1
|
Bregnard TA, Fairchild D, Chen X, Erlandsen H, Tarasov SG, Walters KJ, Korzhnev DM, Bezsonova I. Differences in structure, dynamics, and zinc coordination between isoforms of human ubiquitin ligase UBE3A. J Biol Chem 2025; 301:108149. [PMID: 39742997 PMCID: PMC11795592 DOI: 10.1016/j.jbc.2024.108149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025] Open
Abstract
Abnormalities in the expression of the ubiquitin ligase UBE3A (ubiquitin-protein ligase E3A)/E6AP (human papillomavirus E6-associated protein) are implicated in neurological disorders including Angelman syndrome and autism. Human UBE3A is expressed as three protein isoforms that differ in their abundance and subcellular localization. While previous studies indicate isoform-specific functions, the distinct roles of each isoform in human development remain unknown. The isoforms differ only by an extension at the N-terminal end of the AZUL (N-terminal zinc [Zn]-binding domain Amino-terminal Zn finger of the UBE3A Ligase) domain, which tethers UBE3A to the proteasome by interaction with proteasomal subunit Rpn10. Differences in the structure and biophysical properties of UBE3A isoforms likely contribute to their individual functions. Here, we use a combination of NMR spectroscopy and other biophysical and biochemical techniques to identify differences in structure, dynamics, and the Rpn10 binding of the AZUL isoforms. We show that the AZUL domain structure is retained in all three isoforms with an extended N-terminal helix in longer isoforms 2 and 3. Accordingly, all isoforms could effectively associate with the Rpn10. Significant differences between the isoforms were found in their propensities to multimerize where only the longer isoforms 2 and 3 of the AZUL domain could form dimers, which may play a role in the previously observed oligomerization-dependent activation of the UBE3A. Moreover, our NMR relaxation dispersion experiments revealed a dynamic Zn-coordination site in isoforms 1 and 3, but not in isoform 2 of UBE3A, suggesting its possible isoform-specific sensitivity to oxidative stress. This structural and biophysical characterization of the isoforms will advance our understanding of isoform-specific functions of UBE3A and may contribute to future treatment strategies for Angelman syndrome and other UBE3A-related diseases.
Collapse
Affiliation(s)
- Thomas A Bregnard
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, Connecticut, USA
| | - Daniel Fairchild
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, Connecticut, USA
| | - Xiang Chen
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Heidi Erlandsen
- Center for Open Research Resources & Equipment, UCONN, Storrs, Connecticut, USA
| | - Sergey G Tarasov
- Biophysics Resource, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Kylie J Walters
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, Connecticut, USA
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, UCONN Health, Farmington, Connecticut, USA.
| |
Collapse
|
2
|
Krzeski JC, Judson MC, Philpot BD. Neuronal UBE3A substrates hold therapeutic potential for Angelman syndrome. Curr Opin Neurobiol 2024; 88:102899. [PMID: 39126903 PMCID: PMC11397222 DOI: 10.1016/j.conb.2024.102899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/22/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Emerging therapies for Angelman syndrome, a severe neurodevelopmental disorder, are focused on restoring UBE3A gene expression in the brain. Further therapeutic opportunities may arise from a better understanding of how UBE3A gene products-both long and short isoforms of the ubiquitin ligase E3A (UBE3A)-function in neurons. Great strides have been made recently toward identifying ubiquitin substrates of UBE3A in vitro and in heterologous expression systems. From this work, a particularly close relationship between UBE3A and subunits of the 19S regulatory particle of the proteasome has become evident. We propose that further research cognizant of isoform-specific UBE3A functional roles will be instrumental in elucidating key UBE3A/substrate relationships within distinct neuronal compartments, lending to the discovery of novel therapeutic targets and valuable clinical biomarkers for the treatment of Angelman syndrome.
