.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/11/2013] [Accepted: 10/22/2013] [Indexed: 10/26/2022] Open
Abstract
Auriculocondylar syndrome (ACS) is a rare craniofacial disorder with mandibular hypoplasia and question-mark ears (QMEs) as major features. QMEs, consisting of a specific defect at the lobe-helix junction, can also occur as an isolated anomaly. Studies in animal models have indicated the essential role of endothelin 1 (EDN1) signaling through the endothelin receptor type A (EDNRA) in patterning the mandibular portion of the first pharyngeal arch. Mutations in the genes coding for phospholipase C, beta 4 (PLCB4) and guanine nucleotide binding protein (G protein), alpha inhibiting activity polypeptide 3 (GNAI3), predicted to function as signal transducers downstream of EDNRA, have recently been reported in ACS. By whole-exome sequencing (WES), we identified a homozygous substitution in a furin cleavage site of the EDN1 proprotein in ACS-affected siblings born to consanguineous parents. WES of two cases with vertical transmission of isolated QMEs revealed a stop mutation in EDN1 in one family and a missense substitution of a highly conserved residue in the mature EDN1 peptide in the other. Targeted sequencing of EDN1 in an ACS individual with related parents identified a fourth, homozygous mutation falling close to the site of cleavage by endothelin-converting enzyme. The different modes of inheritance suggest that the degree of residual EDN1 activity differs depending on the mutation. These findings provide further support for the hypothesis that ACS and QMEs are uniquely caused by disruption of the EDN1-EDNRA signaling pathway.
Collapse
|
23
|
Heike CL, Hing AV, Aspinall CA, Bartlett SP, Birgfeld CB, Drake AF, Pimenta LA, Sie KC, Urata MM, Vivaldi D, Luquetti DV. Clinical care in craniofacial microsomia: a review of current management recommendations and opportunities to advance research. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:271-82. [PMID: 24132932 DOI: 10.1002/ajmg.c.31373] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Craniofacial microsomia (CFM) is a complex condition associated with microtia, mandibular hypoplasia, and preauricular tags. It is the second most common congenital facial condition treated in many craniofacial centers and requires longitudinal multidisciplinary patient care. The purpose of this article is to summarize current recommendations for clinical management and discuss opportunities to advance clinical research in CFM.
Collapse
|