1
|
Gan Y, Li G, Wei Z, Feng Y, Shi Y, Deng Y. Precision diagnosis and treatment of vitamin metabolism-related epilepsy. ACTA EPILEPTOLOGICA 2024; 6:27. [PMID: 40217438 PMCID: PMC11960229 DOI: 10.1186/s42494-024-00169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/23/2024] [Indexed: 01/05/2025] Open
Abstract
Epilepsy is a chronic disorder of the nervous system caused by abnormal discharges from brain cells. Structural, infectious, metabolic, immunologic, and unknown causes can contribute to the development of seizures. In recent years, there has been increasing attention on epilepsy caused by genetic metabolic disorders. More than two hundred inherited metabolic disorders have been identified as potential cause of seizures, and they are mainly associated with energy deficiency in the brain, accumulation of toxic substances, abnormal neurotransmitter transmission, and deficiency of cofactors. Vitamins play a crucial role as components of several enzymes or coenzymes. Impaired metabolism of thiamine, biotin, vitamin B6, vitamin B12 and folic acid can contribute to early-onset seizures and developmental abnormalities in infants. However, timely supplementation therapy can significantly improve patient prognosis of affected patients. Therefore, a thorough understanding and investigation of the metabolic basis of epilepsy is essential for the development of precise therapeutic approaches, which could provide significant therapeutic benefits for patients.
Collapse
Affiliation(s)
- Yajing Gan
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Guoyan Li
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
- Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Zihan Wei
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Yan Feng
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
- Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Yuqing Shi
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China
- Xi'an Medical University, Xi'an, 710021, People's Republic of China
| | - Yanchun Deng
- Department of Neurology, Epilepsy Center of Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, People's Republic of China.
- Xijing Institute of Epilepsy and Encephalopathy, Xi'an, 710000, People's Republic of China.
| |
Collapse
|
2
|
Zhao C, Chen J, Liu Z, Liang H, Chen X, Cheng L, Xie S, Lin Z, Wu R, Zhao Q, Xue Y, Lai X, Jin X, Xu JF, Su X. Activation of nicotinic acetylcholine receptor α7 subunit limits Zika viral infection via promoting autophagy and ferroptosis. Mol Ther 2024; 32:2641-2661. [PMID: 38822526 PMCID: PMC11405161 DOI: 10.1016/j.ymthe.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/13/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
Vagus nerve regulates viral infection and inflammation via the alpha 7 nicotinic acetylcholine receptor (α7 nAChR); however, the role of α7 nAChR in ZIKA virus (ZIKV) infection, which can cause severe neurological diseases such as microcephaly and Guillain-Barré syndrome, remains unknown. Here, we first examined the role of α7 nAChR in ZIKV infection in vitro. A broad effect of α7 nAChR activation was identified in limiting ZIKV infection in multiple cell lines. Combined with transcriptomics analysis, we further demonstrated that α7 nAChR activation promoted autophagy and ferroptosis pathways to limit cellular ZIKV viral loads. Additionally, activation of α7 nAChR prevented ZIKV-induced p62 nucleus accumulation, which mediated an enhanced autophagy pathway. By regulating proteasome complex and an E3 ligase NEDD4, activation of α7 nAChR resulted in increased amount of cellular p62, which further enhanced the ferroptosis pathway to reduce ZIKV infection. Moreover, utilizing in vivo neonatal mouse models, we showed that α7 nAChR is essential in controlling the disease severity of ZIKV infection. Taken together, our findings identify an α7 nAChR-mediated effect that critically contributes to limiting ZIKV infection, and α7 nAChR activation offers a novel strategy for combating ZIKV infection and its complications.
Collapse
Affiliation(s)
- Caiqi Zhao
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China; Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200000, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Chen
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100190, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhihua Liu
- University of Chinese Academy of Sciences, Beijing 100190, China; Vaccine Center, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huabin Liang
- University of Chinese Academy of Sciences, Beijing 100190, China; Vaccine Center, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoyan Chen
- Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lianping Cheng
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shitao Xie
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhekai Lin
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China
| | - Renlan Wu
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qi Zhao
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yue Xue
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaoyun Lai
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xia Jin
- University of Chinese Academy of Sciences, Beijing 100190, China; Vaccine Center, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Jin-Fu Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200000, China.