Collapse
Affiliation(s)
- Joseph C Krzeski
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Matthew C Judson
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin D Philpot
- Department of Cell Biology & Physiology, University of North Carolina, Chapel Hill, NC, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Sadhwani A, Wheeler A, Gwaltney A, Peters SU, Barbieri-Welge RL, Horowitz LT, Noll LM, Hundley RJ, Bird LM, Tan WH. Developmental Skills of Individuals with Angelman Syndrome Assessed Using the Bayley-III. J Autism Dev Disord 2023; 53:720-737. [PMID: 33517526 PMCID: PMC8322148 DOI: 10.1007/s10803-020-04861-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2020] [Indexed: 12/27/2022]
Abstract
We describe the development of 236 children with Angelman syndrome (AS) using the Bayley Scales of Infant and Toddler Development, Third Edition. Multilevel linear mixed modeling approaches were used to explore differences between molecular subtypes and over time. Individuals with AS continue to make slow gains in development through at least age 12 years of age at about 1-2 months/year based on age equivalent score and 1-16 growth score points/year depending on molecular subtype and domain. Children with a deletion have lower scores at baseline and slower rate of gaining skills while children with UBE3A variant subtype demonstrated higher scores as well as greater rates of skill attainment in all domains. The developmental profiles of UPD and ImpD were similar.
Collapse
Affiliation(s)
- Anjali Sadhwani
- Department of Psychiatry, Boston Children's Hospital, Boston, MA, 02115, USA. .,Harvard Medical School, Boston, MA, USA.
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC, USA
| | | | - Sarika U. Peters
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rene L. Barbieri-Welge
- Developmental Evaluation Clinic, Rady Children’s Hospital - San Diego, San Diego, CA, USA
| | | | - Lisa M. Noll
- Psychology Service, Texas Children’s Hospital, Houston, TX, USA,Baylor College of Medicine, Houston, TX, USA
| | - Rachel J. Hundley
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lynne M. Bird
- Division of Dysmorphology/Genetics, Rady Children’s Hospital - San Diego, San Diego, CA, USA,Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | - Wen-Hann Tan
- Harvard Medical School, Boston, MA, USA,Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
4
|
McKnight D, Bean L, Karbassi I, Beattie K, Bienvenu T, Bonin H, Fang P, Chrisodoulou J, Friez M, Helgeson M, Krishnaraj R, Meng L, Mighion L, Neul J, Percy A, Ramsden S, Zoghbi H, Das S. Recommendations by the ClinGen Rett/Angelman-like expert panel for gene-specific variant interpretation methods. Hum Mutat 2022; 43:1097-1113. [PMID: 34837432 PMCID: PMC9135956 DOI: 10.1002/humu.24302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/05/2021] [Accepted: 11/21/2021] [Indexed: 11/11/2022]
Abstract
The genes MECP2, CDKL5, FOXG1, UBE3A, SLC9A6, and TCF4 present unique challenges for current ACMG/AMP variant interpretation guidelines. To address those challenges, the Rett and Angelman-like Disorders Variant Curation Expert Panel (Rett/AS VCEP) drafted gene-specific modifications. A pilot study was conducted to test the clarity and accuracy of using the customized variant interpretation criteria. Multiple curators obtained the same interpretation for 78 out of the 87 variants (~90%), indicating appropriate usage of the modified guidelines the majority of times by all the curators. The classification of 13 variants changed using these criteria specifications compared to when the variants were originally curated and as present in ClinVar. Many of these changes were due to internal data shared from laboratory members however some changes were because of changes in strength of criteria. There were no two-step classification changes and only 1 clinically relevant change (Likely pathogenic to VUS). The Rett/AS VCEP hopes that these gene-specific variant curation rules and the assertions provided help clinicians, clinical laboratories, and others interpret variants in these genes but also other fully penetrant, early-onset genes associated with rare disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John Chrisodoulou
- Murdoch Childrens Research Institute and the University of Melbourne,University of Sydney
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Judson MC, Shyng C, Simon JM, Davis CR, Punt AM, Salmon MT, Miller NW, Ritola KD, Elgersma Y, Amaral DG, Gray SJ, Philpot BD. Dual-isoform hUBE3A gene transfer improves behavioral and seizure outcomes in Angelman syndrome model mice. JCI Insight 2021; 6:144712. [PMID: 34676830 PMCID: PMC8564914 DOI: 10.1172/jci.insight.144712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 09/02/2021] [Indexed: 12/23/2022] Open
Abstract
Loss of the maternal UBE3A allele causes Angelman syndrome (AS), a debilitating neurodevelopmental disorder. Here, we devised an AS treatment strategy based on reinstating dual-isoform expression of human UBE3A (hUBE3A) in the developing brain. Kozak sequence engineering of our codon-optimized vector (hUBE3Aopt) enabled translation of both short and long hUBE3A protein isoforms at a near-endogenous 3:1 (short/long) ratio, a feature that could help to support optimal therapeutic outcomes. To model widespread brain delivery and early postnatal onset of hUBE3A expression, we packaged the hUBE3Aopt vector into PHP.B capsids and performed intracerebroventricular injections in neonates. This treatment significantly improved motor learning and innate behaviors in AS mice, and it rendered them resilient to epileptogenesis and associated hippocampal neuropathologies induced by seizure kindling. hUBE3A overexpression occurred frequently in the hippocampus but was uncommon in the neocortex and other major brain structures; furthermore, it did not correlate with behavioral performance. Our results demonstrate the feasibility, tolerability, and therapeutic potential for dual-isoform hUBE3A gene transfer in the treatment of AS.
