1
|
Peron A, D'Arco F, Aldinger KA, Smith-Hicks C, Zweier C, Gradek GA, Bradbury K, Accogli A, Andersen EF, Au PYB, Battini R, Beleford D, Bird LM, Bouman A, Bruel AL, Busk ØL, Campeau PM, Capra V, Carlston C, Carmichael J, Chassevent A, Clayton-Smith J, Bamshad MJ, Earl DL, Faivre L, Philippe C, Ferreira P, Graul-Neumann L, Green MJ, Haffner D, Haldipur P, Hanna S, Houge G, Jones WD, Kraus C, Kristiansen BE, Lespinasse J, Low KJ, Lynch SA, Maia S, Mao R, Kalinauskiene R, Melver C, McDonald K, Montgomery T, Morleo M, Motter C, Openshaw AS, Palumbos JC, Parikh AS, Perilla-Young Y, Powell CM, Person R, Desai M, Piard J, Pfundt R, Scala M, Serey-Gaut M, Shears D, Slavotinek A, Suri M, Turner C, Tvrdik T, Weiss K, Wentzensen IM, Zollino M, Hsieh TC, de Vries BBA, Guillemot F, Dobyns WB, Viskochil D, Dias C. BCL11A intellectual developmental disorder: defining the clinical spectrum and genotype-phenotype correlations. Eur J Hum Genet 2025; 33:312-324. [PMID: 39448799 PMCID: PMC11893779 DOI: 10.1038/s41431-024-01701-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/27/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
An increasing number of individuals with intellectual developmental disorder (IDD) and heterozygous variants in BCL11A are identified, yet our knowledge of manifestations and mutational spectrum is lacking. To address this, we performed detailed analysis of 42 individuals with BCL11A-related IDD (BCL11A-IDD, a.k.a. Dias-Logan syndrome) ascertained through an international collaborative network, and reviewed 35 additional previously reported patients. Analysis of 77 affected individuals identified 60 unique disease-causing variants (30 frameshift, 7 missense, 6 splice-site, 17 stop-gain) and 8 unique BCL11A microdeletions. We define the most prevalent features of BCL11A-IDD: IDD, postnatal-onset microcephaly, hypotonia, behavioral abnormalities, autism spectrum disorder, and persistence of fetal hemoglobin (HbF), and identify autonomic dysregulation as new feature. BCL11A-IDD is distinguished from 2p16 microdeletion syndrome, which has a higher incidence of congenital anomalies. Our results underscore BCL11A as an important transcription factor in human hindbrain development, identifying a previously underrecognized phenotype of a small brainstem with a reduced pons/medulla ratio. Genotype-phenotype correlation revealed an isoform-dependent trend in severity of truncating variants: those affecting all isoforms are associated with higher frequency of hypotonia, and those affecting the long (BCL11A-L) and extra-long (-XL) isoforms, sparing the short (-S), are associated with higher frequency of postnatal microcephaly. With the largest international cohort to date, this study highlights persistence of fetal hemoglobin as a consistent biomarker and hindbrain abnormalities as a common feature. It contributes significantly to our understanding of BCL11A-IDD through an extensive unbiased multi-center assessment, providing valuable insights for diagnosis, management and counselling, and into BCL11A's role in brain development.
Collapse
Affiliation(s)
- Angela Peron
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Medical Genetics, ASST Santi Paolo e Carlo, San Paolo Hospital, Milano, Italy.
- Department of Experimental and Clinical Biomedical Sciences, Università degli Studi di Firenze, Firenze, Italy.
- Medical Genetics, Meyer Children's Hospital IRCCS, Firenze, Italy.
| | - Felice D'Arco
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Kimberly A Aldinger
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Constance Smith-Hicks
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Christiane Zweier
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Gyri A Gradek
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Kimberley Bradbury
- Department of Medical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Wessex Regional Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Andrea Accogli
- Genomics and Clinical Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Erica F Andersen
- ARUP Laboratories, Cytogenetics and Genomic Microarray, Salt Lake City, UT, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Ping Yee Billie Au
- Department of Pediatrics, Division of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Roberta Battini
- IRCCS Fondazione Stella Maris, Pisa, Italy
- Dipartimento di Medicina Clinica e Sperimentale, University of Pisa, Pisa, Italy
| | - Daniah Beleford
- Division of Medical Genetics, Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
- Department of Pediatrics and Physiology & Membrane Biology, University of California, Davis, CA, USA
| | - Lynne M Bird
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Division of Genetics/Dysmorphology, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Arjan Bouman
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ange-Line Bruel
- INSERM UMR 1231 Equipe GAD, Université de Bourgogne, Dijon, France
- Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Øyvind Løvold Busk
- Department of Medical Genetics, Telemark Hospital Trust, 3710, Skien, Norway
| | - Philippe M Campeau
- Department of Pediatrics, CHU Sainte-Justine and University of Montreal, Montreal, QC, Canada
| | - Valeria Capra
- Genomics and Clinical Genetics, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Colleen Carlston
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Jenny Carmichael
- Department of Clinical Genetics, Addenbrooke's Hospital, Cambridge, UK
| | - Anna Chassevent
- Department of Neurogenetics, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jill Clayton-Smith
- Division of Evolution and Genomic Sciences School of Biological Sciences University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Michael J Bamshad
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Dawn L Earl
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA, USA
- University of Washington, Seattle, WA, USA
| | - Laurence Faivre
- INSERM UMR 1231 Equipe GAD, Université de Bourgogne, Dijon, France
- Centre de Référence Maladies Rares Anomalies du développement et syndromes malformatifs, Centre de Génétique, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Christophe Philippe
- INSERM UMR 1231 Equipe GAD, Université de Bourgogne, Dijon, France
- Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
| | - Patrick Ferreira
- Department of Pediatrics, Division of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Luitgard Graul-Neumann
- Universitätsmedizin Berlin, Institut für Medizinische Genetik und Humangenetik, Berlin, Germany
| | - Mary J Green
- Experimental Histopathology Laboratory, The Francis Crick Institute, London, UK
| | - Darrah Haffner
- Department of Pediatrics, Division of Pediatric Neurology, Nationwide Children's Hospital and Ohio State University, Columbus, OH, USA
| | - Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Suhair Hanna
- Department of Pediatric Immunology, Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Wendy D Jones
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, Great Ormond Street, London, UK
| | - Cornelia Kraus
- Institute of Human Genetics, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | - James Lespinasse
- HDR - Service de Génétique Médicale, Centre Hospitalier Métropole Savoie, Chambery, France
| | - Karen J Low
