1
|
Richard D, Muthuirulan P, Young M, Yengo L, Vedantam S, Marouli E, Bartell E, Hirschhorn J, Capellini TD. Functional genomics of human skeletal development and the patterning of height heritability. Cell 2025; 188:15-32.e24. [PMID: 39549696 PMCID: PMC11724752 DOI: 10.1016/j.cell.2024.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 08/01/2024] [Accepted: 10/21/2024] [Indexed: 11/18/2024]
Abstract
Underlying variation in height are regulatory changes to chondrocytes, cartilage cells comprising long-bone growth plates. Currently, we lack knowledge on epigenetic regulation and gene expression of chondrocytes sampled across the human skeleton, and therefore we cannot understand basic regulatory mechanisms controlling height biology. We first rectify this issue by generating extensive epigenetic and transcriptomic maps from chondrocytes sampled from different growth plates across developing human skeletons, discovering novel regulatory networks shaping human bone/joint development. Next, using these maps in tandem with height genome-wide association study (GWAS) signals, we disentangle the regulatory impacts that skeletal element-specific versus global-acting variants have on skeletal growth, revealing the prime importance of regulatory pleiotropy in controlling height variation. Finally, as height is highly heritable, and thus often the test case for complex-trait genetics, we leverage these datasets within a testable omnigenic model framework to discover novel chondrocyte developmental modules and peripheral-acting factors shaping height biology and skeletal growth.
Collapse
Affiliation(s)
- Daniel Richard
- Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Mariel Young
- Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Loic Yengo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Sailaja Vedantam
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA
| | - Eirini Marouli
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eric Bartell
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joel Hirschhorn
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, USA; Department of Genetics, Harvard Medical School, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Terence D Capellini
- Human Evolutionary Biology, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
2
|
Giunta-Stibb H, Hackett B. Interstitial lung disease in the newborn. J Perinatol 2025; 45:13-23. [PMID: 38956315 DOI: 10.1038/s41372-024-02036-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/30/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
Although relatively rare, interstitial lung diseases may present with respiratory distress in the newborn period. Most commonly these include developmental and growth disorders, disorders of surfactant synthesis and homeostasis, pulmonary interstitial glycogenosis, and neuroendocrine cell hyperplasia of infancy. Although the diagnosis of these disorders is sometimes made based on clinical presentation and imaging, due to the significant overlap between disorders and phenotypic variability, lung biopsy or, increasingly genetic testing is needed for diagnosis. These diseases may result in significant morbidity and mortality. Effective medical treatment options are in some cases limited and/or invasive. The genetic basis for some of these disorders has been identified, and with increased utilization of exome and whole genome sequencing even before lung biopsy, further insights into their genetic etiologies should become available.
Collapse
Affiliation(s)
- Hannah Giunta-Stibb
- Divisions of Neonatology and Pulmonology, Department of Pediatrics, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| | - Brian Hackett
- Mildred Stahlman Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
3
|
Grönberg DJ, Pinto de Carvalho SL, Dernerova N, Norton P, Wong MMK, Mendoza E. Expression and regulation of SETBP1 in the song system of male zebra finches (Taeniopygia guttata) during singing. Sci Rep 2024; 14:29057. [PMID: 39580495 PMCID: PMC11585544 DOI: 10.1038/s41598-024-75353-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/04/2024] [Indexed: 11/25/2024] Open
Abstract
Rare de novo heterozygous loss-of-function SETBP1 variants lead to a neurodevelopmental disorder characterized by speech deficits, indicating a potential involvement of SETBP1 in human speech. However, the expression pattern of SETBP1 in brain regions associated with vocal learning remains poorly understood, along with the underlying molecular mechanisms linking it to vocal production. In this study, we examined SETBP1 expression in the brain of male zebra finches, a well-established model for studying vocal production learning. We demonstrated that zebra finch SETBP1 exhibits a greater number of exons and isoforms compared to its human counterpart. We characterized a SETBP1 antibody and showed that SETBP1 colocalized with FoxP1, FoxP2, and Parvalbumin in key song nuclei. Moreover, SETBP1 expression in neurons in Area X is significantly higher in zebra finches singing alone, than those singing courtship song to a female, or non-singers. Importantly, we found a distinctive neuronal protein expression of SETBP1 and FoxP2 in Area X only in zebra finches singing alone, but not in the other conditions. We demonstrated SETBP1´s regulatory role on FoxP2 promoter activity in vitro. Taken together, these findings provide compelling evidence for SETBP1 expression in brain regions to be crucial for vocal learning and its modulation by singing behavior.
Collapse
Affiliation(s)
- Dana Jenny Grönberg
- Institut für Verhaltensbiologie, Freie Universität Berlin, 14195, Berlin, Germany
| | | | - Nikola Dernerova
- Institut für Verhaltensbiologie, Freie Universität Berlin, 14195, Berlin, Germany
| | - Phillip Norton
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin, Philippstr. 13, Haus 4 (Ostertaghaus), 10115, Berlin, Germany
| | - Maggie Mei-Ki Wong
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, 6500AH, the Netherlands
| | - Ezequiel Mendoza
- Institut für Verhaltensbiologie, Freie Universität Berlin, 14195, Berlin, Germany.
| |
Collapse
|
4
|
Chasse R, McLeod R, Surian A, Fitch RH, Li J. The role of cerebellar FOXP1 in the development of motor and communicative behaviors in mice. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70001. [PMID: 39407418 PMCID: PMC11479947 DOI: 10.1111/gbb.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/20/2024]
Abstract
The gene FOXP2 is well established for a role in human speech and language; far less is known about FOXP1. However, this related gene has also been implicated in human language development as well as disorders associated with features of autism spectrum disorder (ASD). FOXP1 protein expression has also recently been identified in the cerebellum-a neural structure previously shown to express FOXP2 protein. The current study sought to elucidate the behavioral implications of a conditional knock-out of Foxp1 using an En1-Cre driver, which is active in the entirety of the cerebellum and a subset of neurons in the midbrain and spinal cord, in mice using a test battery including motor tasks associated with cerebellar dysfunction, as well as communicative and autistic-relevant behaviors. Male and female mice with a conditional knock-out (cKO, n = 31) and wildtype littermate controls (WT, n = 34) were assessed for gross and orofacial motor control, motor-coordination learning, locomotion, social behavior, anxiety, auditory processing and expressive vocalizations. Overall results suggest Foxp1 plays a specific role in the development of communicative systems, and phenotypic expression of disruptions may interact with sex. Robust motor deficits associated with Foxp1 protein loss may particularly affect vocalizations based on significant orofacial motor deficits in cKO subjects could also contribute to vocalization anomalies. In summary, the current study provides key insights into the role of Foxp1 in cerebellar function and associated behaviors in mice, with implications for an improved understanding of communicative and motor-based neurodevelopmental disabilities in humans.