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China; Vaccine Center, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200032, China; Shanghai Key Laboratory of Lung Inflammation and Injury, Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
3
|
Fu J, Chen L, Su T, Xu S, Liu Y. Mild phenotypes of phosphoglycerate dehydrogenase deficiency by a novel mutation of PHGDH gene: Case report and literature review. Int J Dev Neurosci 2023; 83:44-52. [PMID: 36308023 DOI: 10.1002/jdn.10236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/09/2022] [Accepted: 10/24/2022] [Indexed: 02/04/2023] Open
Abstract
Phosphoglycerate dehydrogenase (PHGDH) deficiency is a rare autosomal recessive genetic disease of serine biosynthesis. Its typical features are congenital microcephaly, epileptic seizures, and psychomotor developmental delay. Here, we reported the first Chinese familial cases with genetically confirmed PHGDH deficiency and reviewed several previous reports. Two siblings in this family presented with microcephaly, psychomotor retardation, and epilepsy in early juvenile. Brain magnetic resonance imaging (MRI) showed only a slight change of enlarged ventricle. Biochemical investigations revealed low serum serine and glycine concentrations. The whole-exome sequencing (WES) results identified a missense variant in the PHGDH gene (NM_006623.4: exon11: c.1211T>A, p. Val404Asp). Although two patients in this Chinese family carried the same pathogenic mutation in the PHGDH, their symptoms and responses to treatment were not exactly the same. We found a novel variant in the PHGDH gene and expanded the genotypic and phenotypic spectrum of serine biosynthesis disorders.
Collapse
Affiliation(s)
- Junyi Fu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liqing Chen
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangfeng Su
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sanqing Xu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Eade K, Gantner ML, Hostyk JA, Nagasaki T, Giles S, Fallon R, Harkins-Perry S, Baldini M, Lim EW, Scheppke L, Dorrell MI, Cai C, Baugh EH, Wolock CJ, Wallace M, Berlow RB, Goldstein DB, Metallo CM, Friedlander M, Allikmets R. Serine biosynthesis defect due to haploinsufficiency of PHGDH causes retinal disease. Nat Metab 2021; 3:366-377. [PMID: 33758422 PMCID: PMC8084205 DOI: 10.1038/s42255-021-00361-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 02/10/2021] [Indexed: 02/08/2023]
Abstract
Macular telangiectasia type 2 (MacTel) is a progressive, late-onset retinal degenerative disease linked to decreased serum levels of serine that elevate circulating levels of a toxic ceramide species, deoxysphingolipids (deoxySLs); however, causal genetic variants that reduce serine levels in patients have not been identified. Here we identify rare, functional variants in the gene encoding the rate-limiting serine biosynthetic enzyme, phosphoglycerate dehydrogenase (PHGDH), as the single locus accounting for a significant fraction of MacTel. Under a dominant collapsing analysis model of a genome-wide enrichment analysis of rare variants predicted to impact protein function in 793 MacTel cases and 17,610 matched controls, the PHGDH gene achieves genome-wide significance (P = 1.2 × 10-13) with variants explaining ~3.2% of affected individuals. We further show that the resulting functional defects in PHGDH cause decreased serine biosynthesis and accumulation of deoxySLs in retinal pigmented epithelial cells. PHGDH is a significant locus for MacTel that explains the typical disease phenotype and suggests a number of potential treatment options.
