1
|
Kaur N, do Rosario MC, Majethia P, Mascarenhas S, Rao LP, Nair KV, Hunakunti B, Prasannakumar AP, Naik R, Narayanan DL, Nayak SS, Bhat V, Sharma S, Ramesh Bhat Y, Yatheesha BL, Kulkarni R, Patil SJ, Nampoothiri S, Siddiqui S, Girisha KM, Bielas S, Shukla A. Neuroimaging to Genotype: Delineating the Spectrum of Disorders With Deficient Myelination in the Indian Population. Am J Med Genet A 2025; 197:e63914. [PMID: 39470296 PMCID: PMC7617591 DOI: 10.1002/ajmg.a.63914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
Several genetic disorders are associated with either a permanent deficit or a delay in central nervous system myelination. We investigated 24 unrelated families (25 individuals) with deficient myelination after clinical and radiological evaluation. A combinatorial approach of targeting and/or genomic testing was employed. Molecular diagnosis was achieved in 22 out of 24 families (92%). Four families (4/9, 44%) were diagnosed with targeted testing and 18 families (18/23, 78%) were diagnosed using broad genomic testing. Overall, 14 monogenic disorders were identified. Twenty disease-causing variants were identified in 14 genes including PLP1, GJC2, POLR1C, TUBB4A, UFM1, NKX6-2, DEGS1, RNASEH2C, HEXA, ATP7A, SETBP1, GRIN2B, OCLN, and ZBTB18. Among these, nine (45%) variants are novel. Fourteen families (82%, 14/17) were diagnosed using proband-only exome sequencing (ES) complemented with deep phenotyping, thus highlighting the utility of singleton ES as a valuable diagnostic tool for identifying these disorders in resource-limited settings.
Collapse
Affiliation(s)
- Namanpreet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Michelle C. do Rosario
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Purvi Majethia
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Selinda Mascarenhas
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Lakshmi Priya Rao
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Karthik Vijay Nair
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Bhagesh Hunakunti
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Adarsh Pooradan Prasannakumar
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rohit Naik
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Shalini S. Nayak
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Vivekananda Bhat
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Suvasini Sharma
- Neurology Division, Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| | - Y. Ramesh Bhat
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - B. L. Yatheesha
- Paediatric Neurology, Dheemahi Child Neurology and Development Center, Shimoga, India
| | - Rajesh Kulkarni
- Department of Paediatrics, Postgraduate Institute, Yashwantrao Chavan Memorial Hospital, Pune, India
| | - Siddaramappa J. Patil
- Division of Medical Genetics, Narayana Hrudayalaya Hospitals/Mazumdar-Shaw Medical Center, Bangalore, India
| | - Sheela Nampoothiri
- Department of Paediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin, India
| | - Shahyan Siddiqui
- Department of Neuro and Vascular Interventional Radiology, Yashoda Hospitals, Hyderabad, India
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Stephanie Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
Cetin Gedik K, Lamot L, Romano M, Demirkaya E, Piskin D, Torreggiani S, Adang LA, Armangue T, Barchus K, Cordova DR, Crow YJ, Dale RC, Durrant KL, Eleftheriou D, Fazzi EM, Gattorno M, Gavazzi F, Hanson EP, Lee-Kirsch MA, Montealegre Sanchez GA, Neven B, Orcesi S, Ozen S, Poli MC, Schumacher E, Tonduti D, Uss K, Aletaha D, Feldman BM, Vanderver A, Brogan PA, Goldbach-Mansky R. The 2021 European Alliance of Associations for Rheumatology/American College of Rheumatology Points to Consider for Diagnosis and Management of Autoinflammatory Type I Interferonopathies: CANDLE/PRAAS, SAVI, and AGS. Arthritis Rheumatol 2022; 74:735-751. [PMID: 35315249 DOI: 10.1002/art.42087] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Autoinflammatory type I interferonopathies, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature/proteasome-associated autoinflammatory syndrome (CANDLE/PRAAS), stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI), and Aicardi-Goutières syndrome (AGS) are rare and clinically complex immunodysregulatory diseases. With emerging knowledge of genetic causes and targeted treatments, a Task Force was charged with the development of "points to consider" to improve diagnosis, treatment, and long-term monitoring of patients with these rare diseases. METHODS Members of a Task Force consisting of rheumatologists, neurologists, an immunologist, geneticists, patient advocates, and an allied health care professional formulated research questions for a systematic literature review. Then, based on literature, Delphi questionnaires, and consensus methodology, "points to consider" to guide patient management were developed. RESULTS The Task Force devised consensus and evidence-based guidance of 4 overarching principles and 17 points to consider regarding the diagnosis, treatment, and long-term monitoring of patients with the autoinflammatory interferonopathies, CANDLE/PRAAS, SAVI, and AGS. CONCLUSION These points to consider represent state-of-the-art knowledge to guide diagnostic evaluation, treatment, and management of patients with CANDLE/PRAAS, SAVI, and AGS and aim to standardize and improve care, quality of life, and disease outcomes.
