1
|
Tang B, Thornton-Wells T, Askland KD. Comparative linkage meta-analysis reveals regionally-distinct, disparate genetic architectures: application to bipolar disorder and schizophrenia. PLoS One 2011; 6:e19073. [PMID: 21559500 PMCID: PMC3084739 DOI: 10.1371/journal.pone.0019073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Accepted: 03/25/2011] [Indexed: 11/18/2022] Open
Abstract
New high-throughput, population-based methods and next-generation sequencing capabilities hold great promise in the quest for common and rare variant discovery and in the search for ”missing heritability.” However, the optimal analytic strategies for approaching such data are still actively debated, representing the latest rate-limiting step in genetic progress. Since it is likely a majority of common variants of modest effect have been identified through the application of tagSNP-based microarray platforms (i.e., GWAS), alternative approaches robust to detection of low-frequency (1–5% MAF) and rare (<1%) variants are of great importance. Of direct relevance, we have available an accumulated wealth of linkage data collected through traditional genetic methods over several decades, the full value of which has not been exhausted. To that end, we compare results from two different linkage meta-analysis methods—GSMA and MSP—applied to the same set of 13 bipolar disorder and 16 schizophrenia GWLS datasets. Interestingly, we find that the two methods implicate distinct, largely non-overlapping, genomic regions. Furthermore, based on the statistical methods themselves and our contextualization of these results within the larger genetic literatures, our findings suggest, for each disorder, distinct genetic architectures may reside within disparate genomic regions. Thus, comparative linkage meta-analysis (CLMA) may be used to optimize low-frequency and rare variant discovery in the modern genomic era.
Collapse
Affiliation(s)
- Brady Tang
- Biostatistics Graduate Program, Brown University, Providence, Rhode Island, United States of America
| | - Tricia Thornton-Wells
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kathleen D. Askland
- Department of Psychiatry and Human Behavior, Butler Hospital, The Warren Alpert School of Medicine of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
2
|
Herrick S, Evers DM, Lee JY, Udagawa N, Pak DTS. Postsynaptic PDLIM5/Enigma Homolog binds SPAR and causes dendritic spine shrinkage. Mol Cell Neurosci 2009; 43:188-200. [PMID: 19900557 DOI: 10.1016/j.mcn.2009.10.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 10/20/2009] [Accepted: 10/29/2009] [Indexed: 12/24/2022] Open
Abstract
Dendritic spine morphology is thought to play important roles in synaptic development and plasticity, and morphological derangements in spines are correlated with several neurological disorders. Here, we identified an interaction between Spine-Associated RapGAP (SPAR), a postsynaptic protein that reorganizes actin cytoskeleton and drives dendritic spine head growth, and PDLIM5/Enigma Homolog (ENH), a PDZ-LIM (postsynaptic density-95/Discs large/zona occludens 1-Lin11/Isl-1/Mec3) family member. PDLIM5 has been implicated in susceptibility to bipolar disorder, major depression, and schizophrenia, but its function in neurological disease is poorly understood. We show that PDLIM5 is present in the postsynaptic density, where it promotes decreased dendritic spine head size and longer, filopodia-like morphology. Conversely, RNA interference against PDLIM5 or loss of PDLIM5 interaction with SPAR caused increased spine head diameter. Furthermore, PKC activation promoted delivery of PDLIM5 into dendritic spines and increased its spine colocalization with SPAR. These data reveal new postsynaptic functions for PDLIM5 in shrinkage of dendritic spines that may be relevant to its association with psychiatric illness.