- Clinical Genetics Service, University Hospitals Bristol and Weston NHS trust, Bristol, UK
| | - Sally Ann Lynch
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Sofia Maia
- Medical Genetics Unit, Hospital Pediátrico, Centro Hospitalar Universidade de Coimbra, Coimbra, Portugal
| | - Rong Mao
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Ruta Kalinauskiene
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester, UK
- Department of Medical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Catherine Melver
- Division of Medical Genetics, Akron Children's Hospital, Akron, OH, USA
| | | | - Tara Montgomery
- Northern Genetics Service, Institute of Genetic Medicine, Newcastle upon Tyne NHS Foundation Trust, Newcastle, UK
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Napoli, Italy
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Constance Motter
- Division of Medical Genetics, Akron Children's Hospital, Akron, OH, USA
| | - Amanda S Openshaw
- ARUP Laboratories, Cytogenetics and Genomic Microarray, Salt Lake City, UT, USA
| | - Janice Cox Palumbos
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Aditi Shah Parikh
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
- Center for Human Genetics, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Yezmin Perilla-Young
- Division of Pediatric Genetics and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | - Cynthia M Powell
- Division of Pediatric Genetics and Metabolism, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Juliette Piard
- Centre de Génétique Humaine, Université de Franche-Comté, CHU, Besançon, France
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marcello Scala
- U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genova, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Margaux Serey-Gaut
- Centre de Génétique Humaine, Université de Franche-Comté, CHU, Besançon, France
- Centre de Recherche en Audiologie, Hôpital Necker, AP-HP. CUP, Paris, France
| | - Deborah Shears
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Anne Slavotinek
- Division of Medical Genetics, Department of Pediatrics, Benioff Children's Hospital, University of California, San Francisco, CA, USA
- Division of Human Genetics, Cincinnati Children's Hospital, and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Mohnish Suri
- Nottingham Clinical Genetics Service; Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Claire Turner
- Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Tatiana Tvrdik
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Karin Weiss
- Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
- Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | | | - Marcella Zollino
- Dipartimento Universitario Scienze della Vita e Sanità Pubblica, Sezione di Medicina Genomica, Università Cattolica Sacro Cuore, Roma, Italy
- Genetica Medica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Francois Guillemot
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
- Division of Genetics and Metabolism, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - David Viskochil
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Cristina Dias
- Department of Medical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK.
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, Great Ormond Street, London, UK.
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, London, UK.
- Department of Medical & Molecular Genetics, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| |
Collapse
|
2
|
Shu Y, Chen X, Wei Z, Chen C. Dias-Logan syndrome with a de novo p.Leu360Profs*212 heterozygous pathogenic variant of BCL11A in a Chinese patient: A case report. SAGE Open Med Case Rep 2025; 13:2050313X251314069. [PMID: 39835253 PMCID: PMC11744616 DOI: 10.1177/2050313x251314069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
Dias-Logan syndrome, also known as intellectual developmental disorder with persistence of fetal hemoglobin (HbF), or BCL11A-related intellectual developmental disorder, is an extremely rare neurogenetic disorder characterized by intellectual disability (ID), delayed psychomotor development, variable dysmorphic features, and asymptomatic persistence of fetal hemoglobin. The prevalence and incidence of this condition are currently unknown. We report an 8-year-old Han Chinese male patient with Dias-Logan syndrome who carries a de novo heterozygous pathogenic variant, c.1078dupC (p.Leu360Profs*212), in the BCL11A gene, leading to ID and γ-globin suppression, identified through trio-based whole exome sequencing (trio-WES). All his blood parameters were normal except for an elevated HbF level, which was 19.9% of total hemoglobin. Given the negative family history for ID, epilepsy, and alcohol consumption, de novo inheritance was presumed. Consequently, trio-WES analysis (parents and child) was conducted as it can identify potential new causal variants in the offspring. So far, a comprehensive understanding of the phenotypic spectrum of Dias-Logan syndrome and the impact of genotypic variation on disease severity is still lacking. Therefore, our case report enriches the existing literature on the clinical spectrum and genotype-phenotype correlations of BCL11A-related syndrome and provides some helpful information for diagnosis, management, and genetic counseling.
Collapse
Affiliation(s)
- Yizhuo Shu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Xiaoling Chen
- Department of Biochemistry, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Zhuoqun Wei
- Department of Acupuncture and Massage, The Third Clinical Medical College-Rehabilitation College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Chunyue Chen
- Department of Reproductive Medicine, Zhejiang Provincial Hospital of Integrated Traditional Chinese and Western Medicine & Hangzhou Red Cross Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| |
Collapse
|
3
|
Petrachkova T, Soldatkina O, Leduy L, Nepveu A. The BCL11A transcription factor stimulates the enzymatic activities of the OGG1 DNA glycosylase. Biol Chem 2024; 405:711-726. [PMID: 39272221 PMCID: PMC11712033 DOI: 10.1515/hsz-2024-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
The BCL11A transcription factor has previously been shown to interact with and stimulate the enzymatic activities of the NTHL1 DNA glycosylase and Pol β polymerase. Here we show that BCL11A and a smaller peptide encompassing amino acids 160 to 520 can interact with the 8-oxoguanine DNA glycosylase, OGG1, increase the binding of OGG1 to DNA that contains an 8-oxoguanine base and stimulate the glycosylase activity of OGG1. Following BCL11A knockdown, we observed an increase in oxidized purines in the genome using comet assays, while immunoassays reveal an increase in 8-oxoG bases. Structure-function analysis indicates that the stimulation of OGG1 by BCL11A requires the zinc fingers 1, 2 and 3 as well as the proline-rich region between the first and second zing finger, but a glutamate-rich region downstream of zinc finger 3 is dispensable. Ectopic expression of a small peptide that contains the three zinc fingers can rescue the increase in 8-oxoguanine caused by BCL11A knockdown. These findings, together with previous results showing that BCL11A stimulates the enzymatic activities of NTHL1 and the Pol β polymerase, suggest that high expression of BCL11A is important to protect cancer cells against oxidative DNA damage.