Collapse
Affiliation(s)
- Matthew C Judson
- Neuroscience Center.,Department of Cell Biology and Physiology.,Carolina Institute for Developmental Disabilities
| | - Charles Shyng
- Carolina Institute for Developmental Disabilities.,Gene Therapy Center, and
| | - Jeremy M Simon
- Neuroscience Center.,Carolina Institute for Developmental Disabilities.,Department of Genetics, University of North Carolina (UNC), Chapel Hill, North Carolina, USA
| | | | - A Mattijs Punt
- Department of Clinical Genetics and.,Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Noah W Miller
- Neuroscience Center.,Department of Cell Biology and Physiology
| | - Kimberly D Ritola
- Neuroscience Center.,Department of Pharmacology, UNC, Chapel Hill, North Carolina, USA.,Scientific Operations Manager-Viral Tools, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA
| | - Ype Elgersma
- Department of Clinical Genetics and.,Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - David G Amaral
- Department of Psychiatry and Behavioral Sciences, MIND Institute, and.,California National Primate Research Center, University of California, Davis, California, USA
| | - Steven J Gray
- Gene Therapy Center, and.,Department of Pediatrics and.,Eugene McDermott Center for Human Growth and Development, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin D Philpot
- Neuroscience Center.,Department of Cell Biology and Physiology.,Carolina Institute for Developmental Disabilities
| |
Collapse
|
6
|
Sirois CL, Bloom JE, Fink JJ, Gorka D, Keller S, Germain ND, Levine ES, Chamberlain SJ. Abundance and localization of human UBE3A protein isoforms. Hum Mol Genet 2021; 29:3021-3031. [PMID: 32833011 DOI: 10.1093/hmg/ddaa191] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023] Open
Abstract
Loss of UBE3A expression, a gene regulated by genomic imprinting, causes Angelman syndrome (AS), a rare neurodevelopmental disorder. The UBE3A gene encodes an E3 ubiquitin ligase with three known protein isoforms in humans. Studies in mouse suggest that the human isoforms may have differences in localization and neuronal function. A recent case study reported mild AS phenotypes in individuals lacking one specific isoform. Here we have used CRISPR/Cas9 to generate isogenic human embryonic stem cells (hESCs) that lack the individual protein isoforms. We demonstrate that isoform 1 accounts for the majority of UBE3A protein in hESCs and neurons. We also show that UBE3A predominantly localizes to the cytoplasm in both wild type and isoform-null cells. Finally, we show that neurons lacking isoform 1 display a less severe electrophysiological AS phenotype.
