1
|
Pode-Shakked B, Finezilber Y, Levi Y, Liber S, Fleischer N, Greenbaum L, Raas-Rothschild A. Shared facial phenotype of patients with mucolipidosis type IV: A clinical observation reaffirmed by next generation phenotyping. Eur J Med Genet 2020; 63:103927. [PMID: 32298796 DOI: 10.1016/j.ejmg.2020.103927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Mucolipidosis type IV (ML-IV) is a rare autosomal-recessive lysosomal storage disease, caused by mutations in MCOLN1. ML-IV manifests with developmental delay, esotropia and corneal clouding. While the clinical phenotype is well-described, the diagnosis of ML-IV is often challenging and elusive. OBJECTIVE Our experience with ML-IV patients brought to the clinical observation that they share common and identifiable facial features, not yet described in the literature to date. Here, we utilized a computerized facial analysis tool to establish this association. METHODS Using the DeepGestalt algorithm, 50 two-dimensional facial images of ten ML-IV patients were analyzed, and compared to unaffected controls (n = 98) and to individuals affected with other genetic disorders (n = 99). Results were expressed in terms of the area-under-the-curve (AUC) of the receiver-operating-characteristic curve (ROC). RESULTS When compared to unaffected cases and to cases diagnosed with syndromes other than ML-IV, the ML-IV cohort showed an AUC of 0.822 (p value < 0.01) and an AUC of 0.885 (p value < 0.001), respectively. CONCLUSIONS We describe recognizable facial features typical in patients with ML-IV. Reaffirmed by the DeepGestalt technology, the described common facial phenotype adds to the tools currently available for clinicians and may thus assist in reaching an earlier diagnosis of this rare and underdiagnosed disorder.
Collapse
Affiliation(s)
- Ben Pode-Shakked
- The Institute for Rare Diseases, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; The Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Finezilber
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yonit Levi
- The Institute for Rare Diseases, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel
| | - Shiri Liber
- The Institute for Rare Diseases, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel; The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Annick Raas-Rothschild
- The Institute for Rare Diseases, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
2
|
Nellåker C, Alkuraya FS, Baynam G, Bernier RA, Bernier FP, Boulanger V, Brudno M, Brunner HG, Clayton-Smith J, Cogné B, Dawkins HJ, deVries BB, Douzgou S, Dudding-Byth T, Eichler EE, Ferlaino M, Fieggen K, Firth HV, FitzPatrick DR, Gration D, Groza T, Haendel M, Hallowell N, Hamosh A, Hehir-Kwa J, Hitz MP, Hughes M, Kini U, Kleefstra T, Kooy RF, Krawitz P, Küry S, Lees M, Lyon GJ, Lyonnet S, Marcadier JL, Meyn S, Moslerová V, Politei JM, Poulton CC, Raymond FL, Reijnders MR, Robinson PN, Romano C, Rose CM, Sainsbury DC, Schofield L, Sutton VR, Turnovec M, Van Dijck A, Van Esch H, Wilkie AO. Enabling Global Clinical Collaborations on Identifiable Patient Data: The Minerva Initiative. Front Genet 2019; 10:611. [PMID: 31417602 PMCID: PMC6681681 DOI: 10.3389/fgene.2019.00611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/12/2019] [Indexed: 01/25/2023] Open
Abstract
The clinical utility of computational phenotyping for both genetic and rare diseases is increasingly appreciated; however, its true potential is yet to be fully realized. Alongside the growing clinical and research availability of sequencing technologies, precise deep and scalable phenotyping is required to serve unmet need in genetic and rare diseases. To improve the lives of individuals affected with rare diseases through deep phenotyping, global big data interrogation is necessary to aid our understanding of disease biology, assist diagnosis, and develop targeted treatment strategies. This includes the application of cutting-edge machine learning methods to image data. As with most digital tools employed in health care, there are ethical and data governance challenges associated with using identifiable personal image data. There are also risks with failing to deliver on the patient benefits of these new technologies, the biggest of which is posed by data siloing. The Minerva Initiative has been designed to enable the public good of deep phenotyping while mitigating these ethical risks. Its open structure, enabling collaboration and data sharing between individuals, clinicians, researchers and private enterprise, is key for delivering precision public health.