Collapse
Affiliation(s)
- Tetiana Petrachkova
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Olha Soldatkina
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Lam Leduy
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Alain Nepveu
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
- Departments of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
- Departments of Medicine, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
- Departments of Oncology, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| |
Collapse
|
4
|
Zha J, Chen Y, Cao F, Zhong J, Yu X, Wu H. Identification of novel BCL11A variant in a patient with developmental delay and behavioural differences. Int J Dev Neurosci 2024; 84:727-734. [PMID: 39187446 DOI: 10.1002/jdn.10371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND The BCL11A gene is involved in disorders including intellectual disability syndrome (IDS), encodes a zinc finger protein highly expressed in haematopoietic and brain and acts as a transcriptional repressor of foetal haemoglobin (HbF). De novo variants in BCL11A have been associated with IDS, which is characterized by developmental delays, autism spectrum disorder (ASD) and speech and language delays. The reports of BCL11A gene variants are still limited worldwide, and additional cases are needed to expand the variant and phenotype spectrums. METHODS The patient is a 5-year-old girl who was hospitalized due to developmental delays. After analysing her clinical and pathological characterizations, whole-exome sequencing (WES) was performed for pathogenic genetic variants of developmental delay and behavioural differences. Candidate variant in BCL11A gene was identified and further validated by Sanger sequencing. RESULTS A heterozygous variant, c.1442delA (p.Glu481Glyfs*25), was identified in exon 4 of the BCL11A gene through WES. This variant results in a truncated expression of the encoded protein. This de novo variant was confirmed by Sanger sequencing. The language delay and behavioural differences were prominent in our patient. CONCLUSION Our finding demonstrates that BCL11A variant may cause developmental delay and behavioural differences, expanding the genetic spectrum of the BCL11A gene.
Collapse
Affiliation(s)
- Jian Zha
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, People's Republic of China
| | - Yong Chen
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, People's Republic of China
| | - Fangfang Cao
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, People's Republic of China
| | - Jianmin Zhong
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, People's Republic of China
| | - Xiongying Yu
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, People's Republic of China
| | - Huaping Wu
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, People's Republic of China
| |
Collapse
|
5
|
Murthy S, Nongthomba U. Role of the BCL11A/B Homologue Chronophage (Cph) in Locomotor Behaviour of Drosophila melanogaster. Neuroscience 2024; 551:1-16. [PMID: 38763224 DOI: 10.1016/j.neuroscience.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Functioning of the nervous system requires proper formation and specification of neurons as well as accurate connectivity and signalling between them. Locomotor behaviour depends upon these events that occur during neural development, and any aberration in them could result in motor disorders. Transcription factors are believed to be master regulators that control these processes, but very few linked to behaviour have been identified so far. The Drosophila homologue of BCL11A (CTIP1) and BCL11B (CTIP2), Chronophage (Cph), was recently shown to be involved in temporal patterning of neural stem cells but its role in post-mitotic neurons is not known. We show that knockdown of Cph in neurons during development results in animals with locomotor defects at both larval and adult stages. The defects are more severe in adults, with inability to stand, uncoordinated behaviour and complete loss of ability to walk, climb, or fly. These defects are similar to the motor difficulties observed in some patients with mutations in BCL11A and BCL11B. Electrophysiological recordings showed reduced evoked activity and irregular neuronal firing. All Cph-expressing neurons in the ventral nerve cord are glutamatergic. Our results imply that Cph modulates primary locomotor activity through configuration of glutamatergic neurons. Thus, this study ascribes a hitherto unknown role to Cph in locomotor behaviour of Drosophila melanogaster.
Collapse
Affiliation(s)
- Smrithi Murthy
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560 012, India.
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru 560 012, India.
| |
Collapse
|
6
|
Wang X, Zhang Z, Zuo W, Wang D, Yang F, Liu Q, Xiao Y. Case Report: Identification of microduplication in the chromosomal 2p16.1p15 region in an infant suffering from pulmonary arterial hypertension. Front Cardiovasc Med 2023; 10:1219480. [PMID: 37937284 PMCID: PMC10626460 DOI: 10.3389/fcvm.2023.1219480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/03/2023] [Indexed: 11/09/2023] Open
Abstract
This study reports the first case of a patient with chromosomal 2p16.1p15 microduplication syndrome complicated by pulmonary arterial hypertension (PAH). A female infant was admitted to the hospital suffering from dyskinesia and developmental delay, and conventional echocardiography revealed an atrial septal defect (ASD), which was not taken seriously or treated at that time. Two years later, preoperative right heart catheterization for ASD closure revealed a mean pulmonary artery pressure (mPAP) of 45 mmHg. The mPAP was reduced, and the condition was stabilized after drug therapy. A genomic copy number duplication (3×) of at least 2.58 Mb in the 2p16.1p15 region on the paternal chromosome was revealed. Multiple Online Mendelian Inheritance in Man (OMIM) genes are involved in this genomic region, such as BCL11A, EHBP1, FAM161A, PEX13, and REL. EHBP1 promotes a molecular phenotypic transformation of pulmonary vascular endothelial cells and is thought to be involved in the rapidly developing PAH of this infant. Collectively, our findings contribute to the knowledge of the genes involved and the clinical manifestations of the 2p16.1p15 microduplication syndrome. Moreover, clinicians should be alert to the possibility of PAH and take early drug intervention when facing patients with 2p16.1p15 microduplications.