Collapse
Affiliation(s)
- Carissa L Sirois
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Judy E Bloom
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030, USA.,Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - James J Fink
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Dea Gorka
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Steffen Keller
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Noelle D Germain
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Eric S Levine
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Stormy J Chamberlain
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
7
|
Bossuyt SNV, Punt AM, de Graaf IJ, van den Burg J, Williams MG, Heussler H, Elgersma Y, Distel B. Loss of nuclear UBE3A activity is the predominant cause of Angelman syndrome in individuals carrying UBE3A missense mutations. Hum Mol Genet 2021; 30:430-442. [PMID: 33607653 PMCID: PMC8101352 DOI: 10.1093/hmg/ddab050] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/16/2022] Open
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by deletion (~75%) or mutation (~10%) of the ubiquitin E3 ligase A (UBE3A) gene, which encodes a HECT type E3 ubiquitin protein ligase. Although the critical substrates of UBE3A are unknown, previous studies have suggested a critical role of nuclear UBE3A in AS pathophysiology. Here, we investigated to what extent UBE3A missense mutations disrupt UBE3A subcellular localization as well as catalytic activity, stability and protein folding. Our functional screen of 31 UBE3A missense mutants revealed that UBE3A mislocalization is the predominant cause of UBE3A dysfunction, accounting for 55% of the UBE3A mutations tested. The second major cause (29%) is a loss of E3-ubiquitin ligase activity, as assessed in an Escherichia coli in vivo ubiquitination assay. Mutations affecting catalytic activity are found not only in the catalytic HECT domain, but also in the N-terminal half of UBE3A, suggesting an important contribution of this N-terminal region to its catalytic potential. Together, our results show that loss of nuclear UBE3A E3 ligase activity is the predominant cause of UBE3A-linked AS. Moreover, our functional analysis screen allows rapid assessment of the pathogenicity of novel UBE3A missense variants which will be of particular importance when treatments for AS become available.
Collapse
Affiliation(s)
- Stijn N V Bossuyt
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - A Mattijs Punt
- Department of Clinical Genetics and Department of Neuroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015, 3015 CN, Rotterdam, The Netherlands
| | - Ilona J de Graaf
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Janny van den Burg
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Mark G Williams
- Mater Research Institute, Faculty of Medicine, The University of Queensland, 4101, South Brisbane, Queensland, Australia
| | - Helen Heussler
- Mater Research Institute, Faculty of Medicine, The University of Queensland, 4101, South Brisbane, Queensland, Australia.,Child Development Program, Queensland Children's Hospital, 4101, South Brisbane, Queensland, Australia.,Child Health Research Centre, The University of Queensland, 4101, South Brisbane, Queensland, Australia
| | - Ype Elgersma
- Department of Clinical Genetics and Department of Neuroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015, 3015 CN, Rotterdam, The Netherlands
| | - Ben Distel
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.,Department of Clinical Genetics and Department of Neuroscience, Erasmus MC, 3015 GD Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, 3015, 3015 CN, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Molecular Evolution, Neurodevelopmental Roles and Clinical Significance of HECT-Type UBE3 E3 Ubiquitin Ligases. Cells 2020; 9:cells9112455. [PMID: 33182779 PMCID: PMC7697756 DOI: 10.3390/cells9112455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Protein ubiquitination belongs to the best characterized pathways of protein degradation in the cell; however, our current knowledge on its physiological consequences is just the tip of an iceberg. The divergence of enzymatic executors of ubiquitination led to some 600–700 E3 ubiquitin ligases embedded in the human genome. Notably, mutations in around 13% of these genes are causative of severe neurological diseases. Despite this, molecular and cellular context of ubiquitination remains poorly characterized, especially in the developing brain. In this review article, we summarize recent findings on brain-expressed HECT-type E3 UBE3 ligases and their murine orthologues, comprising Angelman syndrome UBE3A, Kaufman oculocerebrofacial syndrome UBE3B and autism spectrum disorder-associated UBE3C. We summarize evolutionary emergence of three UBE3 genes, the biochemistry of UBE3 enzymes, their biology and clinical relevance in brain disorders. Particularly, we highlight that uninterrupted action of UBE3 ligases is a sine qua non for cortical circuit assembly and higher cognitive functions of the neocortex.