Collapse
Affiliation(s)
- R. Chasse
- Department of Psychological SciencesUniversity of ConnecticutStorrsConnecticutUSA
- Murine Behavioral Neurogenetics Facility and Institute of Brain and Behavioral SciencesUniversity of ConnecticutStorrsConnecticutUSA
| | - R. McLeod
- Department of Psychological SciencesUniversity of ConnecticutStorrsConnecticutUSA
- Murine Behavioral Neurogenetics Facility and Institute of Brain and Behavioral SciencesUniversity of ConnecticutStorrsConnecticutUSA
| | - A. Surian
- Department of Psychological SciencesUniversity of ConnecticutStorrsConnecticutUSA
- Murine Behavioral Neurogenetics Facility and Institute of Brain and Behavioral SciencesUniversity of ConnecticutStorrsConnecticutUSA
| | - R. H. Fitch
- Department of Psychological SciencesUniversity of ConnecticutStorrsConnecticutUSA
- Murine Behavioral Neurogenetics Facility and Institute of Brain and Behavioral SciencesUniversity of ConnecticutStorrsConnecticutUSA
| | - J. Li
- Department of Genetics and Genome SciencesUniversity of Connecticut School of MedicineFarmingtonConnecticutUSA
| |
Collapse
|
5
|
Griese M, Seidl E. Persistent tachypnea of infancy, neuroendocrine cell hyperplasia of infancy, and pulmonary interstitial glycogenosis: "A3-Specific conditions of undefined etiology". Pediatr Pulmonol 2024; 59:2702-2707. [PMID: 38818882 DOI: 10.1002/ppul.27102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Affiliation(s)
- Matthias Griese
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Elias Seidl
- Division of Respiratory Medicine, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Koene S, Ropers FG, Wieland J, Rybak T, Wildschut F, Berghuis D, Morgan A, Trelles MP, Scheepe JR, Bökenkamp R, Peeters-Scholte CMPCD, Braden R, Santen GWE. Clinical phenotype of FOXP1 syndrome: parent-reported medical signs and symptoms in 40 individuals. J Med Genet 2024; 61:399-404. [PMID: 38123995 DOI: 10.1136/jmg-2023-109537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The first studies on patients with forkhead-box protein P1 (FOXP1) syndrome reported associated global neurodevelopmental delay, autism symptomatology, dysmorphic features and cardiac and urogenital malformations. The aim of this study was to assess the prevalence of congenital abnormalities in an unbiased cohort of patients with FOXP1 syndrome and to document rare complications. METHODS Patients with FOXP1 syndrome were included, mostly diagnosed via whole-exome sequencing for neurodevelopmental delay. A parent-report questionnaire was used to assess medical signs and symptoms, including questions about features rated as most burdensome by patients and their family. RESULTS Forty individuals were included, 20 females and 20 males. The mean age at assessment was 13.2 years (median 8.5 years; range 2-54 years; ≥18 years n = 7). Seven adults were included. All patients had developmental problems, including cognitive, communication, social-emotional and motor delays. The most prevalent medical signs and symptoms include delayed bladder control, sleeping problems, hypermetropia, strabismus, sacral dimple, undescended testes, abnormal muscle tone and airway infections. The most burdensome complaints for patients with FOXP1 syndrome, as perceived by parents, include intellectual disability, impaired communication, behaviour problems, lack of age-appropriate self-reliance, attention problems and anxiety. According to parents, patients have quite similar reported symptoms, although incontinence, obsessions and a complex sensory profile have a higher ranking. CONCLUSION The results of this study may be used to further guide medical management and identify patient priorities for future research targeted on those features of FOXP1 syndrome that most impair quality of life of patients and their families.
Collapse
Affiliation(s)
- Saskia Koene
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Jannelien Wieland
- Department of Child and Adolescent Psychiatry, Leiden University Medical Center, Leiden, Netherlands
| | - Tamara Rybak
- 's Heeren Loo Zorggroep, Amersfoort, Netherlands
| | - Floor Wildschut
- Clinical Neurodevelopmental Sciences, Leiden University Clinical and Adolescent Child Studies, Leiden, Netherlands
| | - Dagmar Berghuis
- Department of Pediatrics, Leiden University Medical Center, Leiden, Netherlands
| | - Angela Morgan
- Victorian Clinical Genetics Service and Speech and Language, Murdoch Childrens Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Maria Pilar Trelles
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Psychiatry and Human Behaviour, Brown University, Providence, Rhode Island, USA
| | | | - Regina Bökenkamp
- Department of Pediatric Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Ruth Braden
- Speech and Language, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Gijs W E Santen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
7
|
Cesaroni CA, Pollazzon M, Mancini C, Rizzi S, Cappelletti C, Pizzi S, Frattini D, Spagnoli C, Caraffi SG, Zuntini R, Trimarchi G, Niceta M, Radio FC, Tartaglia M, Garavelli L, Fusco C. Case report: Expanding the phenotype of FOXP1-related intellectual disability syndrome and hyperkinetic movement disorder in differential diagnosis with epileptic seizures. Front Neurol 2023; 14:1207176. [PMID: 37521304 PMCID: PMC10382204 DOI: 10.3389/fneur.2023.1207176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/23/2023] [Indexed: 08/01/2023] Open
Abstract
Objective We aimed to report on previously unappreciated clinical features associated with FOXP1-related intellectual disability (ID) syndrome, a rare neurodevelopmental disorder characterized by global developmental delay, intellectual disability, and language delay, with or without autistic features. Methods We performed whole-exome sequencing (WES) to molecularly characterize an individual presenting with ID, epilepsy, autism spectrum disorder, behavioral problems, and facial dysmorphisms as major features. Results WES allowed us to identify a previously unreported de novo splice site variant, c.1429-1G>T (NM_032682.6), in the FOXP1 gene (OMIM*605515) as the causative event underlying the phenotype. Clinical reassessment of the patient and revision of the literature allowed us to refine the phenotype associated with FOXP1 haploinsufficiency, including hyperkinetic movement disorder and flat angiomas as associated features. Interestingly, the patient also has an asymmetric face and choanal atresia and a novel de novo variant of the CHD7 gene. Conclusion We suggest that FOXP1-related ID syndrome may also predispose to the development of hyperkinetic movement disorders and flat angiomas. These features could therefore require specific management of this condition.