Collapse
Affiliation(s)
- Xun Wang
- Department of Cardiology, Hunan Children’s Hospital, Changsha, China
| | - Zeying Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Wanyun Zuo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Dan Wang
- Department of Cardiology, Hunan Children’s Hospital, Changsha, China
| | - Fan Yang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunbin Xiao
- Department of Cardiology, Hunan Children’s Hospital, Changsha, China
| |
Collapse
|
7
|
Peter B, Bruce L, Finestack L, Dinu V, Wilson M, Klein-Seetharaman J, Lewis CR, Braden BB, Tang YY, Scherer N, VanDam M, Potter N. Precision Medicine as a New Frontier in Speech-Language Pathology: How Applying Insights From Behavior Genomics Can Improve Outcomes in Communication Disorders. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2023; 32:1397-1412. [PMID: 37146603 PMCID: PMC10484627 DOI: 10.1044/2023_ajslp-22-00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/07/2022] [Accepted: 03/01/2023] [Indexed: 05/07/2023]
Abstract
PURPOSE Precision medicine is an emerging intervention paradigm that leverages knowledge of risk factors such as genotypes, lifestyle, and environment toward proactive and personalized interventions. Regarding genetic risk factors, examples of interventions informed by the field of medical genomics are pharmacological interventions tailored to an individual's genotype and anticipatory guidance for children whose hearing impairment is predicted to be progressive. Here, we show how principles of precision medicine and insights from behavior genomics have relevance for novel management strategies of behaviorally expressed disorders, especially disorders of spoken language. METHOD This tutorial presents an overview of precision medicine, medical genomics, and behavior genomics; case examples of improved outcomes; and strategic goals toward enhancing clinical practice. RESULTS Speech-language pathologists (SLPs) see individuals with various communication disorders due to genetic variants. Ways of using insights from behavior genomics and implementing principles of precision medicine include recognizing early signs of undiagnosed genetic disorders in an individual's communication patterns, making appropriate referrals to genetics professionals, and incorporating genetic findings into management plans. Patients benefit from a genetics diagnosis by gaining a deeper and more prognostic understanding of their condition, obtaining more precisely targeted interventions, and learning about their recurrence risks. CONCLUSIONS SLPs can achieve improved outcomes by expanding their purview to include genetics. To drive this new interdisciplinary framework forward, goals should include systematic training in clinical genetics for SLPs, enhanced understanding of genotype-phenotype associations, leveraging insights from animal models, optimizing interprofessional team efforts, and developing novel proactive and personalized interventions.
Collapse
Affiliation(s)
- Beate Peter
- College of Health Solutions, Arizona State University, Tempe
| | - Laurel Bruce
- College of Health Solutions, Arizona State University, Tempe
| | - Lizbeth Finestack
- Department of Speech-Language-Hearing Sciences, University of Minnesota, Twin Cities, Minneapolis
| | - Valentin Dinu
- College of Health Solutions, Arizona State University, Tempe
| | - Melissa Wilson
- Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe
| | | | - Candace R. Lewis
- School of Life Sciences, Arizona State University, Tempe
- Department of Psychology, Arizona State University, Tempe
| | - B. Blair Braden
- College of Health Solutions, Arizona State University, Tempe
| | - Yi-Yuan Tang
- College of Health Solutions, Arizona State University, Tempe
| | - Nancy Scherer
- College of Health Solutions, Arizona State University, Tempe
| | - Mark VanDam
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| | - Nancy Potter
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane
| |
Collapse
|
8
|
Wang S, Cai X, Liu S, Zhou Q, Wang T, Du S, Wang D, Yang F, Wu Q, Han Y. A novel BCL11A polymorphism influences gene expression, therapeutic response and epilepsy risk: A multicenter study. Front Mol Neurosci 2022; 15:1010101. [PMID: 36568279 PMCID: PMC9780294 DOI: 10.3389/fnmol.2022.1010101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022] Open
Abstract
Background Genetic factors have been found to be associated with the efficacy and adverse reactions of antiseizure medications. BCL11A is an important regulator of the development of neuronal networks. However, the role of BCL11A in epilepsy remains unclear. This study aimed to evaluate the genetic association of BCL11A with the susceptibility to develop epileptic seizures and therapeutic response of patients with epilepsy in Han Chinese. Methods We matched 450 epilepsy cases with 550 healthy controls and 131 drug-resistant epilepsy patients with 319 drug-responsive epilepsy patients from two different centers. Genetic association analysis, genetic interaction analysis, expression quantitative trait loci analysis and protein-protein interaction analysis were conducted. Results Our results showed that rs2556375 not only increases susceptibility to develop epileptic seizures (OR = 2.700, 95% = 1.366-5.338, p = 0.004 and OR = 2.984, 95% = 1.401-6.356, p = 0.005, respectively), but also increases the risk of drug resistance(OR = 21.336, 95%CI =2.489-183.402, p = 0.005). The interaction between rs2556375 and rs12477097 results in increased risk for pharma coresistant. In addition, rs2556375 regulated BCL11A expression in human brain tissues (p = 0.0096 and p = 0.033, respectively). Furthermore, the protein encoded by BCL11A interacted with targets of approved antiepileptic drugs. Conclusion BCL11A may be a potential therapeutic target for epilepsy. Rs2556375 may increase the risks of epilepsy and drug resistance by regulating BCL11A expression in human brain tissues. Moreover, the interaction between rs2556375 and rs12477097 results in increased risk for drug resistance.
Collapse
Affiliation(s)
- Shitao Wang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China,Department of Neurology, Affiliated Fuyang People's Hospital of Anhui Medical University, Fuyang, China
| | - Xuemei Cai
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shiyong Liu
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qixin Zhou
- Laboratory of Learning and Memory, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ting Wang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Sunbing Du
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Dan Wang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fei Yang
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Qian Wu
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yanbing Han
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, Kunming, China,*Correspondence: Yanbing Han,
| |
Collapse
|
9
|
Bruce L, Peter B. Three children with different de novo BCL11A variants and diverse developmental phenotypes, but shared global motor discoordination and apraxic speech: Evidence for a functional gene network influencing the developing cerebellum and motor and auditory cortices. Am J Med Genet A 2022; 188:3401-3415. [PMID: 35856171 DOI: 10.1002/ajmg.a.62904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 01/31/2023]
Abstract
BCL11A is implicated in BCL11A-Related Intellectual Development Disorder (BCL11A-IDD). Previously reported cases had various types of BCL11A variants (copy-number variations [CNVs], singlenucleotide variants [SNVs]). Phenotypes included global, cognitive, and motor delays, autism spectrum disorder (ASD), craniofacial dysmorphology, and speech and language delays described generally, with only two reports specifying childhood apraxia of speech (CAS). Here, we present three additional children with CAS and de novo BCL11A variants, a p.Ala182Thr nonconservative missense and a p.GLu611.Ter nonsense variant, both in exon 4, and a 106 kb deletion harboring exons 1 and 2. All three children have fine and gross motor discoordination, feeding difficulties, and visual motor disorders. Intellectual and learning disabilities and disordered language skills were seen only in the child with the missense variant and the child with the deletion. These findings align with, and expand, previous findings in that BCL11A variants have significant and highly penetrant apraxic effects across motor systems, consistent with cerebellar involvement. The deletion of exons 1 and 2 is the smallest BCL11A CNV with the full phenotypic expression reported to date. The present results support previous findings in that BCL11A-IDD can result from BCL11A variants regardless of type (deletion, SNVs). A gene expression study shows that BCL11 is expressed highly in the early developing cerebellum and primary motor and auditory cortices. Significant co-expression rates in these regions with genes previously implicated in disorders of spoken language and in ASD support the phenotypic overlaps in children with BCL11A-IDD, CAS, and ASD.
