1
|
Han JY, Kim TY, Gwack J, Park J. The Aggravation of Neuropsychiatric Symptoms in the Offspring of a Korean Family with Intellectual Disability and Developmental Delay Caused by a Novel ARX p.Lys385Ter Variant. Int J Mol Sci 2024; 25:10327. [PMID: 39408661 PMCID: PMC11476583 DOI: 10.3390/ijms251910327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The ARX mutations encompass a nearly continuous spectrum of neurodevelopmental disorders (NDDs), ranging from lissencephaly to Proud syndrome, as well as infantile spasms without brain malformations, and including both syndromic and non-syndromic intellectual disabilities (IDs). We describe worsening neuropsychiatric symptoms in the offspring of a Korean family with ID/developmental delay (DD) caused by a novel ARX p.Lys385Ter variant. Sequential genetic testing was performed to investigate the ID, DD, agenesis of the corpus callosum (ACC), and developmental epileptic encephalopathy (DEE) observed in the proband. A comprehensive trio clinical exome sequencing approach using a Celemics G-Mendeliome Clinical Exome Sequencing Panel was employed. Given the clinical manifestations observed in the proband, gene panel sequencing identified a heterozygous ARX variant, c.1153A>T/p.Lys385Ter (Reference transcript ID: NM_139058.3), as the most likely cause of ID, DD, ACC, and DEE in the proband. Sanger sequencing confirmed the segregation of the ARX variant, c.1153A>T/p.Lys385Ter, with the phenotype and established the maternally inherited dominant status of the heterozygous variant in the patient, as well as in her grandmother, mother, and aunt. Our case report adds to the understanding of the female phenotype in ARX-related disorders caused by loss-of-function variants in the ARX gene. Genetic counseling for ARX families should proceed with caution, as female carriers can exhibit a wide range of phenotypes, from normal cognitive development to ID/DD, ACC, and DEE.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Tae Yun Kim
- Department of Thoracic and Cardiovascular Surgery, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea;
| | - Jin Gwack
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Joonhong Park
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
2
|
Zaker E, Nouri N, Movahedinia M, Dadbinpour A, Vahidi Mehrjardi MY. Type 1 early infantile epileptic encephalopathy: A case report and literature review. Mol Genet Genomic Med 2024; 12:e2412. [PMID: 38400608 PMCID: PMC10891437 DOI: 10.1002/mgg3.2412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Variants in the Aristaless-related homeobox (ARX) gene lead to a variety of phenotypes, with intellectual disability being a steady feature. Other features can include severe epilepsy, spasticity, movement disorders, hydranencephaly, and ambiguous genitalia in males. X-linked Ohtahara syndrome or Type 1 early infantile epileptic encephalopathy (EIEE1) is a severe early-onset epileptic encephalopathy with arrested psychomotor development caused by hemizygous mutations in the ARX gene, which encodes a transcription factor in fundamental brain developmental processes. METHODS We presented a case report of a 2-year-old boy who exhibited symptoms such as microcephaly, seizures, and severe multifocal epileptic abnormalities, and genetic techniques such as autozygosity mapping, Sanger sequencing, and whole-exome sequencing. RESULTS We confirmed that the patient had the NM_139058.3:c.84C>A; p.(Cys28Ter) mutation in the ARX gene. CONCLUSION The patient with EIEE1 had physical symptoms and hypsarrhythmia on electroencephalogram. Genetic testing identified a causative mutation in the ARX gene, emphasizing the role of genetic testing in EIEE diagnosis.
Collapse
Affiliation(s)
- Erfan Zaker
- Department of Medical Genetics, Faculty of MedicineShahid Sadoughi University of Medical SciencesYazdIran
| | - Negar Nouri
- Department of Medical Genetics, Faculty of MedicineShahid Sadoughi University of Medical SciencesYazdIran
| | - Mojtaba Movahedinia
- Department of Children Growth Disorder Research CenterShahid Sadoughi University of Medical SciencesYazdIran
| | - Ali Dadbinpour
- Department of Medical GeneticsSchool of MedicineShahid Sadoughi University of Medical SciencesYazdIran
| | | |
Collapse
|
3
|
Benmakhlouf Y, Touraine R, Harzallah I, Zian Z, Ben Makhlouf K, Barakat A, Ghailani Nourouti N, Bennani Mechita M. Screening of the duplication 24 pb of ARX gene in Moroccan patients with X-linked Intellectual Disability. BMC Res Notes 2021; 14:110. [PMID: 33757564 PMCID: PMC7988900 DOI: 10.1186/s13104-021-05526-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/13/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Intellectual Disability (ID) represents a neuropsychiatric disorder, which its etiopathogenesis remains insufficiently understood. Mutations in the Aristaless Related Homeobox gene (ARX) have been identified to cause syndromic and nonsyndromic (NS-ID). The most recurrent mutation of this gene is a duplication of 24pb, c.428-451dup. Epidemiological and genetic studies about ID in the Moroccan population remain very scarce, and none study is carried out on the ARX gene. This work aimed to study c.428-451dup (24 bp) mutation in the exon 2 of the ARX gene in 118 males' Moroccan patients with milder NS-ID to evaluate if the gene screening is a good tool for identifying NS-ID. RESULTS Our mutational analysis did not show any dup(24pb) in our patients. This is because based on findings from previous studies that found ARX mutations in 70% of families with NS-ID, and in most cases, 1.5-6.1% of individuals with NS-ID have this duplication. Since 1/118 = 0.0084 (0.84%) is not much different from 1.5%, then it is reasonable that this could a sample size artifact. A complete screening of the entire ARX gene, including the five exons, should be fulfilled. Further investigations are required to confirm these results.