Collapse
Affiliation(s)
- Carlo Alberto Cesaroni
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother-Child Department, Azienda USL-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Marzia Pollazzon
- Medical Genetics Unit, Mother-Child Department, Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Cecilia Mancini
- Molecular Genetics and Functional Genomics Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Susanna Rizzi
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother-Child Department, Azienda USL-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Camilla Cappelletti
- Molecular Genetics and Functional Genomics Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Simone Pizzi
- Molecular Genetics and Functional Genomics Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Daniele Frattini
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother-Child Department, Azienda USL-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother-Child Department, Azienda USL-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | - Stefano Giuseppe Caraffi
- Medical Genetics Unit, Mother-Child Department, Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Roberta Zuntini
- Medical Genetics Unit, Mother-Child Department, Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Gabriele Trimarchi
- Medical Genetics Unit, Mother-Child Department, Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Marcello Niceta
- Molecular Genetics and Functional Genomics Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | - Marco Tartaglia
- Molecular Genetics and Functional Genomics Unit, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Mother-Child Department, Azienda USL-IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother-Child Department, Azienda USL-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
8
|
Popler J, Vece TJ, Liptzin DR, Gower WA. Pediatric pulmonology 2021 year in review: Rare and diffuse lung disease. Pediatr Pulmonol 2023; 58:374-381. [PMID: 36426677 DOI: 10.1002/ppul.26227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022]
Abstract
The field of rare and diffuse pediatric lung disease is experiencing rapid progress as diagnostic and therapeutic options continue to expand. In this annual review, we discuss manuscripts published in Pediatric Pulmonology in 2021 in (1) children's interstitial and diffuse lung disease, (2) congenital airway and lung malformations, and (3) noncystic fibrosis bronchiectasis including primary ciliary dyskinesia. These include case reports, descriptive cohorts, trials of therapies, animal model studies, and review articles. The results are put into the context of other literature in the field. Each furthers the field in important ways, while also highlighting the continued need for further studies.
Collapse
Affiliation(s)
- Jonathan Popler
- Children's Physician Group-Pulmonology, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Timothy J Vece
- Division of Pediatric Pulmonology and Program for Rare and Interstitial Lung Disease, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Deborah R Liptzin
- School of Public and Community Health, University of Montana, Missoula, Montana, USA.,Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - William A Gower
- Division of Pediatric Pulmonology and Program for Rare and Interstitial Lung Disease, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
9
|
Chen M, Sun Y, Qian Y, Chen N, Li H, Wang L, Dong M. Case report: FOXP1 syndrome caused by a de novo splicing variant (c.1652+5 G>A) of the FOXP1 gene. Front Genet 2022; 13:926070. [PMID: 35991577 PMCID: PMC9388729 DOI: 10.3389/fgene.2022.926070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/07/2022] [Indexed: 11/30/2022] Open
Abstract
FOXP1 syndrome is a rare neurodevelopmental disorder characterized by global developmental delay, intellectual disability, and language delay, with or without autistic features. Several splicing variants have been reported for this condition, but most of them lack functional evidence, and the actual effects of the sequence changes are still unknown. In this study, a de novo splicing variant (c.1652 + 5 G>A) of the FOXP1 gene was identified in a patient with global developmental delay, mild intellectual disability, speech delay, and autistic features. Assessed by TA-cloning, the variant promoted the skipping of exon 18 and a premature stop codon (p.Asn511*), resulting in a predicted truncated protein. This variant, that is lacking the forkhead-box DNA-binding domain and nuclear localization signal 2, may disrupt the protein function and thus cause FOXP1 syndrome-related symptoms. Our study extends the phenotypic and allelic spectra of the FOXP1 syndrome.
Collapse
Affiliation(s)
- Min Chen
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yixi Sun
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yeqing Qian
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Na Chen
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongge Li
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liya Wang
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Minyue Dong
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Minyue Dong,
| |
Collapse
|
10
|
Elliott AM, Adam S, du Souich C, Lehman A, Nelson TN, van Karnebeek C, Alderman E, Armstrong L, Aubertin G, Blood K, Boelman C, Boerkoel C, Bretherick K, Brown L, Chijiwa C, Clarke L, Couse M, Creighton S, Watts-Dickens A, Gibson WT, Gill H, Tarailo-Graovac M, Hamilton S, Heran H, Horvath G, Huang L, Hulait GK, Koehn D, Lee HK, Lewis S, Lopez E, Louie K, Niederhoffer K, Matthews A, Meagher K, Peng JJ, Patel MS, Race S, Richmond P, Rupps R, Salvarinova R, Seath K, Selby K, Steinraths M, Stockler S, Tang K, Tyson C, van Allen M, Wasserman W, Mwenifumbo J, Friedman JM. Genome-wide sequencing and the clinical diagnosis of genetic disease: The CAUSES study. HGG ADVANCES 2022; 3:100108. [PMID: 35599849 PMCID: PMC9117924 DOI: 10.1016/j.xhgg.2022.100108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Genome-wide sequencing (GWS) is a standard of care for diagnosis of suspected genetic disorders, but the proportion of patients found to have pathogenic or likely pathogenic variants ranges from less than 30% to more than 60% in reported studies. It has been suggested that the diagnostic rate can be improved by interpreting genomic variants in the context of each affected individual's full clinical picture and by regular follow-up and reinterpretation of GWS laboratory results. Trio exome sequencing was performed in 415 families and trio genome sequencing in 85 families in the CAUSES study. The variants observed were interpreted by a multidisciplinary team including laboratory geneticists, bioinformaticians, clinical geneticists, genetic counselors, pediatric subspecialists, and the referring physician, and independently by a clinical laboratory using standard American College of Medical Genetics and Genomics (ACMG) criteria. Individuals were followed for an average of 5.1 years after testing, with clinical reassessment and reinterpretation of the GWS results as necessary. The multidisciplinary team established a diagnosis of genetic disease in 43.0% of the families at the time of initial GWS interpretation, and longitudinal follow-up and reinterpretation of GWS results produced new diagnoses in 17.2% of families whose initial GWS interpretation was uninformative or uncertain. Reinterpretation also resulted in rescinding a diagnosis in four families (1.9%). Of the families studied, 33.6% had ACMG pathogenic or likely pathogenic variants related to the clinical indication. Close collaboration among clinical geneticists, genetic counselors, laboratory geneticists, bioinformaticians, and individuals' primary physicians, with ongoing follow-up, reanalysis, and reinterpretation over time, can improve the clinical value of GWS.