Collapse
|
9
|
Zampeta FI, Sonzogni M, Niggl E, Lendemeijer B, Smeenk H, de Vrij FMS, Kushner SA, Distel B, Elgersma Y. Conserved UBE3A subcellular distribution between human and mice is facilitated by non-homologous isoforms. Hum Mol Genet 2020; 29:3032-3043. [PMID: 32879944 PMCID: PMC7645710 DOI: 10.1093/hmg/ddaa194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 11/12/2022] Open
Abstract
The human UBE3A gene, which is essential for normal neurodevelopment, encodes three Ubiquitin E3 ligase A (UBE3A) protein isoforms. However, the subcellular localization and relative abundance of these human UBE3A isoforms are unknown. We found, as previously reported in mice, that UBE3A is predominantly nuclear in human neurons. However, this conserved subcellular distribution is achieved by strikingly distinct cis-acting mechanisms. A single amino-acid deletion in the N-terminus of human hUBE3A-Iso3, which is homologous to cytosolic mouse mUBE3A-Iso2, results in its translocation to the nucleus. This singe amino-acid deletion is shared with apes and Old World monkeys and was preceded by the appearance of the cytosolic hUBE3A-Iso2 isoform. This hUBE3A-Iso2 isoform arose after the lineage of New World monkeys and Old World monkeys separated from the Tarsiers (Tarsiidae). Due to the loss of a single nucleotide in a non-coding exon, this exon became in frame with the remainder of the UBE3A protein. RNA-seq analysis of human brain samples showed that the human UBE3A isoforms arise by alternative splicing. Consistent with the predominant nuclear enrichment of UBE3A in human neurons, the two nuclear-localized isoforms, hUBE3A-Iso1 and -Iso3, are the most abundantly expressed isoforms of UBE3A, while hUBE3A-Iso2 maintains a small pool of cytosolic UBE3A. Our findings provide new insight into UBE3A localization and evolution and may have important implications for gene therapy approaches in Angelman syndrome.
Collapse
Affiliation(s)
- F Isabella Zampeta
- Department of Neuroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Monica Sonzogni
- Department of Neuroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Eva Niggl
- Department of Neuroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Bas Lendemeijer
- Department of Psychiatry, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Hilde Smeenk
- Department of Psychiatry, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Steven A Kushner
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Psychiatry, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Ben Distel
- Department of Neuroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
10
|
Geerts‐Haages A, Bossuyt SNV, den Besten I, Bruggenwirth H, van der Burgt I, Yntema HG, Punt AM, Brooks A, Elgersma Y, Distel B, Valstar M. A novel UBE3A sequence variant identified in eight related individuals with neurodevelopmental delay, results in a phenotype which does not match the clinical criteria of Angelman syndrome. Mol Genet Genomic Med 2020; 8:e1481. [PMID: 32889787 PMCID: PMC7667313 DOI: 10.1002/mgg3.1481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Loss of functional UBE3A, an E3 protein ubiquitin ligase, causes Angelman syndrome (AS), a neurodevelopmental disorder characterized by severe developmental delay, speech impairment, epilepsy, movement or balance disorder, and a characteristic behavioral pattern. We identified a novel UBE3A sequence variant in a large family with eight affected individuals, who did not meet the clinical AS criteria. METHODS Detailed clinical examination and genetic analysis was performed to establish the phenotypic diversity and the genetic cause. The function of the mutant UBE3A protein was assessed with respect to its subcellular localization, stability, and E3 ubiquitin ligase activity. RESULTS All eight affected individuals showed the presence of a novel maternally inherited UBE3A sequence variant (NM_130838.4(UBE3A):c.1018-1020del, p.(Asn340del), which is in line with a genetic AS diagnosis. Although they presented with moderate to severe intellectual disability, the phenotype did not match the clinical criteria for AS. In line with this, functional analysis of the UBE3A p.Asn340del mutant protein revealed no major deficits in UBE3A protein localization, stability, or E3 ubiquitin ligase activity. CONCLUSION The p.(Asn340del) mutant protein behaves distinctly different from previously described AS-linked missense mutations in UBE3A, and causes a phenotype that is markedly different from AS. This study further extends the range of phenotypes that are associated with UBE3A loss, duplication, or mutation.