Collapse
Affiliation(s)
- Kevin Eade
- Lowy Medical Research Institute, La Jolla, CA, USA
| | | | - Joseph A Hostyk
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | | | - Sarah Giles
- Lowy Medical Research Institute, La Jolla, CA, USA
| | - Regis Fallon
- Lowy Medical Research Institute, La Jolla, CA, USA
| | - Sarah Harkins-Perry
- Lowy Medical Research Institute, La Jolla, CA, USA
- The Scripps Research Institute, La Jolla, CA, USA
| | - Michelle Baldini
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Esther W Lim
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Lea Scheppke
- Lowy Medical Research Institute, La Jolla, CA, USA
| | | | - Carolyn Cai
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Evan H Baugh
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Charles J Wolock
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Martina Wallace
- Department of Bioengineering, University of California, San Diego, CA, USA
| | | | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | | | - Martin Friedlander
- Lowy Medical Research Institute, La Jolla, CA, USA
- The Scripps Research Institute, La Jolla, CA, USA
- Scripps Clinic Medical Group, La Jolla, CA, USA
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Gungor S, Oktay Y, Hiz S, Aranguren-Ibáñez Á, Kalafatcilar I, Yaramis A, Karaca E, Yis U, Sonmezler E, Ekinci B, Aslan M, Yilmaz E, Özgör B, Balaraju S, Szabo N, Laurie S, Beltran S, MacArthur DG, Hathazi D, Töpf A, Roos A, Lochmuller H, Vernos I, Horvath R. Autosomal recessive variants in TUBGCP2 alter the γ-tubulin ring complex leading to neurodevelopmental disease. iScience 2021; 24:101948. [PMID: 33458610 PMCID: PMC7797523 DOI: 10.1016/j.isci.2020.101948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/20/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
Microtubules help building the cytoskeleton of neurons and other cells. Several components of the gamma-tubulin (γ-tubulin) complex have been previously reported in human neurodevelopmental diseases. We describe two siblings from a consanguineous Turkish family with dysmorphic features, developmental delay, brain malformation, and epilepsy carrying a homozygous mutation (p.Glu311Lys) in TUBGCP2 encoding the γ-tubulin complex 2 (GCP2) protein. This variant is predicted to disrupt the electrostatic interaction of GCP2 with GCP3. In primary fibroblasts carrying the variant, we observed a faint delocalization of γ-tubulin during the cell cycle but normal GCP2 protein levels. Through mass spectrometry, we observed dysregulation of multiple proteins involved in the assembly and organization of the cytoskeleton and the extracellular matrix, controlling cellular adhesion and of proteins crucial for neuronal homeostasis including axon guidance. In summary, our functional and proteomic studies link TUBGCP2 and the γ-tubulin complex to the development of the central nervous system in humans.
Collapse
Affiliation(s)
- Serdal Gungor
- Inonu University, Faculty of Medicine, Turgut Ozal Research Center, Department of Paediatric Neurology, Malatya, Turkey
| | - Yavuz Oktay
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University and Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Semra Hiz
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Dokuz Eylul University, Faculty of Medicine, Department of Pediatric Neurology Izmir, Turkey
| | - Álvaro Aranguren-Ibáñez
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ipek Kalafatcilar
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Dokuz Eylul University, Faculty of Medicine, Department of Pediatric Neurology Izmir, Turkey
| | - Ahmet Yaramis
- Pediatric Neurology Clinic, Private Office, Diyarbakir, Turkey
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University and Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Uluc Yis
- Dokuz Eylul University, Faculty of Medicine, Department of Pediatric Neurology Izmir, Turkey
| | - Ece Sonmezler
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Burcu Ekinci
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Mahmut Aslan
- Dokuz Eylul University, Faculty of Medicine, Department of Pediatric Neurology Izmir, Turkey
| | - Elmasnur Yilmaz
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Turkey
| | - Bilge Özgör