Collapse
Affiliation(s)
- Alison M. Elliott
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Women’s Health Research Institute, Vancouver, BC, Canada
| | - Shelin Adam
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Christèle du Souich
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Tanya N. Nelson
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children’s and Women’s Hospitals, Vancouver, BC, Canada
| | - Clara van Karnebeek
- Department of Pediatrics, Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam, University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Emily Alderman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Linlea Armstrong
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Gudrun Aubertin
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Katherine Blood
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Cyrus Boelman
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Cornelius Boerkoel
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Karla Bretherick
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children’s and Women’s Hospitals, Vancouver, BC, Canada
| | - Lindsay Brown
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children’s and Women’s Hospitals, Vancouver, BC, Canada
| | - Chieko Chijiwa
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Lorne Clarke
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Madeline Couse
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Susan Creighton
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Abby Watts-Dickens
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - William T. Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Harinder Gill
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Sara Hamilton
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Harindar Heran
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Gabriella Horvath
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Lijia Huang
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children’s and Women’s Hospitals, Vancouver, BC, Canada
| | - Gurdip K. Hulait
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - David Koehn
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Hyun Kyung Lee
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Suzanne Lewis
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Elena Lopez
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Kristal Louie
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Karen Niederhoffer
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Allison Matthews
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children’s and Women’s Hospitals, Vancouver, BC, Canada
| | - Kirsten Meagher
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Junran J. Peng
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Millan S. Patel
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Simone Race
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Phillip Richmond
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Rosemarie Rupps
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ramona Salvarinova
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Kimberly Seath
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Kathryn Selby
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Steinraths
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sylvia Stockler
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Kaoru Tang
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Christine Tyson
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children’s and Women’s Hospitals, Vancouver, BC, Canada
| | - Margot van Allen
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Wyeth Wasserman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Jill Mwenifumbo
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Jan M. Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
11
|
Cook CB, Armstrong L, Boerkoel CF, Clarke LA, du Souich C, Demos MK, Gibson WT, Gill H, Lopez E, Patel MS, Selby K, Abu-Sharar Z, Elliott AM, Friedman JM. Somatic mosaicism detected by genome-wide sequencing in 500 parent-child trios with suspected genetic disease: clinical and genetic counseling implications. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006125. [PMID: 34697084 PMCID: PMC8751411 DOI: 10.1101/mcs.a006125] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/13/2021] [Indexed: 01/28/2023] Open
Abstract
Identifying genetic mosaicism is important in establishing a diagnosis, assessing recurrence risk, and providing accurate genetic counseling. Next-generation sequencing has allowed for the identification of mosaicism at levels below those detectable by conventional Sanger sequencing or chromosomal microarray analysis. The CAUSES Clinic was a pediatric translational trio-based genome-wide (exome or genome) sequencing study of 500 families (531 children) with suspected genetic disease at BC Children's and Women's Hospitals. Here we present 12 cases of apparent mosaicism identified in the CAUSES cohort: nine cases of parental mosaicism for a disease-causing variant found in a child and three cases of mosaicism in the proband for a de novo variant. In six of these cases, there was no evidence of mosaicism on Sanger sequencing—the variant was not detected on Sanger sequencing in three cases, and it appeared to be heterozygous in three others. These cases are examples of six clinical manifestations of mosaicism: a proband with classical clinical features of mosaicism (e.g., segmental abnormalities of skin pigmentation or asymmetrical growth of bilateral body parts), a proband with unusually mild manifestations of a disease, a mosaic proband who is clinically indistinguishable from the constitutive phenotype, a mosaic parent with no clinical features of the disease, a mosaic parent with mild manifestations of the disease, and a family in which both parents are unaffected and two siblings have the same disease-causing constitutional mutation. Our data demonstrate the importance of considering the possibility of mosaicism whenever exome or genome sequencing is performed and that its detection via genome-wide sequencing can permit more accurate genetic counseling.
Collapse
Affiliation(s)
- Courtney B Cook
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6H 3N1
| | - Linlea Armstrong
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6H 3N1.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada V5Z 4H4
| | - Cornelius F Boerkoel
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6H 3N1
| | - Lorne A Clarke
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6H 3N1
| | - Christèle du Souich
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6H 3N1.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada V5Z 4H4
| | - Michelle K Demos
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Vancouver, British Columbia, Canada V6H 0B3
| | - William T Gibson
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6H 3N1.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada V5Z 4H4
| | - Harinder Gill
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6H 3N1
| | - Elena Lopez
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6H 3N1
| | - Millan S Patel
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6H 3N1
| | - Kathryn Selby
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Vancouver, British Columbia, Canada V6H 0B3
| | - Ziad Abu-Sharar
- Division of Neurology, Department of Pediatrics, BC Children's Hospital, Vancouver, British Columbia, Canada V6H 0B3
| | | | - Alison M Elliott
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6H 3N1.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada V5Z 4H4.,Women's Health Research Institute, Vancouver, British Columbia, Canada V6H 2N9
| | - Jan M Friedman
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada V6H 3N1.,BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada V5Z 4H4
| |
Collapse
|
12
|
Bush A. A Paradox, A Paradox, A Most Ingenious Paradox! Chest 2021; 160:1171-1173. [PMID: 34625165 DOI: 10.1016/j.chest.2021.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 11/27/2022] Open
Affiliation(s)
- Andrew Bush
- Imperial Centre for Paediatrics and Child Health and the Department of Paediatric Respiratory Medicine, Royal Brompton Hospital, London, England.