Collapse
Affiliation(s)
- Christoffer Nellåker
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
- Big Data Institute, University of Oxford, Oxford, United Kingdom
- Institute for Biomedical Engineering, University of Oxford, Oxford, United Kingdom
| | - Fowzan S. Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Gareth Baynam
- Western Australian Register of Developmental Anomalies, and Genetic Services of Western Australia, King Edward Memorial, Subiaco, WA, Australia
- Telethon Kids Institute and School of Paediatrics and Child Health, University of Western Australia, Perth, WA, Australia
- Spatial Sciences, Science and Engineering, Curtin University, Perth, WA, Australia
| | - Raphael A. Bernier
- Department of Psychiatry & Behavioral Science, University of Washington School of Medicine, Seattle, WA, United States
| | | | - Vanessa Boulanger
- National Organization for Rare Disorders, Danbury, CT, United States
| | - Michael Brudno
- Department of Computer Science, University of Toronto and the Hospital for Sick Children, Toronto, Canada
| | - Han G. Brunner
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Saint Mary’s Hospital, Manchester, United Kingdom
| | - Benjamin Cogné
- CHU Nantes, Service de Génétique Médicale, Nantes, France
| | - Hugh J.S. Dawkins
- Office of Population Health Genomics, Public and Aboriginal Health Division, Department of Health Government of Western Australia, Perth, WA, Australia
- Sir Walter Murdoch School of Policy and International Affairs, Murdoch University
- Centre for Population Health Research, Curtin University of Technology, Perth, WA, Australia
| | - Bert B.A. deVries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sofia Douzgou
- Manchester Centre for Genomic Medicine, Central Manchester University Hospitals NHS Foundation Trust, MAHSC, Saint Mary’s Hospital, Manchester, United Kingdom
| | | | - Evan E. Eichler
- Department of Genome Science, University of Washington School of Medicine, Seattle, WA, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, United States
| | - Michael Ferlaino
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Oxford, United Kingdom
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| | - Karen Fieggen
- Division of Human Genetics, Level 3, Wernher and Beit North, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Helen V. Firth
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - David R. FitzPatrick
- MRC Human Genetics Unit, IGMM, University of Edinburgh, Western General Hospital, Edinburgh, United Kingdom
| | - Dylan Gration
- Genetic Services of Western Australia, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Tudor Groza
- The Garvan Institute, Sydney, NSW, Australia
| | - Melissa Haendel
- Oregon Health & Science University, Portland, OR, United States
| | - Nina Hallowell
- Big Data Institute, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Ethics and Humanities, University of Oxford, Oxford, United Kingdom
- Ethox Centre, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ada Hamosh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Jayne Hehir-Kwa
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marc-Phillip Hitz
- Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital of Schleswig-Holstein–Campus Kiel, Kiel, Germany
| | - Mark Hughes
- Department of Clinical Neurosciences, Western General Hospital, Edinburgh, United Kingdom
| | - Usha Kini
- Oxford Centre for Genomic Medicine, Oxford, United Kingdom
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Peter Krawitz
- Institut für Genomische Statistik und Bioinformatik, Universitätsklinikum Bonn, Rheinische-Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Sébastien Küry
- CHU Nantes, Service de Génétique Médicale, Nantes, France
| | - Melissa Lees
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Gholson J. Lyon
- George A. Jervis Clinic and Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY, United States
| | | | | | - Stephen Meyn
- Department of Computer Science, University of Toronto and the Hospital for Sick Children, Toronto, Canada
| | - Veronika Moslerová
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and University Hospital, Prague, Czechia
| | - Juan M. Politei
- Laboratorio Chamoles, Errores Congénitos del Metabolismo, Buenos Aires, Argentina
| | - Cathryn C. Poulton
- Department of Paediatrics and Neonates, Fiona Stanley Hospital, Perth, WA, Australia
| | - F Lucy Raymond
- CIMR (Wellcome Trust/MRC Building), Cambridge, United Kingdom
| | - Margot R.F. Reijnders
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | | | | | - Catherine M. Rose
- Victorian Clinical Genetics Service and Murdoch Childrens Research Institute, The Royal Children’s Hospital, Parkville, VIC, Australia
| | - David C.G. Sainsbury
- Northern & Yorkshire Cleft Lip and Palate Service, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| | - Lyn Schofield
- Genetic Services of Western Australia, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Vernon R. Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Marek Turnovec
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and University Hospital, Prague, Czechia
| | - Anke Van Dijck
- Department of Medical Genetics, University and University Hospital Antwerp, Antwerp, Belgium
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, University of Leuven, Leuven, Belgium
| | - Andrew O.M. Wilkie
- Clinical Genetics Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | | |
Collapse
|