Collapse
Affiliation(s)
- Yousra Benmakhlouf
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaadi, P.B.:416, Tangier, Morocco.
| | | | - Ines Harzallah
- Molecular Genetics Laboratory, CHU, Saint Etienne, France
| | - Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaadi, P.B.:416, Tangier, Morocco
| | | | - Amina Barakat
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaadi, P.B.:416, Tangier, Morocco
| | - Naima Ghailani Nourouti
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaadi, P.B.:416, Tangier, Morocco
| | - Mohcine Bennani Mechita
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, University Abdelmalek Essaadi, P.B.:416, Tangier, Morocco
| |
Collapse
|
4
|
Hernandez VA, Carvajal-Moreno J, Papa JL, Shkolnikov N, Li J, Ozer HG, Yalowich JC, Elton TS. CRISPR/Cas9 Genome Editing of the Human Topoisomerase II α Intron 19 5' Splice Site Circumvents Etoposide Resistance in Human Leukemia K562 Cells. Mol Pharmacol 2021; 99:226-241. [PMID: 33446509 PMCID: PMC7919865 DOI: 10.1124/molpharm.120.000173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/28/2020] [Indexed: 01/17/2023] Open
Abstract
An essential function of DNA topoisomerase IIα (TOP2α; 170 kDa, TOP2α/170) is to resolve DNA topologic entanglements during chromosome disjunction by introducing transient DNA double-stranded breaks. TOP2α/170 is an important target for DNA damage-stabilizing anticancer drugs, whose clinical efficacy is compromised by drug resistance often associated with decreased TOP2α/170 expression. We recently demonstrated that an etoposide-resistant K562 clonal subline, K/VP.5, with reduced levels of TOP2α/170, expresses high levels of a novel C-terminal truncated TOP2α isoform (90 kDa, TOP2α/90). TOP2α/90, the translation product of a TOP2α mRNA that retains a processed intron 19 (I19), heterodimerizes with TOP2α/170 and is a resistance determinant through a dominant-negative effect on drug activity. We hypothesized that genome editing to enhance I19 removal would provide a tractable strategy to circumvent acquired TOP2α-mediated drug resistance. To enhance I19 removal in K/VP.5 cells, CRISPR/Cas9 was used to make changes (GAG//GTAA AC →GAG//GTAA GT ) in the TOP2α gene's suboptimal exon 19/intron 19 5' splice site (E19/I19 5' SS). Gene-edited clones were identified by quantitative polymerase chain reaction and verified by sequencing. Characterization of a clone with all TOP2α alleles edited revealed improved I19 removal, decreased TOP2α/90 mRNA/protein, and increased TOP2α/170 mRNA/protein. Sensitivity to etoposide-induced DNA damage (γH2AX, Comet assays) and growth inhibition was restored to levels comparable to those in parental K562 cells. Together, the results indicate that our gene-editing strategy for optimizing the TOP2α E19/I19 5' SS in K/VP.5 cells circumvents resistance to etoposide and other TOP2α-targeted drugs. SIGNIFICANCE STATEMENT: Results presented here indicate that CRISPR/Cas9 gene editing of a suboptimal exon 19/intron 19 5' splice site in the DNA topoisomerase IIα (TOP2α) gene results in circumvention of acquired drug resistance to etoposide and other TOP2α-targeted drugs in a clonal K562 cell line by enhancing removal of intron 19 and thereby decreasing formation of a truncated TOP2α 90 kDa isoform and increasing expression of full-length TOP2α 170 kDa in these resistant cells. Results demonstrate the importance of RNA processing in acquired drug resistance to TOP2α-targeted drugs.