- Inonu University, Faculty of Medicine, Turgut Ozal Research Center, Department of Paediatric Neurology, Malatya, Turkey
| | - Sunitha Balaraju
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
- Department of Clinical Neurosciences, John Van Geest Cambridge Centre for Brain Repair, University of Cambridge School of Clinical Medicine, Robinson Way, Cambridge CB2 0PY, UK
| | - Nora Szabo
- Department of Clinical Neurosciences, John Van Geest Cambridge Centre for Brain Repair, University of Cambridge School of Clinical Medicine, Robinson Way, Cambridge CB2 0PY, UK
- Budai Children Hospital, Észak-Közép-budai Centrum, Új Szent János Kórház és Szakrendelő, Budapest, Hungary
| | - Steven Laurie
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sergi Beltran
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Daniel G. MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Denisa Hathazi
- Department of Clinical Neurosciences, John Van Geest Cambridge Centre for Brain Repair, University of Cambridge School of Clinical Medicine, Robinson Way, Cambridge CB2 0PY, UK
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| | - Andreas Roos
- Leibniz Institut für Analytische Wissenschaften, ISAS, Dortmund, Germany & Pediatric Neurology, University Hospital, University of Duisburg-Essen, Faculty of Medicine, Essen, Germany
| | - Hanns Lochmuller
- Children's Hospital of Eastern Ontario Research Institute; Division of Neurology, Department of Medicine, the Ottawa Hospital; and Brain and Mind Research Institute, University of Ottawa, Ottawa, Canada
| | - Isabelle Vernos
- Centre for Genomic Regulation (CRG), the Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Spain
| | - Rita Horvath
- John Walton Muscular Dystrophy Research Centre, Institute of Translational and Clinical Research, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
6
|
Murtas G, Marcone GL, Sacchi S, Pollegioni L. L-serine synthesis via the phosphorylated pathway in humans. Cell Mol Life Sci 2020; 77:5131-5148. [PMID: 32594192 PMCID: PMC11105101 DOI: 10.1007/s00018-020-03574-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/03/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
L-serine is a nonessential amino acid in eukaryotic cells, used for protein synthesis and in producing phosphoglycerides, glycerides, sphingolipids, phosphatidylserine, and methylenetetrahydrofolate. Moreover, L-serine is the precursor of two relevant coagonists of NMDA receptors: glycine (through the enzyme serine hydroxymethyltransferase), which preferentially acts on extrasynaptic receptors and D-serine (through the enzyme serine racemase), dominant at synaptic receptors. The cytosolic "phosphorylated pathway" regulates de novo biosynthesis of L-serine, employing 3-phosphoglycerate generated by glycolysis and the enzymes 3-phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase (the latter representing the irreversible step). In the human brain, L-serine is primarily found in glial cells and is supplied to neurons for D-serine synthesis. Serine-deficient patients show severe neurological symptoms, including congenital microcephaly, psychomotor retardation, and intractable seizures, thus highlighting the relevance of de novo production of this amino acid in brain development and morphogenesis. Indeed, the phosphorylated pathway is strictly linked to cancer. Moreover, L-serine has been suggested as a ready-to-use treatment, as also recently proposed for Alzheimer's disease. Here, we present our current state of knowledge concerning the three mammalian enzymes of the phosphorylated pathway and known mutations related to pathological conditions: although the structure of these enzymes has been solved, how enzyme activity is regulated remains largely unknown. We believe that an in-depth investigation of these enzymes is crucial to identify the molecular mechanisms involved in modulating concentrations of the serine enantiomers and for studying the interplay between glial and neuronal cells and also to determine the most suitable therapeutic approach for various diseases.
Collapse
Affiliation(s)
- Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Giorgia Letizia Marcone
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Silvia Sacchi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant 3, 21100, Varese, Italy.