Collapse
Affiliation(s)
- Kader Cetin Gedik
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Lovro Lamot
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Micol Romano
- University of Western Ontario, London, Ontario, Canada
| | | | - David Piskin
- University of Western Ontario, London Health Sciences Center, and Lawson Health Research Institute, London, Ontario, Canada
| | - Sofia Torreggiani
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, and UOC Pediatria a Media Intensità di Cura, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura A Adang
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Thais Armangue
- Sant Joan de Deu Children's Hospital and IDIBAPS-Hospital Clinic; University of Barcelona, Barcelona, Spain
| | - Kathe Barchus
- Autoinflammatory Alliance, San Francisco, California
| | - Devon R Cordova
- Aicardi-Goutieres Syndrome Americas Association, Manhattan Beach, California
| | - Yanick J Crow
- University of Edinburgh, Edinburgh, UK, and Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, University of Paris, Paris, France
| | - Russell C Dale
- University of Sydney, Sydney, New South Wales, Australia
| | - Karen L Durrant
- Autoinflammatory Alliance and Kaiser San Francisco Hospital, San Francisco, California
| | | | - Elisa M Fazzi
- ASST Civil Hospital and University of Brescia, Brescia, Italy
| | | | - Francesco Gavazzi
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, and University of Brescia, Brescia, Italy
| | - Eric P Hanson
- Riley Hospital for Children and Indiana University School of Medicine, Indianapolis
| | | | | | - Bénédicte Neven
- Necker Children's Hospital, AP-HP, Institut Imagine Institut des Maladies Genetiques, University of Paris, Paris, France
| | - Simona Orcesi
- IRCCS Mondino Foundation and University of Pavia, Pavia, Italy
| | - Seza Ozen
- Hacettepe University, Ankara, Turkey
| | | | | | | | - Katsiaryna Uss
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Brian M Feldman
- Hospital for Sick Children and University of Toronto Institute of Health Policy Management and Evaluation, Toronto, Ontario, Canada
| | - Adeline Vanderver
- Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia
| | | | | |
Collapse
|
3
|
Cetin Gedik K, Lamot L, Romano M, Demirkaya E, Piskin D, Torreggiani S, Adang LA, Armangue T, Barchus K, Cordova DR, Crow YJ, Dale RC, Durrant KL, Eleftheriou D, Fazzi EM, Gattorno M, Gavazzi F, Hanson EP, Lee-Kirsch MA, Montealegre Sanchez GA, Neven B, Orcesi S, Ozen S, Poli MC, Schumacher E, Tonduti D, Uss K, Aletaha D, Feldman BM, Vanderver A, Brogan PA, Goldbach-Mansky R. The 2021 EULAR and ACR points to consider for diagnosis and management of autoinflammatory type I interferonopathies: CANDLE/PRAAS, SAVI and AGS. Ann Rheum Dis 2022; 81:601-613. [PMID: 35086813 PMCID: PMC9036471 DOI: 10.1136/annrheumdis-2021-221814] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/11/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Autoinflammatory type I interferonopathies, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature/proteasome-associated autoinflammatory syndrome (CANDLE/PRAAS), stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy (SAVI) and Aicardi-Goutières syndrome (AGS) are rare and clinically complex immunodysregulatory diseases. With emerging knowledge of genetic causes and targeted treatments, a Task Force was charged with the development of 'points to consider' to improve diagnosis, treatment and long-term monitoring of patients with these rare diseases. METHODS Members of a Task Force consisting of rheumatologists, neurologists, an immunologist, geneticists, patient advocates and an allied healthcare professional formulated research questions for a systematic literature review. Then, based on literature, Delphi questionnaires and consensus methodology, 'points to consider' to guide patient management were developed. RESULTS The Task Force devised consensus and evidence-based guidance of 4 overarching principles and 17 points to consider regarding the diagnosis, treatment and long-term monitoring of patients with the autoinflammatory interferonopathies, CANDLE/PRAAS, SAVI and AGS. CONCLUSION These points to consider represent state-of-the-art knowledge to guide diagnostic evaluation, treatment and management of patients with CANDLE/PRAAS, SAVI and AGS and aim to standardise and improve care, quality of life and disease outcomes.