Collapse
Affiliation(s)
- Scott Herrick
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20057-1464, USA
| | | | | | | | | |
Collapse
|
3
|
Wiener HW, Klei L, Irvin MD, Perry RT, Aliyu MH, Allen TB, Bradford LD, Calkins ME, Devlin B, Edwards N, Gur RE, Gur RC, Kwentus J, Lyons PD, McEvoy JP, Nasrallah HA, Nimgaonkar VL, O'Jile J, Santos AB, Savage RM, Go RCP. Linkage analysis of schizophrenia in African-American families. Schizophr Res 2009; 109:70-9. [PMID: 19264455 PMCID: PMC2721327 DOI: 10.1016/j.schres.2009.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 02/04/2009] [Accepted: 02/08/2009] [Indexed: 12/12/2022]
Abstract
While many studies have sought a window into the genetics of schizophrenia, few have focused on African-American families. An exception is the Project among African-Americans to Explore Risks for Schizophrenia (PAARTNERS), which seeks to identify novel and known risk variation for schizophrenia by genetic analyses of African-American families. We report a linkage study of diagnostic status in 217 African-American families using the Illumina Linkage Panel. Due to assumed incomplete and time-dependent penetrance, we performed linkage analysis using two different treatments of diagnosis: (1) treating both affected and unaffected individuals as informative for linkage (using the program SIBPAL) and (2) treating only affected individuals as informative (using the program MERLIN). We also explore three definitions of affected status: narrowly defined schizophrenia; one broadened to include schizoaffective disorder; and another including all diagnoses indicating psychosis. Several regions show a decrease in the evidence for linkage as the definition broadens 8q22.1 (rs911, 99.26 cM; SIBPAL p-value [p] goes from 0.006 to 0.02), 16q24.3 (rs1006547, 130.48 cM; p from 0.00095 to 0.0085), and 20q13.2 (rs1022689, 81.73 cM; p from 0.00015 to 0.032). One region shows a substantial increase in evidence for linkage, 11p15.2 (rs722317, 24.27 cM; p from 0.0022 to 0.0000003); MERLIN results support the significance of the SIBPAL results (p=0.00001). Our linkage results overlap two broad, previously-reported linkage regions: 8p23.3-p12 found in studies sampling largely families of European ancestry; and 11p11.2-q22.3 reported by a study of African-American families. These results should prove quite useful for uncovering loci affecting risk for schizophrenia.
Collapse
Affiliation(s)
- H W Wiener
- University of Alabama at Birmingham, School of Public Health, Dept. of Epidemiology, 1665 University Blvd., RPHB, Birmingham, AL 35294-0022, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
The PDZ and LIM domain 5 protein (PDLIM5) contains one PDZ (post-synaptic density-95/discs large/zone occludens-1) domain and three LIM (Lin-11, Isl-1, and Mec-3) domains, and is also known as Enigma homologue LIM domain (ENH) protein or LIM protein. DNA microarray analysis of post-mortem brains of schizophrenics has indicated up-regulation of the mRNA level of PDLIM5, and Horiuchi and colleagues reported two single nucleotide polymorphisms (SNPs) (rs2433320 and rs2433322) in the 5' region of the PDZ and LIM domain 5 gene (PDLIM5) to be significantly associated with schizophrenia in the Japanese population. On the other hand, no association with schizophrenia was observed by Kato and colleagues in a different sample of the Japanese population. In this study, we genotyped six SNPs (including rs2433320 and rs2433322) covering PDLIM5 in 507 schizophrenia patients and 530 normal controls recruited from Jiangxi Province, China. Although rs2433320 was negative in our samples, rs2433322 showed significantly different frequencies between cases and controls (P=0.000010). In addition, high linkage disequilibrium was observed between rs2433320 and rs2433322 (D'=0.880), and haplotypes constructed from the two SNPs were significantly associated with schizophrenia (global P=0.00019, even after strict Bonferroni correction). Our results provide further evidence to support PDLIM5 as a potential susceptible gene for schizophrenia.
Collapse
|
5
|
Kaneko N, Muratake T, Kuwabara H, Kurosaki T, Takei M, Ohtsuki T, Arinami T, Tsuji S, Someya T. Autosomal linkage analysis of a Japanese single multiplex schizophrenia pedigree reveals two candidate loci on chromosomes 4q and 3q. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:735-42. [PMID: 17671967 DOI: 10.1002/ajmg.b.30488] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We analyzed a large multiplex schizophrenia pedigree collected in mid-eastern Japan using 322 microsatellite markers distributed throughout the whole autosome. Under an autosomal-dominant inheritance model, the highest pairwise LOD score (LOD = 1.69) was found at 4q (D4S2431: theta = 0.0), and LOD scores at two other loci 3q (ATA34G06) and 8q (D8S1128) were 1.62 and 1.46, respectively. In multipoint analysis, LOD scores of the regions on 4q and 3q remained at a similar level; however, the LOD score of the region on 8q apparently decreased. Additional dense map analysis revealed haplotypes on 4q and 3q regions shared by affected individuals. On chromosome 4q, the haplotype spanning about 8 centiMorgans (cM) was shared by four of six genotyped individuals with schizophrenia and one affected individual whose haplotype was estimated. On 3q, the haplotype spanning about 20 cM was shared by five genotyped individuals with schizophrenia. We obtained two candidate regions of major susceptibility loci for schizophrenia on chromosomes 3q and 4q.