| |
Collapse
|
7
|
De Bie I, Boucoiran I. N o 380 - Évaluation et prise en charge de la microcéphalie détectée avant la naissance. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2020; 41:862-869. [PMID: 31126435 DOI: 10.1016/j.jogc.2019.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIF Informer les fournisseurs canadiens de soins de santé périnatale des critères diagnostiques de la microcéphalie fœtale et fournir l'information sur les analyses pertinentes, le pronostic, et la prise en charge prénatale et périnatale en lien avec a cette observation prénatale. DESTINATAIRES Tous les fournisseurs de soins de maternité (fournisseurs principaux de soins de santé) et de soins de pédiatrie; les conseiller(e)s en génétique; les infirmièr(e)s en soins de maternité; les infirmièr(e)s practicien(ne)s, les administrateur(trice)s provinciaux de soins de maternité; les étudiant(e)s, en médecine; les résident(e)s postdoctoraux et les stagiaires (fellows). RéSULTATS: Fournir de meilleurs conseils et une prise en charge clinique adéquate aux femmes et aux familles qui ont reçu un diagnostic prénatal de microcéphalie fœtale. DONNéES PROBANTES: La documentation publiée est tirée de recherches effectuées en 2018 dans le moteur PubMed et les bases de données Medline, CINAHL et Cochrane Library au moyen de mots-clés anglais pertinents (prenatal ultrasound, prenatal imaging, fetal, antenatal ou prenatal microcephaly). Des publications supplémentaires ont été sélectionnées à partir des notices bibliographiques de ces articles. PéRIODE DE RECHERCHE: Sept ans (2010-2018); la dernière recherche a été effectuée le 19 avril 2018. L'auteur principal a terminé la validation des articles. AVANTAGES, PRéJUDICES ET COûTS: Le présent document renseigne les lecteurs au sujet (1) des critères diagnostiques de la microcéphalie fœtale, (2) de ses étiologies potentielles et (3) des analyses et options de prise en charge avant et après la naissance. Il propose une méthode fondée sur des données probantes pour établir le diagnostic et déterminer la prise en charge de la microcéphalie détectée avant la naissance. Ces recommandations sont fondées sur l'opinion d'experts, mais n'ont pas fait l'objet d'une évaluation économique de la santé. Une mise en œuvre aux échelles locale ou provinciale sera requise. Les auteurs reconnaissent que l'accès aux services et ressources mentionnés varie au Canada. Par conséquent, ces recommandations ont été formulées dans la perspective de promouvoir l'accès et de fournir une orientation pour toutes les provinces et tous les territoires du pays. CRITèRES: La solidité des données probantes indiquées s'appuie sur les critères décrits dans le rapport du Groupe d'étude canadien sur les soins de santé préventifs. RECOMMANDATIONS.
Collapse
|
8
|
De Bie I, Boucoiran I. No. 380-Investigation and Management of Prenatally Identified Microcephaly. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2020; 41:855-861. [PMID: 31126434 DOI: 10.1016/j.jogc.2018.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To update Canadian maternity care and reproductive health care providers on the diagnostic criteria of fetal microcephaly and provide information on the relevant investigations, prognosis, and pre- and perinatal management of this prenatal finding. INTENDED USERS All maternity care (most responsible health provider [MRHP]) and pediatric providers; genetic counsellors; maternity nurses; nurse practitioners; provincial maternity care administrators; medical students; postgraduate residents, and fellows. OUTCOMES To provide better counselling and appropriate clinical management to women and families who have received a prenatal diagnosis of fetal microcephaly. EVIDENCE Published literature was retrieved through searches of PubMed or Medline, CINAHL, and The Cochrane Library in 2018, using appropriate key words (prenatal ultrasound, prenatal imaging, fetal, antenatal, or prenatal microcephaly). Additional publications were identified from the bibliographies of these articles. SEARCH PERIOD Seven years (2010-2018); completed final search April 19, 2018. The primary author completed validation of the articles. BENEFITS, HARMS, AND COSTS This document educates readers about (1) the diagnostic criteria for fetal microcephaly, (2) its potential etiologies, (3) investigation and management options both pre- and postnatally. It proposes an evidence-based approach to the diagnosis and management of prenatally detected microcephaly. These recommendations are based on expert opinion and have not been subjected to a health economics assessment. Local or provincial implementation will be required. The authors recognize that there is variability across Canada in access to the cited services and resources. As such, these recommendations were developed in an attempt to promote access and to provide guidance for all provinces and territories across the country. VALUES The quality of evidence was rated using the criteria described in the Report of the Canadian Task Force on Preventive Health Care. RECOMMENDATIONS