Collapse
Affiliation(s)
- Laurel Bruce
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| | - Beate Peter
- College of Health Solutions, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
10
|
Vickridge E, Faraco CCF, Tehrani PS, Ramdzan ZM, Djerir B, Rahimian H, Leduy L, Maréchal A, Gingras AC, Nepveu A. The DNA repair function of BCL11A suppresses senescence and promotes continued proliferation of triple-negative breast cancer cells. NAR Cancer 2022; 4:zcac028. [PMID: 36186110 PMCID: PMC9516615 DOI: 10.1093/narcan/zcac028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
We identified the BCL11A protein in a proximity-dependent biotinylation screen performed with the DNA glycosylase NTHL1. In vitro, DNA repair assays demonstrate that both BCL11A and a small recombinant BCL11A160-520 protein that is devoid of DNA binding and transcription regulatory domains can stimulate the enzymatic activities of two base excision repair enzymes: NTHL1 and DNA Pol β. Increased DNA repair efficiency, in particular of the base excision repair pathway, is essential for many cancer cells to proliferate in the presence of elevated reactive oxygen species (ROS) produced by cancer-associated metabolic changes. BCL11A is highly expressed in triple-negative breast cancers (TNBC) where its knockdown was reported to reduce clonogenicity and cause tumour regression. We show that BCL11A knockdown in TNBC cells delays repair of oxidative DNA damage, increases the number of oxidized bases and abasic sites in genomic DNA, slows down proliferation and induces cellular senescence. These phenotypes are rescued by ectopic expression of the short BCL11A160-520 protein. We further show that the BCL11A160-520 protein accelerates the repair of oxidative DNA damage and cooperates with RAS in cell transformation assays, thereby enabling cells to avoid senescence and continue to proliferate in the presence of high ROS levels.
Collapse
Affiliation(s)
- Elise Vickridge
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Camila C F Faraco
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Payman S Tehrani
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Zubaidah M Ramdzan
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Billel Djerir
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Hedyeh Rahimian
- Department of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Lam Leduy
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, Québec H3A 1A3, Canada
| | - Alexandre Maréchal
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alain Nepveu
- To whom correspondence should be addressed. Tel: +1 514 398 5839; Fax: +1 514 398 6769;
| |
Collapse
|
11
|
Du H, Wang Z, Guo R, Yang L, Liu G, Zhang Z, Xu Z, Tian Y, Yang Z, Li X, Chen B. Transcription factors Bcl11a and Bcl11b are required for the production and differentiation of cortical projection neurons. Cereb Cortex 2022; 32:3611-3632. [PMID: 34963132 PMCID: PMC9433425 DOI: 10.1093/cercor/bhab437] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/02/2021] [Indexed: 12/31/2022] Open
Abstract
The generation and differentiation of cortical projection neurons are extensively regulated by interactive programs of transcriptional factors. Here, we report the cooperative functions of transcription factors Bcl11a and Bcl11b in regulating the development of cortical projection neurons. Among the cells derived from the cortical neural stem cells, Bcl11a is expressed in the progenitors and the projection neurons, while Bcl11b expression is restricted to the projection neurons. Using conditional knockout mice, we show that deficiency of Bcl11a leads to reduced proliferation and precocious differentiation of cortical progenitor cells, which is exacerbated when Bcl11b is simultaneously deleted. Besides defective neuronal production, the differentiation of cortical projection neurons is blocked in the absence of both Bcl11a and Bcl11b: Expression of both pan-cortical and subtype-specific genes is reduced or absent; axonal projections to the thalamus, hindbrain, spinal cord, and contralateral cortical hemisphere are reduced or absent. Furthermore, neurogenesis-to-gliogenesis switch is accelerated in the Bcl11a-CKO and Bcl11a/b-DCKO mice. Bcl11a likely regulates neurogenesis through repressing the Nr2f1 expression. These results demonstrate that Bcl11a and Bcl11b jointly play critical roles in the generation and differentiation of cortical projection neurons and in controlling the timing of neurogenesis-to-gliogenesis switch.
Collapse
Affiliation(s)
- Heng Du
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ziwu Wang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Rongliang Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Lin Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Guoping Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhejun Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yu Tian
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xiaosu Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Pediatrics, Children’s Hospital of Fudan University, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Bin Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
12
|
Mountford HS, Braden R, Newbury DF, Morgan AT. The Genetic and Molecular Basis of Developmental Language Disorder: A Review. CHILDREN (BASEL, SWITZERLAND) 2022; 9:586. [PMID: 35626763 PMCID: PMC9139417 DOI: 10.3390/children9050586] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 01/05/2023]
Abstract
Language disorders are highly heritable and are influenced by complex interactions between genetic and environmental factors. Despite more than twenty years of research, we still lack critical understanding of the biological underpinnings of language. This review provides an overview of the genetic landscape of developmental language disorders (DLD), with an emphasis on the importance of defining the specific features (the phenotype) of DLD to inform gene discovery. We review the specific phenotype of DLD in the genetic literature, and the influence of historic variation in diagnostic inclusion criteria on researchers' ability to compare and replicate genotype-phenotype studies. This review provides an overview of the recently identified gene pathways in populations with DLD and explores current state-of-the-art approaches to genetic analysis based on the hypothesised architecture of DLD. We will show how recent global efforts to unify diagnostic criteria have vastly increased sample size and allow for large multi-cohort metanalyses, leading the identification of a growing number of contributory loci. We emphasise the important role of estimating the genetic architecture of DLD to decipher underlying genetic associations. Finally, we explore the potential for epigenetics and environmental interactions to further unravel the biological basis of language disorders.