Collapse
MESH Headings
- CRISPR-Cas Systems
- Cell Survival
- DNA Topoisomerases, Type II/genetics
- Down-Regulation
- Drug Resistance, Neoplasm
- Etoposide/pharmacology
- Gene Editing/methods
- Humans
- Introns
- K562 Cells
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Poly-ADP-Ribose Binding Proteins/genetics
- RNA Splice Sites
Collapse
Affiliation(s)
- Victor A Hernandez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Jessika Carvajal-Moreno
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Jonathan L Papa
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Nicholas Shkolnikov
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Junan Li
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Hatice Gulcin Ozer
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| | - Terry S Elton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy (V.A.H., J.C.-M., J.L.P., J.L., J.C.Y., T.S.E., N.S.) and Department of Biomedical Informatics, College of Medicine (H.G.O), The Ohio State University, Columbus, Ohio
| |
Collapse
|
5
|
Takeshita Y, Ohto T, Enokizono T, Tanaka M, Suzuki H, Fukushima H, Uehara T, Takenouchi T, Kosaki K, Takada H. Novel ARX mutation identified in infantile spasm syndrome patient. Hum Genome Var 2020; 7:9. [PMID: 32257294 PMCID: PMC7109071 DOI: 10.1038/s41439-020-0094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 11/08/2022] Open
Abstract
We report a 7-year-old boy with infantile spasms caused by a novel mutation in the Aristaless-related homeobox (ARX) gene. He showed infantile spasms and hypsarrhythmia on electroencephalogram from early infancy. Brain MRI did not reveal severe malformation of the brain except mild hypoplasia of the corpus callosum. Two-fold adrenocorticotropic hormone (ACTH) therapy failed to control the seizures, and ketogenic diet therapy and multi-antiepileptic drug therapy were required as he showed intractable daily tonic-clonic seizures. Exome sequencing identified a hemizygous mutation in the ARX gene, NG_008281.1(ARX_v001):c.1448 + 1 G > A, chrX: 25025227 C > T (GRCh37). To our knowledge, this mutation has not been reported previously.
Collapse
Affiliation(s)
- Yohei Takeshita
- Department of Pediatrics, Ibaraki Seinan Medical Center Hospital, Sakai-machi, Japan
| | - Tatsuyuki Ohto
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takashi Enokizono
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| | - Mai Tanaka
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hiroko Fukushima
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Takenouchi
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
- Department of Child Health, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
6
|
Elton TS, Ozer HG, Yalowich JC. Effects of DNA topoisomerase IIα splice variants on acquired drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:161-170. [PMID: 32566920 PMCID: PMC7304410 DOI: 10.20517/cdr.2019.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA topoisomerase IIα (170 kDa, TOP2α/170) induces transient DNA double-strand breaks in proliferating cells to resolve DNA topological entanglements during chromosome condensation, replication, and segregation. Therefore, TOP2α/170 is a prominent target for anticancer drugs whose clinical efficacy is often compromised due to chemoresistance. Although many resistance mechanisms have been defined, acquired resistance of human cancer cell lines to TOP2α interfacial inhibitors/poisons is frequently associated with a reduction of Top2α/170 expression levels. Recent studies by our laboratory, in conjunction with earlier findings by other investigators, support the hypothesis that a major mechanism of acquired resistance to TOP2α-targeted drugs is due to alternative RNA processing/splicing. Specifically, several TOP2α mRNA splice variants have been reported which retain introns and are translated into truncated TOP2α isoforms lacking nuclear localization sequences and subsequent dysregulated nuclear-cytoplasmic disposition. In addition, intron retention can lead to truncated isoforms that lack both nuclear localization sequences and the active site tyrosine (Tyr805) necessary for forming enzyme-DNA covalent complexes and inducing DNA damage in the presence of TOP2α-targeted drugs. Ultimately, these truncated TOP2α isoforms result in decreased drug activity against TOP2α in the nucleus and manifest drug resistance. Therefore, the complete characterization of the mechanism(s) regulating the alternative RNA processing of TOP2α pre-mRNA may result in new strategies to circumvent acquired drug resistance. Additionally, novel TOP2α splice variants and truncated TOP2α isoforms may be useful as biomarkers for drug resistance, prognosis, and/or direct future TOP2α-targeted therapies.