| |
Collapse
|
13
|
Lozano R, Gbekie C, Siper PM, Srivastava S, Saland JM, Sethuram S, Tang L, Drapeau E, Frank Y, Buxbaum JD, Kolevzon A. FOXP1 syndrome: a review of the literature and practice parameters for medical assessment and monitoring. J Neurodev Disord 2021; 13:18. [PMID: 33892622 PMCID: PMC8066957 DOI: 10.1186/s11689-021-09358-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/25/2021] [Indexed: 11/14/2022] Open
Abstract
FOXP1 syndrome is a neurodevelopmental disorder caused by mutations or deletions that disrupt the forkhead box protein 1 (FOXP1) gene, which encodes a transcription factor important for the early development of many organ systems, including the brain. Numerous clinical studies have elucidated the role of FOXP1 in neurodevelopment and have characterized a phenotype. FOXP1 syndrome is associated with intellectual disability, language deficits, autism spectrum disorder, hypotonia, and congenital anomalies, including mild dysmorphic features, and brain, cardiac, and urogenital abnormalities. Here, we present a review of human studies summarizing the clinical features of individuals with FOXP1 syndrome and enlist a multidisciplinary group of clinicians (pediatrics, genetics, psychiatry, neurology, cardiology, endocrinology, nephrology, and psychology) to provide recommendations for the assessment of FOXP1 syndrome.
Collapse
Affiliation(s)
- Reymundo Lozano
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Catherine Gbekie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paige M Siper
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shubhika Srivastava
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey M Saland
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Children's Heart Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Swathi Sethuram
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lara Tang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elodie Drapeau
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yitzchak Frank
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D Buxbaum
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexander Kolevzon
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
14
|
Abstract
There is a wide differential diagnosis of early onset respiratory distress especially in term babies, and interstitial lung disease (chILD) is a rare but important consideration in this context. chILD manifesting immediately after birth is usually related to mutations in surfactant protein genes, or conditions related to the Congenital Acinar Dysplasia -Alveolar capillary dysplasia - Congenital Alveolar Dysplasia (CAD-ACD) spectrum. There is currently no specific treatment for these conditions, and management is supportive. Prognosis is very poor in most of these babies if onset is early, with relentless respiratory deterioration unless transplanted. Ideally, the diagnosis is made on genetic analysis, but this may be time-consuming and complex in CAD-ACD spectrum, so lung biopsy may be needed to avoid prolonged and futile treatment being instituted. Milder forms with prolonged survival have been reported. Early onset, less severe chILD is usually related to neuroendocrine cell hyperplasia of infancy (NEHI), pulmonary interstitial glycogenosis (PIG) and less severe disorders of surfactant proteins. PIG and NEHI are not specific entities, but are pulmonary dysmaturity syndromes, and there may be a number of underlying genetic and other cause. If the child is stable and thriving, many will not be subject to lung biopsy, and slow improvement and weaning of supplemental oxygen can be anticipated. Where possible, a precise genetic diagnosis should be made in early onset cHILD allow for genetic counselling. chILD survivors and their families have complex respiratory and other needs, and co-ordinated, multi-disciplinary support in the community is essential.
Collapse
Affiliation(s)
- Andrew Bush
- Imperial College, UK; Royal Brompton and Harefield NHS Foundation Trust, UK.
| | | | - Jo Gregory
- Royal Brompton and Harefield NHS Foundation Trust, UK
| | - Andrew Gordon Nicholson
- Royal Brompton and Harefield NHS Foundation Trust, UK; National Heart and Lung Institute, Imperial College, UK
| | - Thomas Semple
- Imperial College, UK; Royal Brompton and Harefield NHS Foundation Trust, UK
| | - Rishi Pabary
- Imperial College, UK; Royal Brompton and Harefield NHS Foundation Trust, UK
| |
Collapse
|
15
|
Urbankowska E, Urbankowski T, Drobczyński Ł, Griese M, Lange J, Brzewski M, Kulus M, Krenke K. Lung ultrasound-a new diagnostic modality in persistent tachypnea of infancy. Pediatr Pulmonol 2020; 55:1028-1036. [PMID: 31978279 DOI: 10.1002/ppul.24654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 01/06/2020] [Indexed: 01/14/2023]
Abstract
Lung ultrasound (LUS) has been increasingly used in diagnosing and monitoring of various pulmonary diseases in children. The aim of the current study was to evaluate its usefulness in children with persistent tachypnea of infancy (PTI). This was a controlled, prospective, cross-sectional study that included children with PTI and healthy subjects. In patients with PTI, LUS was performed at baseline and then after 6 and 12 months of follow-up. Baseline results of LUS were compared to (a) baseline high-resolution computed tomography (HRCT) images, (b) LUS examinations in control group, and (c) follow-up LUS examinations. Twenty children with PTI were enrolled. B-lines were found in all children with PTI and in 11 (55%) control subjects (P < .001). The total number of B-lines, the maximal number of B lines in any intercostal space, the distance between B-lines, and pleural thickness were significantly increased in children with PTI compared to controls. An irregularity of the pleural line was found in all patients with PTI and in none of the healthy children. There were no significant changes in LUS findings in patients with PTI during the study period. The comparison of HRCT indices and LUS findings revealed significant correlations between the mean lung attenuation, skewness, kurtosis and fraction of interstitial pulmonary involvement, and the number of B-lines as well as the pleural line thickness. LUS seems to be a promising diagnostic tool in children with PTI. Its inclusion in the diagnostic work-up may enable to reduce the number of costly, hazardous, and ionizing radiation-based imaging procedures.
Collapse
Affiliation(s)
- Emilia Urbankowska
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Urbankowski
- Department of Internal Medicine, Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Drobczyński
- Pediatric Radiology Department, Jan Polikarp Brudziński Pediatric Hospital, Warsaw, Poland
| | - Matthias Griese
- Department of Pediatric Pneumology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Centre for Lung Research (DZL), Munich, Germany
| | - Joanna Lange
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Michał Brzewski
- Department of Pediatric Radiology, Medical University of Warsaw, Warsaw, Poland
| | - Marek Kulus
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Krenke
- Department of Pediatric Pneumonology and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Gastrointestinal dysfunction in autism displayed by altered motility and achalasia in Foxp1 +/- mice. Proc Natl Acad Sci U S A 2019; 116:22237-22245. [PMID: 31611379 DOI: 10.1073/pnas.1911429116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal dysfunctions in individuals with autism spectrum disorder are poorly understood, although they are common among this group of patients. FOXP1 haploinsufficiency is characterized by autistic behavior, language impairment, and intellectual disability, but feeding difficulties and gastrointestinal problems have also been reported. Whether these are primary impairments, the result of altered eating behavior, or side effects of psychotropic medication remains unclear. To address this question, we investigated Foxp1 +/- mice reflecting FOXP1 haploinsufficiency. These animals show decreased body weight and altered feeding behavior with reduced food and water intake. A pronounced muscular atrophy was detected in the esophagus and colon, caused by reduced muscle cell proliferation. Nitric oxide-induced relaxation of the lower esophageal sphincter was impaired and achalasia was confirmed in vivo by manometry. Foxp1 targets (Nexn, Rbms3, and Wls) identified in the brain were dysregulated in the adult Foxp1 +/- esophagus. Total gastrointestinal transit was significantly prolonged due to impaired colonic contractility. Our results have uncovered a previously unknown dysfunction (achalasia and impaired gut motility) that explains the gastrointestinal disturbances in patients with FOXP1 syndrome, with potential wider relevance for autism.