Collapse
Affiliation(s)
- Hayley S. Mountford
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (H.S.M.); (D.F.N.)
| | - Ruth Braden
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne 3052, Australia;
| | - Dianne F. Newbury
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK; (H.S.M.); (D.F.N.)
| | - Angela T. Morgan
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne 3052, Australia;
| |
Collapse
|
13
|
Shen Y, Li R, Teichert K, Montbleau KE, Verboon JM, Voit RA, Sankaran VG. Pathogenic BCL11A variants provide insights into the mechanisms of human fetal hemoglobin silencing. PLoS Genet 2021; 17:e1009835. [PMID: 34634037 PMCID: PMC8530301 DOI: 10.1371/journal.pgen.1009835] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/21/2021] [Accepted: 09/24/2021] [Indexed: 11/18/2022] Open
Abstract
Increased production of fetal hemoglobin (HbF) can ameliorate the severity of sickle cell disease and β-thalassemia. BCL11A has been identified as a key regulator of HbF silencing, although its precise mechanisms of action remain incompletely understood. Recent studies have identified pathogenic mutations that cause heterozygous loss-of-function of BCL11A and result in a distinct neurodevelopmental disorder that is characterized by persistent HbF expression. While the majority of cases have deletions or null mutations causing haploinsufficiency of BCL11A, several missense variants have also been identified. Here, we perform functional studies on these variants to uncover specific liabilities for BCL11A's function in HbF silencing. We find several mutations in an N-terminal C2HC zinc finger that increase proteasomal degradation of BCL11A. We also identify a distinct C-terminal missense variant in the fifth zinc finger domain that we demonstrate causes loss-of-function through disruption of DNA binding. Our analysis of missense variants causing loss-of-function in vivo illuminates mechanisms by which BCL11A silences HbF and also suggests potential therapeutic avenues for HbF induction to treat sickle cell disease and β-thalassemia.
Collapse
Affiliation(s)
- Yong Shen
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Rick Li
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Kristian Teichert
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Kara E. Montbleau
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jeffrey M. Verboon
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Richard A. Voit
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Vijay G. Sankaran
- Division of Hematology/Oncology, Boston Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
| |
Collapse
|
14
|
Tolve M, Ulusoy A, Patikas N, Islam KUS, Bodea GO, Öztürk E, Broske B, Mentani A, Wagener A, van Loo KMJ, Britsch S, Liu P, Khaled WT, Metzakopian E, Baader SL, Di Monte DA, Blaess S. The transcription factor BCL11A defines distinct subsets of midbrain dopaminergic neurons. Cell Rep 2021; 36:109697. [PMID: 34525371 DOI: 10.1016/j.celrep.2021.109697] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/08/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022] Open
Abstract
Midbrain dopaminergic (mDA) neurons are diverse in their projection targets, effect on behavior, and susceptibility to neurodegeneration. Little is known about the molecular mechanisms establishing this diversity during development. We show that the transcription factor BCL11A is expressed in a subset of mDA neurons in the developing and adult murine brain and in a subpopulation of pluripotent-stem-cell-derived human mDA neurons. By combining intersectional labeling and viral-mediated tracing, we demonstrate that Bcl11a-expressing mDA neurons form a highly specific subcircuit within the murine dopaminergic system. In the substantia nigra, the Bcl11a-expressing mDA subset is particularly vulnerable to neurodegeneration upon α-synuclein overexpression or oxidative stress. Inactivation of Bcl11a in murine mDA neurons increases this susceptibility further, alters the distribution of mDA neurons, and results in deficits in skilled motor behavior. In summary, BCL11A defines mDA subpopulations with highly distinctive characteristics and is required for establishing and maintaining their normal physiology.
Collapse
Affiliation(s)
- Marianna Tolve
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Nikolaos Patikas
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - K Ushna S Islam
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Gabriela O Bodea
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Ece Öztürk
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Bianca Broske
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Astrid Mentani
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Antonia Wagener
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Karen M J van Loo
- Section for Translational Epilepsy Research, Department of Neuropathology, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, 89081 Ulm, Germany
| | - Pengtao Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, CB 21PD, UK; Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AH, UK
| | - Stephan L Baader
- Institute of Anatomy, Anatomy and Cell Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Donato A Di Monte
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Sandra Blaess
- Neurodevelopmental Genetics, Institute of Reconstructive Neurobiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany.
| |
Collapse
|
15
|
Chetta M, Tarsitano M, Vicari L, Saracino A, Bukvic N. In Silico Analysis of Possible Interaction between Host Genomic Transcription Factors (TFs) and Zika Virus (ZikaSPH2015) Strain with Combinatorial Gene Regulation; Virus Versus Host-The Game Reloaded. Pathogens 2021; 10:pathogens10010069. [PMID: 33466592 PMCID: PMC7828653 DOI: 10.3390/pathogens10010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
In silico analysis is a promising approach for understanding biological events in complex diseases. Herein we report on the innovative computational workflow allowed to highlight new direct interactions between human transcription factors (TFs) and an entire genome of virus ZikaSPH2015 strain in order to identify the occurrence of specific motifs on a genomic Zika Virus sequence that is able to bind and, therefore, sequester host’s TFs. The analysis pipeline was performed using different bioinformatics tools available online (free of charge). According to obtained results of this in silico analysis, it is possible to hypothesize that these TFs binding motifs might be able to explain the complex and heterogeneous phenotype presentation in Zika-virus-affected fetuses/newborns, as well as the less severe condition in adults. Moreover, the proposed in silico protocol identified thirty-three different TFs identical to the distribution of TFBSs (Transcription Factor Binding Sites) on ZikaSPH2015 strain, potentially able to influence genes and pathways with biological functions confirming that this approach could find potential answers on disease pathogenesis.
Collapse
Affiliation(s)
- Massimiliano Chetta
- U.O.C. Genetica Medica e di Laboratorio, Ospedale Antonio Cardarelli, 80131 Napoli, Italy; (M.T.); (L.V.)