Collapse
Affiliation(s)
- Terry S Elton
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Hatice Gulcin Ozer
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Jack C Yalowich
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Ware TL, Huskins SR, Grinton BE, Liu Y, Bennett MF, Harvey M, McMahon J, Andreopoulos‐Malikotsinas D, Bahlo M, Howell KB, Hildebrand MS, Damiano JA, Rosenfeld A, Mackay MT, Mandelstam S, Leventer RJ, Harvey AS, Freeman JL, Scheffer IE, Jones DL, Berkovic SF. Epidemiology and etiology of infantile developmental and epileptic encephalopathies in Tasmania. Epilepsia Open 2019; 4:504-510. [PMID: 31440733 PMCID: PMC6698683 DOI: 10.1002/epi4.12350] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
We sought to determine incidence, etiologies, and yield of genetic testing in infantile onset developmental and epileptic encephalopathies (DEEs) in a population isolate, with an intensive multistage approach. Infants born in Tasmania between 2011 and 2016, with seizure onset <2 years of age, epileptiform EEG, frequent seizures, and developmental impairment, were included. Following review of EEG databases, medical records, brain MRIs, and other investigations, clinical genetic testing was undertaken with subsequent research interrogation of whole exome sequencing (WES) in unsolved cases. The incidence of infantile DEEs was 0.44/1000 per year (95% confidence interval 0.25 to 0.71), with 16 cases ascertained. The etiology was structural in 5/16 cases. A genetic basis was identified in 6 of the remaining 11 cases (3 gene panel, 3 WES). In two further cases, WES identified novel variants with strong in silico data; however, paternal DNA was not available to support pathogenicity. The etiology was not determined in 3/16 (19%) cases, with a candidate gene identified in one of these. Pursuing clinical imaging and genetic testing followed by WES at an intensive research level can give a high diagnostic yield in the infantile DEEs, providing a solid base for prognostic and genetic counseling.
Collapse
Affiliation(s)
- Tyson L. Ware
- Department of PaediatricsRoyal Hobart HospitalHobartTasmaniaAustralia
| | | | - Bronwyn E. Grinton
- Department of MedicineAustin Health, University of MelbourneHeidelbergVictoriaAustralia
| | - Yu‐Chi Liu
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Mark F. Bennett
- Department of MedicineAustin Health, University of MelbourneHeidelbergVictoriaAustralia
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Michael Harvey
- Department of MedicineAustin Health, University of MelbourneHeidelbergVictoriaAustralia
| | - Jacinta McMahon
- Department of MedicineAustin Health, University of MelbourneHeidelbergVictoriaAustralia
| | | | - Melanie Bahlo
- The Walter and Eliza Hall Institute of Medical ResearchMelbourneVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneMelbourneVictoriaAustralia
| | - Katherine B. Howell
- Royal Children’s HospitalMelbourneVictoriaAustralia
- Murdoch Children’s Research InstituteParkvilleVictoriaAustralia
- Department of PediatricsUniversity of MelbourneMelbourneVictoriaAustralia
| | - Michael S. Hildebrand
- Department of MedicineAustin Health, University of MelbourneHeidelbergVictoriaAustralia
| | - John A. Damiano
- Department of MedicineAustin Health, University of MelbourneHeidelbergVictoriaAustralia
| | - Alexander Rosenfeld
- Department of MedicineAustin Health, University of MelbourneHeidelbergVictoriaAustralia
| | - Mark T. Mackay
- Royal Children’s HospitalMelbourneVictoriaAustralia
- Murdoch Children’s Research InstituteParkvilleVictoriaAustralia
| | - Simone Mandelstam
- Royal Children’s HospitalMelbourneVictoriaAustralia
- Murdoch Children’s Research InstituteParkvilleVictoriaAustralia
- Department of PediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Department of RadiologyUniversity of MelbourneMelbourneVictoriaAustralia
- Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Richard J. Leventer
- Royal Children’s HospitalMelbourneVictoriaAustralia
- Murdoch Children’s Research InstituteParkvilleVictoriaAustralia
- Department of PediatricsUniversity of MelbourneMelbourneVictoriaAustralia
| | - A. Simon Harvey
- Royal Children’s HospitalMelbourneVictoriaAustralia
- Murdoch Children’s Research InstituteParkvilleVictoriaAustralia
| | - Jeremy L. Freeman
- Royal Children’s HospitalMelbourneVictoriaAustralia
- Murdoch Children’s Research InstituteParkvilleVictoriaAustralia
| | - Ingrid E. Scheffer
- Department of MedicineAustin Health, University of MelbourneHeidelbergVictoriaAustralia
- Royal Children’s HospitalMelbourneVictoriaAustralia
- Murdoch Children’s Research InstituteParkvilleVictoriaAustralia
- Department of PediatricsUniversity of MelbourneMelbourneVictoriaAustralia
- Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Dean L. Jones
- School of MedicineUniversity of TasmaniaHobartTasmaniaAustralia
- Department of NeurologyRoyal Hobart HospitalHobartTasmaniaAustralia
| | - Samuel F. Berkovic
- Department of MedicineAustin Health, University of MelbourneHeidelbergVictoriaAustralia
| |
Collapse
|