Collapse
Affiliation(s)
- Amber Geerts‐Haages
- Intellectual Disability MedicineDepartment of General PracticeErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Stijn N. V. Bossuyt
- Department of Medical BiochemistryAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
| | - Inge den Besten
- Intellectual Disability MedicineDepartment of General PracticeErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Hennie Bruggenwirth
- Department of Clinical GeneticsErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Ineke van der Burgt
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - Helger G. Yntema
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
| | - A. Mattijs Punt
- Department of NeuroscienceErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Alice Brooks
- Department of Clinical GeneticsErasmus MC University Medical CenterRotterdamThe Netherlands
- ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Ype Elgersma
- Department of NeuroscienceErasmus MC University Medical CenterRotterdamThe Netherlands
- ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Ben Distel
- Department of Medical BiochemistryAmsterdam UMC, University of AmsterdamAmsterdamThe Netherlands
- Department of NeuroscienceErasmus MC University Medical CenterRotterdamThe Netherlands
- ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands
| | - Marlies Valstar
- Intellectual Disability MedicineDepartment of General PracticeErasmus MC University Medical CenterRotterdamThe Netherlands
- ENCORE Expertise Center for Neurodevelopmental DisordersErasmus MC University Medical CenterRotterdamThe Netherlands
- ASVZ, Medical DepartmentCare and Service Centre for People with Intellectual DisabilitiesSliedrechtThe Netherlands
| |
Collapse
|
11
|
Curtis M, Baribeau D, Walker S, Carter M, Costain G, Lamoureux S, Liston E, Marshall CR, Reuter MS, Snell M, Summers J, Vorstman J, Jobling RK. A novel intronic variant in UBE3A identified by genome sequencing in a patient with an atypical presentation of Angelman syndrome. Am J Med Genet A 2020; 182:2145-2151. [PMID: 32652832 DOI: 10.1002/ajmg.a.61740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 12/15/2022]
Abstract
Angelman syndrome (AS) is a genetic neurodevelopmental disorder caused by loss or deficient expression of UBE3A on the maternally inherited allele. In 10-15% of individuals with a clinical diagnosis of AS, a molecular diagnosis cannot be established with conventional testing. We describe a 13-year-old male with an atypical presentation of AS, who was found to have a novel, maternally inherited, intronic variant in UBE3A (c.3-12T>A) using genome sequencing (GS). Targeted sequencing of RNA isolated from blood confirmed the creation of a new acceptor splice site. These GS results ended a six-year diagnostic odyssey and revealed a 50% recurrence risk for the unaffected parents. This case illustrates a previously unreported splicing variant causing AS. Intronic variants identifiable by GS may account for a proportion of individuals who are suspected of having well-known genetic disorders despite negative prior genetic testing.
Collapse
Affiliation(s)
- Meredith Curtis
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Danielle Baribeau
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Susan Walker
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melissa Carter
- Regional Genetics Program, The Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Gregory Costain
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sylvia Lamoureux
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eriskay Liston
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christian R Marshall
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Miriam S Reuter
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.,CGEn, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Meaghan Snell
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jane Summers
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jacob Vorstman
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rebekah K Jobling
- Centre for Genetic Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada.,Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Kuper WFE, van Alfen C, van Eck L, de Man SA, Willemsen MH, van Gassen KLI, Losekoot M, van Hasselt PM. The c.1A > C start codon mutation in CLN3 is associated with a protracted disease course. JIMD Rep 2020; 52:23-27. [PMID: 32154056 PMCID: PMC7052694 DOI: 10.1002/jmd2.12097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/13/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Background CLN3 disease is a disorder of lysosomal homeostasis predominantly affecting the retina and the brain. The severity of the underlying mutations in CLN3 particularly determines onset and course of neurological deterioration. Given the highly conserved start codon code among eukaryotic species, we expected a variant in the start codon of CLN3 to give rise to the classical, that is, severe, phenotype. Case series We present three patients with an identical CLN3 genotype (compound heterozygosity for the common 1 kb deletion in combination with a c.1A > C start codon variant) who all displayed a more attenuated phenotype than expected. While their retinal phenotype was similar to as expected in classical CLN3 disease, their neurological phenotype was delayed. Two patients had an early onset of cognitive impairment, but a particularly slow deterioration afterwards without any obvious motor impairment. The third patient also had a late onset of cognitive impairment. Conclusions Contrasting our initial expectations, patients with a start codon variant in CLN3 may display a protracted phenotype. Future work will have to reveal the exact mechanism behind the assumed residual protein synthesis, and determine whether this may be eligible to start codon targeted therapy.