- Correspondence:
| | - Marina Tarsitano
- U.O.C. Genetica Medica e di Laboratorio, Ospedale Antonio Cardarelli, 80131 Napoli, Italy; (M.T.); (L.V.)
| | - Laura Vicari
- U.O.C. Genetica Medica e di Laboratorio, Ospedale Antonio Cardarelli, 80131 Napoli, Italy; (M.T.); (L.V.)
| | - Annalisa Saracino
- Clinica di Malattie Infettive, Dipartimento di Scienze Biomediche ed Oncologia Umana, Università degli Studi “Aldo Moro” di Bari, 70124 Bari, Italy;
| | - Nenad Bukvic
- Genetica Medica, Azienda Ospedaliero Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy;
| |
Collapse
|
16
|
BCL11A: a potential diagnostic biomarker and therapeutic target in human diseases. Biosci Rep 2020; 39:220893. [PMID: 31654056 PMCID: PMC6851505 DOI: 10.1042/bsr20190604] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/16/2022] Open
Abstract
Transcription factor B-cell lymphoma/leukemia 11A (BCL11A) gene encodes a zinc-finger protein that is predominantly expressed in brain and hematopoietic tissue. BCL11A functions mainly as a transcriptional repressor that is crucial in brain, hematopoietic system development, as well as fetal-to-adult hemoglobin switching. The expression of this gene is regulated by microRNAs, transcription factors and genetic variations. A number of studies have recently shown that BCL11A is involved in β-hemoglobinopathies, hematological malignancies, malignant solid tumors, 2p15-p16.1 microdeletion syndrome, and Type II diabetes. It has been suggested that BCL11A may be a potential prognostic biomarker and therapeutic target for some diseases. In this review, we summarize the current research state of BCL11A, including its biochemistry, expression, regulation, function, and its possible clinical application in human diseases.
Collapse
|
17
|
Korenke GC, Schulte B, Biskup S, Neidhardt J, Owczarek-Lipska M. A Novel de novo Frameshift Mutation in the BCL11A Gene in a Patient with Intellectual Disability Syndrome and Epilepsy. Mol Syndromol 2020; 11:135-140. [PMID: 32903878 DOI: 10.1159/000508566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/23/2020] [Indexed: 11/19/2022] Open
Abstract
Intellectual disability syndrome (IDS) associated with a hereditary persistence of fetal haemoglobin (HbF), also known as Dias-Logan syndrome, is commonly characterised by psychomotor developmental delay, intelectual disability, language delay, strabismus, thin upper lip, abnormalities of external ears, microcephaly, downslanting palpebral fissures. Sporadically, autism spectrum disorders and blue sclerae in infancy have been reported in IDS. Rarely, IDS-affected patients present with epilepsy and/or epileptic syndromes. It has been shown that a haploinsufficiency of the B cell leukaemia/lymphoma 11A gene (BCL11A) is responsible for IDS. Herein, we identified a novel de novo frameshift deletion (c.271delG; p.E91Afs*2) in the BCL11A gene in a boy affected with IDS. Interestingly, this heterozygous loss-of-function BCL11A mutation was also associated with a generalised idiopathic epilepsy and severe language delay observed in the patient. Moreover, our study showed that the combination of molecular genetic analyses with the monitoring of HbF was essential to make the final diagnosis of Dias-Logan syndrome. Because our patient suffered from well-controlled epilepsy, we propose to include the BCL11A gene in routinely used molecular genetic epilepsy-related gene panels. Additionally, many of the clinical features of IDS overlap with symptoms observed in patients with suspected alcohol spectrum disorders. Therefore, we also suggest monitoring HbF levels in patients with these syndromes to further facilitate clinical diagnosis.
Collapse
Affiliation(s)
- Georg Christoph Korenke
- Department of Neuropediatrics, University Children's Hospital, Klinikum Oldenburg, Oldenburg, Germany
| | - Björn Schulte
- Praxis für Humangenetik, Tübingen, Germany.,Center for Genomics and Transcriptomics, CeGaT GmbH, Tübingen, Germany
| | - Saskia Biskup
- Praxis für Humangenetik, Tübingen, Germany.,Center for Genomics and Transcriptomics, CeGaT GmbH, Tübingen, Germany
| | - John Neidhardt
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, University of Oldenburg, Oldenburg, Germany.,Joint Research Training Group of the Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany, and University Medical Center Groningen, Groningen, The Netherlands.,Junior Research Group, Genetics of Childhood Brain Malformations, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Marta Owczarek-Lipska
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
18
|
A missense variant, p.(Ile269Asn), in MC4R as a secondary finding in a child with BCL11A-related intellectual disability. Eur J Med Genet 2020; 63:103969. [PMID: 32534219 DOI: 10.1016/j.ejmg.2020.103969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 05/17/2020] [Accepted: 06/01/2020] [Indexed: 11/22/2022]
Abstract
We describe a three year old female who underwent clinical exome sequencing and was diagnosed with BCL11A-related intellectual disability/Dias-Logan syndrome due to a de novo, heterozygous variant in the BCL11A gene, NM_018014.3:c.148C > T; p.(Gln50*). A missense variant in MC4R, NM_005912.3:c.806T > A; p.(Ile269Asn), was also reported as a secondary finding. In her family, her father, paternal aunt, and paternal uncle were all reported to have height and weight measurements suggestive of Class 3 obesity with BMI>40 kg/m2. The MC4R gene is not currently listed among those recommended for reporting of secondary findings by the American College of Medical Genetics and Genomics (ACMG). The identification of genetic risk factors for obesity is an emerging field without established guidelines for the care of patients who are found to have a predisposing genetic variant for obesity as a secondary finding. Management suggestions include interventions for weight-management, early screening for obesity-related co-morbidities, such as diabetes and dyslipidemia, and targeted therapies, such as MC4R agonists.
Collapse
|
19
|
Simon R, Wiegreffe C, Britsch S. Bcl11 Transcription Factors Regulate Cortical Development and Function. Front Mol Neurosci 2020; 13:51. [PMID: 32322190 PMCID: PMC7158892 DOI: 10.3389/fnmol.2020.00051] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Transcription factors regulate multiple processes during brain development and in the adult brain, from brain patterning to differentiation and maturation of highly specialized neurons as well as establishing and maintaining the functional neuronal connectivity. The members of the zinc-finger transcription factor family Bcl11 are mainly expressed in the hematopoietic and central nervous systems regulating the expression of numerous genes involved in a wide range of pathways. In the brain Bcl11 proteins are required to regulate progenitor cell proliferation as well as differentiation, migration, and functional integration of neural cells. Mutations of the human Bcl11 genes lead to anomalies in multiple systems including neurodevelopmental impairments like intellectual disabilities and autism spectrum disorders.