Collapse
|
17
|
Bush A, Griese M, Seidl E, Kerem E, Reu S, Nicholson AG. Early onset children's interstitial lung diseases: Discrete entities or manifestations of pulmonary dysmaturity? Paediatr Respir Rev 2019; 30:65-71. [PMID: 30552058 DOI: 10.1016/j.prrv.2018.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 12/18/2022]
Abstract
Interstitial lung diseases in children (chILD) are rare and diverse. The current classifications include a group of early onset chILD specific to infancy, namely neuro-endocrine cell hyperplasia of infancy (NEHI), pulmonary interstitial glycogenosis (PIG) and the alveolar capillary-congenital acinar dysplasia (ACD-CAD) spectrum, as well as alveolar growth disorders. NEHI and PIG cells are seen in the normal developing foetal lung. We hypothesise that these conditions are in fact overlapping manifestations of pulmonary dysmaturity, respectively of airway, mesenchymal and vascular elements, rather than discrete clinical conditions in their own right. Clinically, these present as respiratory distress in early life. Mild cases rightly never undergo lung biopsy, and for these the clinical description 'persistent tachypnoea of infancy' has been proposed. In terms of pathology, we reviewed current literature, which showed that NEHI cells decline with age, and are not specific to NEHI, which we confirmed by unpublished re-analysis of a second dataset. Furthermore, specific genetic disorders which affect pulmonary maturation lead to a histological picture indistinguishable from NEHI. PIG and ACD-CAD are also associated with pulmonary growth disorders, and manifestations of PIG and NEHI may be present in the same child. We conclude that, contrary to current classifications, NEHI, PIG, and ACD-CAD should be considered as overlapping manifestations of pulmonary dysmaturation, frequently associated with disorders of alveolar growth, rather than as separate conditions. Identification of one of these patterns should be the start, not the end of the diagnostic journey, and underlying in particular genetic causes should be sought.
Collapse
Affiliation(s)
- Andrew Bush
- Department of Paediatric Respiratory Medicine, Royal Brompton Hospital and Imperial College, London UK.
| | - Matthias Griese
- Dr. von Hauner Children's Hospital, Division of Pediatric Pneumology, University Hospital Munich & Geerman Center for Lung Research (DZL), Lindwurmstr. 4, 80337 München, Germany
| | - Elias Seidl
- Department of Pediatric Pneumology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, German Center for Lung Research, Munich, Germany
| | - Eitan Kerem
- Department of Paediatrics and Paediatric Pulmonology, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Simone Reu
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
| | - Andrew G Nicholson
- Department of Histopathology, Royal Brompton & Harefield NHS Foundation Trust and National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
18
|
Shaffer JR, LeClair J, Carlson JC, Feingold E, Buxó CJ, Christensen K, Deleyiannis FW, Field LL, Hecht JT, Moreno L, Orioli IM, Padilla C, Vieira AR, Wehby GL, Murray JC, Weinberg SM, Marazita ML, Leslie EJ. Association of low-frequency genetic variants in regulatory regions with nonsyndromic orofacial clefts. Am J Med Genet A 2019; 179:467-474. [PMID: 30582786 PMCID: PMC6374160 DOI: 10.1002/ajmg.a.61002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/06/2018] [Accepted: 11/01/2018] [Indexed: 01/24/2023]
Abstract
Genome-wide scans have shown that common risk alleles for orofacial clefts (OFC) tend to be located in noncoding regulatory elements and cumulatively explain only part of the heritability of OFCs. Low-frequency variants may account for some of the "missing" heritability. Therefore, we scanned low-frequency variants located within putative craniofacial enhancers to identify novel OFC risk variants and implicate new regulatory elements in OFC pathogenesis. Analyses were performed in a multiethnic sample of 1,995 cases of cleft lip with or without cleft palate (CL/P), 221 cases with cleft palate (CP) only, and 1,576 unaffected controls. One hundred and nineteen putative craniofacial enhancers identified from ChIP-Seq studies in craniofacial tissues or cell lines contained multiple low-frequency (0.01-1%) variants, which we genotyped in participants using a custom Illumina panel. Two complementary statistical approaches, sequence kernel association test and combined multivariate and collapsing, were used to test association of the aggregated low-frequency variants across each enhancer region with CL/P and CP. We discovered a significant association between CP and a branchial arch enhancer near FOXP1 (mm60; p-value = .0002). Additionally, we observed a suggestive association between CL/P and a forebrain enhancer near FOXE1 (hs1717; p-value = .001). These findings suggest that low-frequency variants in craniofacial enhancer regions contribute to the complex etiology of nonsyndromic OFCs.