Collapse
Affiliation(s)
- Willemijn F E Kuper
- Department of Metabolic Diseases, Wilhelmina Children's Hospital University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| | - Claudia van Alfen
- Bartiméus Institute for the Visually Impaired Zeist, Doorn The Netherlands
| | - Linda van Eck
- Bartiméus Institute for the Visually Impaired Zeist, Doorn The Netherlands
| | - Stella A de Man
- Department of Pediatrics Amphia Hospital Breda The Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics Radboud University Medical Center Nijmegen The Netherlands
| | - Koen L I van Gassen
- Department of Genetics University Medical Center Utrecht Utrecht The Netherlands
| | - Monique Losekoot
- Department of Clinical Genetics Leiden University Medical Center Leiden The Netherlands
| | - Peter M van Hasselt
- Department of Metabolic Diseases, Wilhelmina Children's Hospital University Medical Center Utrecht, Utrecht University Utrecht The Netherlands
| |
Collapse
|
13
|
Sadhwani A, Willen JM, Miller H, Barbieri-Welge R, Horowitz LT, Noll LM, Peters S, Hundley R, Bird LM, Tan WH. Neurodevelopmental profile of siblings with Angelman syndrome due to pathogenic UBE3A variants. JOURNAL OF INTELLECTUAL DISABILITY RESEARCH : JIDR 2020; 64:246-250. [PMID: 31854050 PMCID: PMC8020893 DOI: 10.1111/jir.12700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Angelman syndrome (AS) is a neurodevelopmental disorder caused by a lack of expression of the maternally inherited UBE3A gene on chromosome 15. Individuals with AS due to a UBE3A mutation are more likely to have siblings who also have AS compared with those with AS due to other cytogenetic/molecular mechanisms, but it is unknown whether the developmental outcome of siblings who have AS is similar. METHODS Through an ongoing AS Natural History Study, we identified seven pairs of siblings with AS due to a UBE3A mutation. We compared the neurodevelopment of the first-born and second-born siblings with AS participants who have a UBE3A mutation and have either typically developing siblings or no siblings. RESULTS Second-born AS participants due to a UBE3A mutation were more likely to be diagnosed at an earlier age. With the exception of higher expressive language scores among the second-born participants, no other differences were observed in the developmental and adaptive functioning skills across the different groups. CONCLUSIONS The presence of an older sibling with the same neurodevelopmental disorder is associated with an earlier age of diagnosis and may be associated with an improvement in expressive language skills; the developmental outcome of siblings with AS due to a UBE3A mutation is otherwise comparable.
Collapse
Affiliation(s)
- Anjali Sadhwani
- Department of Psychiatry, Boston Children’s Hospital; Harvard Medical School, Boston, MA
| | - Jennifer M. Willen
- Div. of Genetics & Genomics, Boston Children’s Hospital; Harvard Medical School, Boston, MA
- Department of Psychiatry, Kennedy Krieger Institute, Baltimore, MD
| | - Hillary Miller
- Div. of Genetics & Genomics, Boston Children’s Hospital; Harvard Medical School, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | | | | | - Lisa M. Noll
- Psychology Service, Texas Children’s Hospital, Houston, TX
| | - Sarika Peters
- Div. of Developmental Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Rachel Hundley
- Div. of Developmental Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Lynne M. Bird
- University of California, San Diego, Department of Pediatrics and Genetics / Dysmorphology, Rady Children’s Hospital San Diego, San Diego, CA
| | - Wen-Hann Tan
- Div. of Genetics & Genomics, Boston Children’s Hospital; Harvard Medical School, Boston, MA
| |
Collapse
|
14
|
Rotaru DC, Mientjes EJ, Elgersma Y. Angelman Syndrome: From Mouse Models to Therapy. Neuroscience 2020; 445:172-189. [PMID: 32088294 DOI: 10.1016/j.neuroscience.2020.02.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 12/19/2022]
Abstract
The UBE3A gene is part of the chromosome 15q11-q13 region that is frequently deleted or duplicated, leading to several neurodevelopmental disorders (NDD). Angelman syndrome (AS) is caused by the absence of functional maternally derived UBE3A protein, while the paternal UBE3A gene is present but silenced specifically in neurons. Patients with AS present with severe neurodevelopmental delay, with pronounced motor deficits, absence of speech, intellectual disability, epilepsy, and sleep problems. The pathophysiology of AS is still unclear and a treatment is lacking. Animal models of AS recapitulate the genotypic and phenotypic features observed in AS patients, and have been invaluable for understanding the disease process as well as identifying apropriate drug targets. Using these AS mouse models we have learned that loss of UBE3A probably affects many areas of the brain, leading to increased neuronal excitability and a loss of synaptic spines, along with changes in a number of distinct behaviours. Inducible AS mouse models have helped to identify the critical treatment windows for the behavioral and physiological phenotypes. Additionally, AS mouse models indicate an important role for the predominantly nuclear UBE3A isoform in generating the characteristic AS pathology. Last, but not least, the AS mice have been crucial in guiding Ube3a gene reactivation treatments, which present a very promising therapy to treat AS.