Collapse
Affiliation(s)
- Ruth Simon
- Institute of Molecular and Cellular Anatomy, Ulm University, Germany
| | | | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Germany
| |
Collapse
|
20
|
Aamodt CM, Farias-Virgens M, White SA. Birdsong as a window into language origins and evolutionary neuroscience. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190060. [PMID: 31735151 DOI: 10.1098/rstb.2019.0060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Humans and songbirds share the key trait of vocal learning, manifested in speech and song, respectively. Striking analogies between these behaviours include that both are acquired during developmental critical periods when the brain's ability for vocal learning peaks. Both behaviours show similarities in the overall architecture of their underlying brain areas, characterized by cortico-striato-thalamic loops and direct projections from cortical neurons onto brainstem motor neurons that control the vocal organs. These neural analogies extend to the molecular level, with certain song control regions sharing convergent transcriptional profiles with speech-related regions in the human brain. This evolutionary convergence offers an unprecedented opportunity to decipher the shared neurogenetic underpinnings of vocal learning. A key strength of the songbird model is that it allows for the delineation of activity-dependent transcriptional changes in the brain that are driven by learned vocal behaviour. To capitalize on this advantage, we used previously published datasets from our laboratory that correlate gene co-expression networks to features of learned vocalization within and after critical period closure to probe the functional relevance of genes implicated in language. We interrogate specific genes and cellular processes through converging lines of evidence: human-specific evolutionary changes, intelligence-related phenotypes and relevance to vocal learning gene co-expression in songbirds. This article is part of the theme issue 'What can animal communication teach us about human language?'
Collapse
Affiliation(s)
- Caitlin M Aamodt
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA 90095-7239, USA
| | - Madza Farias-Virgens
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California Los Angeles, CA 90095-7239, USA
| | - Stephanie A White
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA 90095-7239, USA.,Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California Los Angeles, CA 90095-7239, USA.,Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-7239, USA
| |
Collapse
|
21
|
Chen CP, Chern SR, Wu PS, Chen SW, Lai ST, Chuang TY, Chen WL, Yang CW, Wang W. Prenatal diagnosis of a 3.2-Mb 2p16.1-p15 duplication associated with familial intellectual disability. Taiwan J Obstet Gynecol 2018; 57:578-582. [PMID: 30122582 DOI: 10.1016/j.tjog.2018.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE We present prenatal diagnosis of a 2p16.1-p15 duplication associated with familial intellectual disability, and we discuss the genotype-phenotype correlation. CASE REPORT A 22-year-old, primigravid woman underwent amniocentesis at 22 weeks of gestation because of a family history of intellectual disability. The woman and her two sisters had intellectual disability but no behavioral disorders. The intellectual disability was noted in at least one paternal aunt and six paternal cousins of the woman. Cytogenetic analysis revealed the karyotype of 46,XX in the fetus and the two women. Array comparative genomic hybridization (aCGH) analysis on the DNAs extracted from cultured amniocytes and the bloods of the woman and the her sister revealed a 3.244-Mb duplication of 2p16.1-p15 or arr 2p16.1p15 (58,288,588-61,532,538) × 3.0 [GRCh37 (hg19)] encompassing eight Online Mendelian Inheritance in Man (OMIM) genes of VRK2, FANCL, BCL11A, PAPOLG, REL, PUS10, PEX13 and USP34 in the fetus and the two women. Prenatal ultrasound findings were unremarkable. The woman elected to continue the pregnancy. A 3244-g female baby was delivered at term with neither craniofacial dysmorphism nor structural abnormalities. CONCLUSION aCGH is useful in prenatal diagnosis of inherited subtle chromosome imbalance in pregnancy with familial intellectual disability. Chromosome 2p16.1-p15 duplication can be associated with intellectual disability.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ting Lai
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tzu-Yun Chuang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wen-Lin Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chien-Wen Yang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
22
|
Morgan AT, Webster R. Aetiology of childhood apraxia of speech: A clinical practice update for paediatricians. J Paediatr Child Health 2018; 54:1090-1095. [PMID: 30294994 DOI: 10.1111/jpc.14150] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 02/03/2023]
Abstract
Childhood apraxia of speech (CAS) is a rare disorder of childhood that can leave a watermark of the impacts throughout the lifetime. Since being first described in the 1950s, aetiological insights have been limited. At a neurobiological level, clinical MRI scans fail to reveal overt neural anomalies in individual cases with CAS, although quantitative MRI methods have revealed subtle brain anomalies at a group level. Dramatic insights, however, occurred in the past decade from the discovery of genetic pathways underlying the phenotype. Several single genes and copy number-variant conditions are now associated with CAS either in relative isolation, as in the case of FOXP2 variants, or most typically in association with other neurodevelopmental conditions, such as epilepsy, intellectual disability, motor impairment and autism. CAS requires careful differential diagnosis from other childhood speech disorders, but when a severe and persistent diagnosis is confirmed, a genetic aetiology should increasingly be pursued.
Collapse
Affiliation(s)
- Angela T Morgan
- Speech and Language, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.,Department of Audiology and Speech Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Richard Webster
- Department of Neurology and Neurosurgery, Children's Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Soblet J, Dimov I, Graf von Kalckreuth C, Cano-Chervel J, Baijot S, Pelc K, Sottiaux M, Vilain C, Smits G, Deconinck N. BCL11A frameshift mutation associated with dyspraxia and hypotonia affecting the fine, gross, oral, and speech motor systems. Am J Med Genet A 2017; 176:201-208. [PMID: 28960836 PMCID: PMC5765401 DOI: 10.1002/ajmg.a.38479] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 12/08/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022]
Abstract
We report the case of a 7‐year‐old male of Western European origin presenting with moderate intellectual disability, severe childhood apraxia of speech in the presence of oral and manual dyspraxia, and hypotonia across motor systems including the oral and speech motor systems. Exome sequencing revealed a de novo frameshift protein truncating mutation in the fourth exon of BCL11A, a gene recently demonstrated as being involved in cognition and language development. Making parallels with a previously described patient with a 200 kb 2p15p16.1 deletion encompassing the entire BCL11A gene and displaying a similar phenotype, we characterize in depth how BCL11A is involved in clinical aspects of language development and oral praxis.
Collapse
Affiliation(s)
- Julie Soblet
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Ivan Dimov
- Faculté de Médecine ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Clemens Graf von Kalckreuth
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Julie Cano-Chervel
- Department of Child and Adolescent Psychiatry, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Simon Baijot
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium.,Department of Child and Adolescent Psychiatry, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Karin Pelc
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Martine Sottiaux
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| | - Catheline Vilain
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Guillaume Smits
- Department of Genetics, Hôpital Universitaire des Enfants Reine Fabiola, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.,Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Brussels, Belgium
| | - Nicolas Deconinck
- Department of Pediatric Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|