Collapse
|
9
|
Abdelfattah F, Kariminejad A, Kahlert AK, Morrison PJ, Gumus E, Mathews KD, Darbro BW, Amor DJ, Walsh M, Sznajer Y, Weiß L, Weidensee S, Chitayat D, Shannon P, Bermejo-Sánchez E, Riaño-Galán I, Hayes I, Poke G, Rooryck C, Pennamen P, Khung-Savatovsky S, Toutain A, Vuillaume ML, Ghaderi-Sohi S, Kariminejad MH, Weinert S, Sticht H, Zenker M, Schanze D. Expanding the genotypic and phenotypic spectrum of severe serine biosynthesis disorders. Hum Mutat 2020; 41:1615-1628. [PMID: 32579715 DOI: 10.1002/humu.24067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022]
Abstract
Serine biosynthesis disorders comprise a spectrum of very rare autosomal recessive inborn errors of metabolism with wide phenotypic variability. Neu-Laxova syndrome represents the most severe expression and is characterized by multiple congenital anomalies and pre- or perinatal lethality. Here, we present the mutation spectrum and a detailed phenotypic analysis in 15 unrelated families with severe types of serine biosynthesis disorders. We identified likely disease-causing variants in the PHGDH and PSAT1 genes, several of which have not been reported previously. Phenotype analysis and a comprehensive review of the literature corroborates the evidence that serine biosynthesis disorders represent a continuum with varying degrees of phenotypic expression and suggest that even gradual differences at the severe end of the spectrum may be correlated with particular genotypes. We postulate that the individual residual enzyme activity of mutant proteins is the major determinant of the phenotypic variability, but further functional studies are needed to explore effects at the enzyme protein level.
Collapse
Affiliation(s)
- Fatima Abdelfattah
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | | | - Anne-Karin Kahlert
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Congenital Heart Disease and Pediatric Cardiology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Patrick J Morrison
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - Evren Gumus
- Division of Medical Genetics, School of Medicine, Harran University, Sanliurfa, Turkey
| | | | | | - David J Amor
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia.,Royal Children's Hospital, Parkville, Victoria, Australia
| | - Maie Walsh
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria, Australia
| | - Yves Sznajer
- Centre de Génétique Humaine, Cliniques Universitaires Saint Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Luisa Weiß
- Institut für Klinische Genetik, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - David Chitayat
- Department of Obstetrics and Gynecology, The Prenatal Diagnosis and Medical Genetics Program, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for SickKids, University of Toronto, Toronto, Ontario, Canada
| | - Patrick Shannon
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Eva Bermejo-Sánchez
- ECEMC (Spanish Collaborative Study of Congenital Malformations), Research Unit on Congenital Anomalies (UIAC), Institute of Rare Diseases Research (IIER), Institute of Health Carlos III, Ministry of Science and Innovation, Madrid, Spain
| | - Isolina Riaño-Galán
- AGC de Pediatría, Hospital Universitario Central de Asturias, Oviedo, Spain.,IUOPA-Departamento de Medicina-ISPA, Universidad de Oviedo, Oviedo, Spain.,CIBER de Epidemiologia y Salud Pública, Madrid, Spain
| | - Ian Hayes
- Genetic Health Service New Zealand, Auckland Hospital, Auckland, New Zealand
| | - Gemma Poke
- Genetic Health Service New Zealand, Wellington Regional Hospital, Wellington, New Zealand
| | - Caroline Rooryck
- MRGM INSERM U1211, CHU de Bordeaux, Service de Génétique Médicale, University of Bordeaux, Bordeaux, France
| | - Perrine Pennamen
- MRGM INSERM U1211, CHU de Bordeaux, Service de Génétique Médicale, University of Bordeaux, Bordeaux, France
| | | | - Annick Toutain
- Service de Génétique, CHU de Tours, UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Marie-Laure Vuillaume
- Service de Génétique, CHU de Tours, UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | | | | | - Sönke Weinert
- Department of Cardiology and Angiology, Internal Medicine, University Hospital Magdeburg, Magdeburg, Germany
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Denny Schanze
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| |
Collapse
|