Collapse
Affiliation(s)
- Kader Cetin Gedik
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Lovro Lamot
- Department of Pediatrics, University Hospital Centre Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Micol Romano
- Division of Paediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Erkan Demirkaya
- Division of Paediatric Rheumatology, Department of Paediatrics, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - David Piskin
- Department of Epidemiology and Biostatistics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada.,London Health Sciences Center, Lawson Health Research Institute, London, Ontario, Canada
| | - Sofia Torreggiani
- 1Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.,UOC Pediatria a Media Intensità di Cura, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Lombardia, Italy
| | - Laura A Adang
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Thais Armangue
- Pediatric Neuroimmunology Unit, Neurology Service, Sant Joan de Deu Children's Hospital, and IDIBAPS-Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Kathe Barchus
- Autoinflammatory Alliance, San Francisco, California, USA
| | - Devon R Cordova
- Aicardi-Goutieres Syndrome Americas Association, Manhattan Beach, California, USA
| | - Yanick J Crow
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburg, Edinburg, UK.,Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Université de Paris, Paris, Île-de-France, France
| | - Russell C Dale
- Kids Neuroscience Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Karen L Durrant
- Autoinflammatory Alliance, San Francisco, California, USA.,Kaiser San Francisco Hospital, San Francisco, California, USA
| | - Despina Eleftheriou
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Elisa M Fazzi
- Child Neurology and Psychiatry Unit, Department of Clinical and Experimental Sciences ASST Civil Hospital, University of Brescia, Brescia, Italy
| | - Marco Gattorno
- Center for Autoinflammatory diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesco Gavazzi
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Eric P Hanson
- Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gina A Montealegre Sanchez
- Intramural Clinical Management and Operations Branch (ICMOB), Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Bénédicte Neven
- Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Institut Imagine Institut des Maladies Genetiques, Paris, Île-de-France, France
| | - Simona Orcesi
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Lombardia, Italy
| | - Seza Ozen
- Pediatric Rheumatology, Hacettepe University, Ankara, Turkey
| | - M Cecilia Poli
- Department of Pediatrics, Facultad de Medicina Clinica Alemana Universidad del Desarrollo, Santiago, Chile
| | | | - Davide Tonduti
- Child Neurology Unit, COALA (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Milano, Italy
| | - Katsiaryna Uss
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Daniel Aletaha
- Department of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - Brian M Feldman
- Division of Rheumatology, Hospital for Sick Children, Toronto, Ontario, Canada.,30Department of Pediatrics, Faculty of Medicine, University of Toronto Institute of Health Policy Management and Evaluation, Toronto, Ontario, Canada
| | - Adeline Vanderver
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul A Brogan
- Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Kaur P, do Rosario MC, Hebbar M, Sharma S, Kausthubham N, Nair K, Shrikiran A, Bhat Y R, Lewis LES, Nampoothiri S, Patil SJ, Suresh N, Bijarnia Mahay S, Dua Puri R, Pai S, Kaur A, KC R, Kamath N, Bajaj S, Kumble A, Shetty R, Shenoy R, Kamate M, Shah H, Muranjan MN, BL Y, Avabratha KS, Subramaniam G, Kadavigere R, Bielas S, Girisha KM, Shukla A. Clinical and genetic spectrum of 104 Indian families with central nervous system white matter abnormalities. Clin Genet 2021; 100:542-550. [PMID: 34302356 PMCID: PMC8918360 DOI: 10.1111/cge.14037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Genetic disorders with predominant central nervous system white matter abnormalities (CNS WMAs), also called leukodystrophies, are heterogeneous entities. We ascertained 117 individuals with CNS WMAs from 104 unrelated families. Targeted genetic testing was carried out in 16 families and 13 of them received a diagnosis. Chromosomal microarray (CMA) was performed for three families and one received a diagnosis. Mendeliome sequencing was used for testing 11 families and all received a diagnosis. Whole exome sequencing (WES) was performed in 80 families and was diagnostic in 52 (65%). Singleton WES was diagnostic for 50/75 (66.67%) families. Overall, genetic diagnoses were obtained in 77 families (74.03%). Twenty-two of 47 distinct disorders observed in this cohort have not been reported in Indian individuals previously. Notably, disorders of nuclear mitochondrial pathology were most frequent (9 disorders in 20 families). Thirty-seven of 75 (49.33%) disease-causing variants are novel. To sum up, the present cohort describes the phenotypic and genotypic spectrum of genetic disorders with CNS WMAs in our population. It demonstrates WES, especially singleton WES, as an efficient tool in the diagnosis of these heterogeneous entities. It also highlights possible founder events and recurrent disease-causing variants in our population and their implications on the testing strategy.