Collapse
Affiliation(s)
- John R. Shaffer
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15219 USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261 USA
| | - Jessica LeClair
- formerly of Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118, USA
| | - Jenna C. Carlson
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15219 USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261 USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261 USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Carmen J. Buxó
- Dental and Craniofacial Genomics Core, School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico, 00936, USA
| | - Kaare Christensen
- Department of Epidemiology, Institute of Public Health, University of Southern Denmark, Odense, DK-5000, Denmark
| | - Frederic W.B. Deleyiannis
- Department of Surgery, Plastic and Reconstructive Surgery, University of Colorado School of Medicine, Denver, CO, 80045, USA
| | - L. Leigh Field
- Department of Medical Genetics, University of British Columbia, Vancouver, V6H 3N1, Canada
| | - Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School and School of Dentistry UT Health at Houston, Houston, TX, 77030, USA
| | - Lina Moreno
- Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Ieda M. Orioli
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-617, Brazil
- ECLAMC (Latin American Collaborative Study of Congenital Malformations) at INAGEMP (National Institute of Population Medical Genetics), Rio de Janeiro, 21941-617, Brazil
| | - Carmencita Padilla
- Department of Pediatrics, College of Medicine; and Institute of Human Genetics, National Institutes of Health; University of the Philippines Manila, Manila, The Philippines, 1000; and Philippine Genome Center, University of the Philippines System, Manila, The Philippines 1101
| | - Alexandre R. Vieira
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15219 USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261 USA
| | - George L. Wehby
- Department of Health Management and Policy, College of Public Health, University of Iowa, Iowa City, IA, 52246, USA
| | - Jeffrey C. Murray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, 52242, USA
| | - Seth M. Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15219 USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261 USA
- Department of Anthropology, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Mary L. Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15219 USA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261 USA
- Clinical and Translational Science, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Elizabeth J. Leslie
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, GA, 30322
| |
Collapse
|
19
|
Gerhauser C, Favero F, Risch T, Simon R, Feuerbach L, Assenov Y, Heckmann D, Sidiropoulos N, Waszak SM, Hübschmann D, Urbanucci A, Girma EG, Kuryshev V, Klimczak LJ, Saini N, Stütz AM, Weichenhan D, Böttcher LM, Toth R, Hendriksen JD, Koop C, Lutsik P, Matzk S, Warnatz HJ, Amstislavskiy V, Feuerstein C, Raeder B, Bogatyrova O, Schmitz EM, Hube-Magg C, Kluth M, Huland H, Graefen M, Lawerenz C, Henry GH, Yamaguchi TN, Malewska A, Meiners J, Schilling D, Reisinger E, Eils R, Schlesner M, Strand DW, Bristow RG, Boutros PC, von Kalle C, Gordenin D, Sültmann H, Brors B, Sauter G, Plass C, Yaspo ML, Korbel JO, Schlomm T, Weischenfeldt J. Molecular Evolution of Early-Onset Prostate Cancer Identifies Molecular Risk Markers and Clinical Trajectories. Cancer Cell 2018; 34:996-1011.e8. [PMID: 30537516 PMCID: PMC7444093 DOI: 10.1016/j.ccell.2018.10.016] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/17/2018] [Accepted: 10/29/2018] [Indexed: 12/28/2022]
Abstract
Identifying the earliest somatic changes in prostate cancer can give important insights into tumor evolution and aids in stratifying high- from low-risk disease. We integrated whole genome, transcriptome and methylome analysis of early-onset prostate cancers (diagnosis ≤55 years). Characterization across 292 prostate cancer genomes revealed age-related genomic alterations and a clock-like enzymatic-driven mutational process contributing to the earliest mutations in prostate cancer patients. Our integrative analysis identified four molecular subgroups, including a particularly aggressive subgroup with recurrent duplications associated with increased expression of ESRP1, which we validate in 12,000 tissue microarray tumors. Finally, we combined the patterns of molecular co-occurrence and risk-based subgroup information to deconvolve the molecular and clinical trajectories of prostate cancer from single patient samples.
Collapse
Affiliation(s)
- Clarissa Gerhauser
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Francesco Favero
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Thomas Risch
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Ronald Simon
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lars Feuerbach
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Yassen Assenov
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Doreen Heckmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Nikos Sidiropoulos
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Sebastian M Waszak
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany
| | - Daniel Hübschmann
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department for Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology and Bioquant, University of Heidelberg, Heidelberg 69120, Germany; Department of Pediatric Immunology, Hematology and Oncology, University Hospital, Heidelberg 69120, Germany
| | - Alfonso Urbanucci
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, Forskningsparken, University of Oslo, 0316 Oslo, Norway; Institute for Cancer Genetics and Informatics, Oslo University Hospital, 0316 Oslo, Norway; Department of Core Facilities, Institute for Cancer Research, Oslo University Hospital, 0316 Oslo, Norway
| | - Etsehiwot G Girma
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Vladimir Kuryshev
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Leszek J Klimczak
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Durham, 27709 NC, USA
| | - Natalie Saini
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, 27709 NC, USA
| | - Adrian M Stütz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Lisa-Marie Böttcher
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Reka Toth
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Josephine D Hendriksen
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Christina Koop
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Pavlo Lutsik
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sören Matzk
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Hans-Jörg Warnatz
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Vyacheslav Amstislavskiy
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Clarissa Feuerstein
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Benjamin Raeder
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany
| | - Olga Bogatyrova
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Claudia Hube-Magg
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Martina Kluth
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hartwig Huland
- Martini-Clinic Prostate Cancer Center at the University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Markus Graefen
- Martini-Clinic Prostate Cancer Center at the University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany
| | - Chris Lawerenz
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gervaise H Henry
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390-9110, USA
| | - Takafumi N Yamaguchi
- Informatics & Biocomputing Program, Ontario Institute for Cancer Research, Toronto, Canada
| | - Alicia Malewska
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390-9110, USA
| | - Jan Meiners
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Daniela Schilling
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; NCT Trial Center, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Eva Reisinger
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department for Bioinformatics and Functional Genomics, Institute of Pharmacy and Molecular Biotechnology and Bioquant, University of Heidelberg, Heidelberg 69120, Germany
| | - Matthias Schlesner
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Bioinformatics and Omics Data Analytics (B240), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Douglas W Strand
- Department of Urology, UT Southwestern Medical Center, Dallas, TX 75390-9110, USA
| | - Robert G Bristow
- Manchester Cancer Research Centre, University of Manchester, 555 Wilmslow Road, Manchester, UK
| | - Paul C Boutros
- Ontario Institute for Cancer Research, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Christof von Kalle
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Division of Translational Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dmitry Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Durham, 27709 NC, USA
| | - Holger Sültmann
- Division of Cancer Genome Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Benedikt Brors
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Guido Sauter
- Department of Pathology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Marie-Laure Yaspo
- Max Planck Institute for Molecular Genetics, Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Ihnestrasse 63-73, 14195 Berlin, Germany
| | - Jan O Korbel
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany.