Collapse
Affiliation(s)
- Naoshi Kaneko
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Schosser A, Fuchs K, Scharl T, Leisch F, Bailer U, Kasper S, Sieghart W, Hornik K, Aschauer HN. Additional support for linkage of schizophrenia and bipolar disorder to chromosome 3q29. Eur Neuropsychopharmacol 2007; 17:501-5. [PMID: 17344034 DOI: 10.1016/j.euroneuro.2007.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 01/15/2007] [Accepted: 01/24/2007] [Indexed: 11/23/2022]
Abstract
After publishing a genome scan and follow-up fine mapping, suggesting schizophrenia and bipolar disorder linkage to chromosome 3q29, we now genotyped 11 additional SNPs (single nucleotide polymorphisms), in order to narrow down a potential candidate region. Linkage was performed using the GENEHUNTER program version 2.1r3. A NPL score Z(all) of 3.891 (p=0.000156) was observed with SNP rs225. In short, we found significant linkage scores most telomeric on chromosome 3q29, spanning 3.46 Mbp (7 SNPs).
Collapse
Affiliation(s)
- Alexandra Schosser
- Department of General Psychiatry, University Hospital for Psychiatry, Medical University Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Petryshen TL, Middleton FA, Tahl AR, Rockwell GN, Purcell S, Aldinger KA, Kirby A, Morley CP, McGann L, Gentile KL, Waggoner SG, Medeiros HM, Carvalho C, Macedo A, Albus M, Maier W, Trixler M, Eichhammer P, Schwab SG, Wildenauer DB, Azevedo MH, Pato MT, Pato CN, Daly MJ, Sklar P. Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia. Mol Psychiatry 2005; 10:1074-88, 1057. [PMID: 16172613 DOI: 10.1038/sj.mp.4001739] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We previously performed a genome-wide linkage scan in Portuguese schizophrenia families that identified a risk locus on chromosome 5q31-q35. This finding was supported by meta-analysis of 20 other schizophrenia genome-wide scans that identified 5q23.2-q34 as the second most compelling susceptibility locus in the genome. In the present report, we took a two-stage candidate gene association approach to investigate a group of gamma-aminobutyric acid (GABA) A receptor subunit genes (GABRA1, GABRA6, GABRB2, GABRG2, and GABRP) within our linkage peak. These genes are plausible candidates based on prior evidence for GABA system involvement in schizophrenia. In the first stage, associations were detected in a Portuguese patient sample with single nucleotide polymorphisms (SNPs) and haplotypes in GABRA1 (P=0.00062-0.048), GABRP (P=0.0024-0.042), and GABRA6 (P=0.0065-0.0088). The GABRA1 and GABRP findings were replicated in the second stage in an independent German family-based sample (P=0.0015-0.043). Supportive evidence for association was also obtained for a previously reported GABRB2 risk haplotype. Exploratory analyses of the effects of associated GABRA1 haplotypes on transcript levels found altered expression of GABRA6 and coexpressed genes of GABRA1 and GABRB2. Comparison of transcript levels in schizophrenia patients and unaffected siblings found lower patient expression of GABRA6 and coexpressed genes of GABRA1. Interestingly, the GABRA1 coexpressed genes include synaptic and vesicle-associated genes previously found altered in schizophrenia prefrontal cortex. Taken together, these results support the involvement of the chromosome 5q GABAA receptor gene cluster in schizophrenia, and suggest that schizophrenia-associated haplotypes may alter expression of GABA-related genes.