Collapse
Affiliation(s)
- Parneet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Michelle C do Rosario
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Malavika Hebbar
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Suvasini Sharma
- Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children’s Hospital, New Delhi, India
| | - Neethukrishna Kausthubham
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Karthik Nair
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - A Shrikiran
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ramesh Bhat Y
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Leslie Edward S Lewis
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sheela Nampoothiri
- Department of Paediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Kochi, India
| | - SJ Patil
- Division of Genetics, Mazumdar Shaw Medical Centre, Narayana Health City, Bangalore, India
| | - Narayanaswami Suresh
- Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children’s Hospital, New Delhi, India
| | - Sunita Bijarnia Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Shivanand Pai
- Department of Neurology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Anupriya Kaur
- Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakshith KC
- Department of Neurology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Nutan Kamath
- Department of Paediatrics, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Shruti Bajaj
- Jaslok Hospital and Research Centre, Mumbai, India
| | - Ali Kumble
- Department of Paediatrics, Indiana Hospital and Heart Institute, Mangalore, India
| | | | - Rathika Shenoy
- Department of Paediatrics, K.S. Hegde Medical Academy, NITTE University, Mangalore, India
| | - Mahesh Kamate
- Department of Paediatrics, Jawaharlal Nehru Medical College, Belgaum, India
| | - Hitesh Shah
- Department of Orthopaedics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Mamta N Muranjan
- Department of Pediatrics, Genetics Division, Seth Gordhandas Sunderdas Medical College and King Edward VII Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Yatheesha BL
- Dheemahi Child Neurology and Development Center, Shimoga, India
| | | | | | - Rajagopal Kadavigere
- Department of Radiodiagnosis, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Stephanie Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
5
|
Jain A, Sharma D, Bajaj A, Gupta V, Scaria V. Founder variants and population genomes-Toward precision medicine. ADVANCES IN GENETICS 2021; 107:121-152. [PMID: 33641745 DOI: 10.1016/bs.adgen.2020.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human migration and community specific cultural practices have contributed to founder events and enrichment of the variants associated with genetic diseases. While many founder events in isolated populations have remained uncharacterized, the application of genomics in clinical settings as well as for population scale studies in the recent years have provided an unprecedented push towards identification of founder variants associated with human health and disease. The discovery and characterization of founder variants could have far reaching implications not only in understanding the history or genealogy of the disease, but also in implementing evidence based policies and genetic testing frameworks. This further enables precise diagnosis and prevention in an attempt towards precision medicine. This review provides an overview of founder variants along with methods and resources cataloging them. We have also discussed the public health implications and examples of prevalent disease associated founder variants in specific populations.
Collapse
Affiliation(s)
- Abhinav Jain
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Disha Sharma
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anjali Bajaj
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vishu Gupta
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Vinod Scaria
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|