| | - Thorsten Schlomm
- Martini-Clinic Prostate Cancer Center at the University Medical Center Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany; Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| | - Joachim Weischenfeldt
- Finsen Laboratory, Rigshospitalet, DK-2200, Copenhagen, Denmark; Biotech Research & Innovation Centre (BRIC), University of Copenhagen, DK-2200, Copenhagen, Denmark; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69120 Heidelberg, Germany; Charité Universitätsmedizin Berlin, Charitéplatz 1, D-10117 Berlin, Germany.
| |
Collapse
|
20
|
Characterization of a recurrent missense mutation in the forkhead DNA-binding domain of FOXP1. Sci Rep 2018; 8:16161. [PMID: 30385778 PMCID: PMC6212433 DOI: 10.1038/s41598-018-34437-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022] Open
Abstract
Haploinsufficiency of Forkhead box protein P1 (FOXP1), a highly conserved transcription factor, leads to developmental delay, intellectual disability, autism spectrum disorder, speech delay, and dysmorphic features. Most of the reported FOXP1 mutations occur on the C-terminus of the protein and cluster around to the forkhead domain. All reported FOXP1 pathogenic variants result in abnormal cellular localization and loss of transcriptional repression activity of the protein product. Here we present three patients with the same FOXP1 mutation, c.1574G>A (p.R525Q), that results in the characteristic loss of transcription repression activity. This mutation, however, represents the first reported FOXP1 mutation that does not result in cytoplasmic or nuclear aggregation of the protein but maintains normal nuclear localization.
Collapse
|
21
|
Vuillaume ML, Cogné B, Jeanne M, Boland A, Ung DC, Quinquis D, Besnard T, Deleuze JF, Redon R, Bézieau S, Laumonnier F, Toutain A. Whole genome sequencing identifies a de novo 2.1 Mb balanced paracentric inversion disrupting FOXP1 and leading to severe intellectual disability. Clin Chim Acta 2018; 485:218-223. [PMID: 29969624 DOI: 10.1016/j.cca.2018.06.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 01/08/2023]
Abstract
The FOXP1 gene, located on chromosome 3p13, encodes the Forkhead-box protein P1, one of the four forkhead transcription factors which repress transcription by forming active homo- and heterodimers and regulate distinct patterns of gene expression crucial for embryogenesis and normal development. FOXP1 mutations, mostly truncating, have been described in patients with mild to moderate intellectual disability (ID), autism spectrum disorder (ASD), and speech and language impairment (MIM #613670). Here, we report a small de novo heterozygous balanced inversion of 2.1 Mb located at 3p14.1p13 identified by Whole Genomic Sequencing (WGS) and disrupting the genes FAM19A4 and FOXP1. This inversion was found in a patient with severe ID, ASD, seizures and very unusual vascular anomalies which were never described in the clinical spectrum of FOXP1 mutations. We show that the neurodevelopmental phenotype observed in the patient most likely results from FOXP1 haploinsufficiency as this heterozygous inversion leads to a 60 to 85% decrease of FOXP1 mRNA levels and to the complete absence of FOXP1 full-length protein. These findings, in addition to expanding the molecular spectrum of FOXP1 mutations, emphasize the emerging role of WGS in identifying small balanced chromosomal rearrangements responsible for neurodevelopmental disorders and not detected by conventional cytogenetics.
Collapse
Affiliation(s)
- M-L Vuillaume
- Service de Génétique, Centre Hospitalier Universitaire de Tours, France; UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - B Cogné
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Nantes, France; INSERM, CNRS, UNIV Nantes, l'Institut du Thorax, Nantes, France
| | - M Jeanne
- Service de Génétique, Centre Hospitalier Universitaire de Tours, France; UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - A Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, Direction de La Recherche Fondamentale, CEA, Evry, France
| | - D-C Ung
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - D Quinquis
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Nantes, France
| | - T Besnard
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Nantes, France
| | - J-F Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, Direction de La Recherche Fondamentale, CEA, Evry, France
| | - R Redon
- INSERM, CNRS, UNIV Nantes, l'Institut du Thorax, Nantes, France
| | - S Bézieau
- Laboratoire de Génétique Moléculaire, Centre Hospitalier Universitaire de Nantes, France; INSERM, CNRS, UNIV Nantes, l'Institut du Thorax, Nantes, France
| | - F Laumonnier
- Service de Génétique, Centre Hospitalier Universitaire de Tours, France; UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - A Toutain
- Service de Génétique, Centre Hospitalier Universitaire de Tours, France; UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| |
Collapse
|
22
|
Griese M. Chronic interstitial lung disease in children. Eur Respir Rev 2018; 27:27/147/170100. [PMID: 29436403 PMCID: PMC9488630 DOI: 10.1183/16000617.0100-2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/24/2017] [Indexed: 12/05/2022] Open
Abstract
Children's interstitial lung diseases (chILD) are increasingly recognised and contain many lung developmental and genetic disorders not yet identified in adult pneumology. Worldwide, several registers have been established. The Australasian Registry Network for Orphan Lung Disease (ARNOLD) has identified problems in estimating rare disease prevalence; focusing on chILD in immunocompetent patients, a period prevalence of 1.5 cases per million children and a mortality rate of 7% were determined. The chILD-EU register highlighted the workload to be covered per patient included and provided protocols for diagnosis and initial treatment, similar to the United States chILD network. Whereas case reports may be useful for young physicians to practise writing articles, cohorts of patients can catapult progress, as demonstrated by recent studies on persistent tachypnoea of infancy, hypersensitivity pneumonitis in children and interstitial lung disease related to interferonopathies from mutations in transmembrane protein 173. Translational research has linked heterozygous mutations in the ABCA3 transporter to an increased risk of interstitial lung diseases, not only in neonates, but also in older children and adults. For surfactant dysfunction disorders in infancy and early childhood, lung transplantation was reported to be as successful as in adult patients. Mutual potentiation of paediatric and adult pneumologists is mandatory in this rapidly extending field for successful future development. This brief review highlights publications in the field of paediatric interstitial lung disease as reviewed during the Clinical Year in Review session presented at the 2017 European Respiratory Society (ERS) Annual Congress in Milan, Italy. It was commissioned by the ERS and critically presents progress made as well as drawbacks. Successful developments in chILD are register/consortia based and potentiate paediatric and adult pneumologyhttp://ow.ly/dgrO30hBbRJ
Collapse
Affiliation(s)
- Matthias Griese
- Hauner Children's Hospital, University of Munich, German Center for Lung Research, Munich, Germany
| |
Collapse
|