Collapse
Affiliation(s)
- Diana C Rotaru
- Department of Neuroscience, The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Edwin J Mientjes
- Department of Neuroscience, The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ype Elgersma
- Department of Neuroscience, The ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Avagliano Trezza R, Sonzogni M, Bossuyt SNV, Zampeta FI, Punt AM, van den Berg M, Rotaru DC, Koene LMC, Munshi ST, Stedehouder J, Kros JM, Williams M, Heussler H, de Vrij FMS, Mientjes EJ, van Woerden GM, Kushner SA, Distel B, Elgersma Y. Loss of nuclear UBE3A causes electrophysiological and behavioral deficits in mice and is associated with Angelman syndrome. Nat Neurosci 2019; 22:1235-1247. [PMID: 31235931 DOI: 10.1038/s41593-019-0425-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 05/13/2019] [Indexed: 12/22/2022]
Abstract
Mutations affecting the gene encoding the ubiquitin ligase UBE3A cause Angelman syndrome. Although most studies focus on the synaptic function of UBE3A, we show that UBE3A is highly enriched in the nucleus of mouse and human neurons. We found that the two major isoforms of UBE3A exhibit highly distinct nuclear versus cytoplasmic subcellular localization. Both isoforms undergo nuclear import through direct binding to PSMD4 (also known as S5A or RPN10), but the amino terminus of the cytoplasmic isoform prevents nuclear retention. Mice lacking the nuclear UBE3A isoform recapitulate the behavioral and electrophysiological phenotypes of Ube3am-/p+ mice, whereas mice harboring a targeted deletion of the cytosolic isoform are unaffected. Finally, we identified Angelman syndrome-associated UBE3A missense mutations that interfere with either nuclear targeting or nuclear retention of UBE3A. Taken together, our findings elucidate the mechanisms underlying the subcellular localization of UBE3A, and indicate that the nuclear UBE3A isoform is the most critical for the pathophysiology of Angelman syndrome.
Collapse
Affiliation(s)
- Rossella Avagliano Trezza
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Monica Sonzogni
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Stijn N V Bossuyt
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - F Isabella Zampeta
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - A Mattijs Punt
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Marlene van den Berg
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Diana C Rotaru
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Linda M C Koene
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Shashini T Munshi
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Jeffrey Stedehouder
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mark Williams
- Mater Research Institute, Faculty of Medicine, The University of Queensland, South Brisbane, Queensland, Australia
| | - Helen Heussler
- Mater Research Institute, Faculty of Medicine, The University of Queensland, South Brisbane, Queensland, Australia.,Child Development Program, Queensland Children's Hospital, South Brisbane, Queensland, Australia.,Child Health Research Centre, The University of Queensland, South Brisbane, Queensland, Australia
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Edwin J Mientjes
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Geeske M van Woerden
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Steven A Kushner
- ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands.,Department of Psychiatry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ben Distel
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands. .,Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands. .,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| | - Ype Elgersma
- Department of Neuroscience, Erasmus MC University Medical Center, Rotterdam, The Netherlands. .,ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|