Collapse
Affiliation(s)
- T L Petryshen
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Arinami T, Ohtsuki T, Ishiguro H, Ujike H, Tanaka Y, Morita Y, Mineta M, Takeichi M, Yamada S, Imamura A, Ohara K, Shibuya H, Ohara K, Suzuki Y, Muratake T, Kaneko N, Someya T, Inada T, Yoshikawa T, Toyota T, Yamada K, Kojima T, Takahashi S, Osamu O, Shinkai T, Nakamura M, Fukuzako H, Hashiguchi T, Niwa SI, Ueno T, Tachikawa H, Hori T, Asada T, Nanko S, Kunugi H, Hashimoto R, Ozaki N, Iwata N, Harano M, Arai H, Ohnuma T, Kusumi I, Koyama T, Yoneda H, Fukumaki Y, Shibata H, Kaneko S, Higuchi H, Yasui-Furukori N, Numachi Y, Itokawa M, Okazaki Y. Genomewide high-density SNP linkage analysis of 236 Japanese families supports the existence of schizophrenia susceptibility loci on chromosomes 1p, 14q, and 20p. Am J Hum Genet 2005; 77:937-44. [PMID: 16380906 PMCID: PMC1285184 DOI: 10.1086/498122] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 09/01/2005] [Indexed: 01/24/2023] Open
Abstract
The Japanese Schizophrenia Sib-Pair Linkage Group (JSSLG) is a multisite collaborative study group that was organized to create a national resource for affected sib pair (ASP) studies of schizophrenia in Japan. We used a high-density single-nucleotide-polymorphism (SNP) genotyping assay, the Illumina BeadArray linkage mapping panel (version 4) comprising 5,861 SNPs, to perform a genomewide linkage analysis of JSSLG samples comprising 236 Japanese families with 268 nonindependent ASPs with schizophrenia. All subjects were Japanese. Among these families, 122 families comprised the same subjects analyzed with short tandem repeat markers. All the probands and their siblings, with the exception of seven siblings with schizoaffective disorder, had schizophrenia. After excluding SNPs with high linkage disequilibrium, we found significant evidence of linkage of schizophrenia to chromosome 1p21.2-1p13.2 (LOD=3.39) and suggestive evidence of linkage to 14q11.2 (LOD=2.87), 14q11.2-q13.2 (LOD=2.33), and 20p12.1-p11.2 (LOD=2.33). Although linkage to these regions has received little attention, these regions are included in or partially overlap the 10 regions reported by Lewis et al. that passed the two aggregate criteria of a meta-analysis. Results of the present study--which, to our knowledge, is the first genomewide analysis of schizophrenia in ASPs of a single Asian ethnicity that is comparable to the analyses done of ASPs of European descent--indicate the existence of schizophrenia susceptibility loci that are common to different ethnic groups but that likely have different ethnicity-specific effects.
Collapse
Affiliation(s)
- Tadao Arinami
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki-ken, 305-8577, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Kinoshita Y, Suzuki T, Ikeda M, Kitajima T, Yamanouchi Y, Inada T, Yoneda H, Iwata N, Ozaki N. No association with the calcineurin A gamma subunit gene (PPP3CC) haplotype to Japanese schizophrenia. J Neural Transm (Vienna) 2005; 112:1255-62. [PMID: 15843870 DOI: 10.1007/s00702-004-0261-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Accepted: 11/14/2004] [Indexed: 12/01/2022]
Abstract
Calcineurin, one of the serine/threonine protein phosphatase, comprises more than 1% of the total protein content in brain. This evidence points towards important roles of calcineurin in neural function. Miyakawa et al. reported that forebrain-specific calcineurin knockout mice showed the behavioral abnormalities that are often observed in schizophrenia patients. Based on this evidence, they suggested that calcineurin dysfunction could be involved in schizophrenia pathogenesis. Thereafter this report, Gerber et al. performed transmission disequilibrium test (TDT) studies and showed an evidence for a nominally significant over-transmission of a common haplotype of the human calcineurin A gamma subunit gene (PPP3CC). We performed association analysis of PPP3CC in Japanese sample of 457 schizophrenia cases and 429 controls. To our regret, we could not confirm the association with Japanese schizophrenia to PPP3CC including core at-risk haplotype. Our result suggests that PPP3CC may not play a major role in Japanese schizophrenia.
Collapse
Affiliation(s)
- Y Kinoshita
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Iwayama-Shigeno Y, Yamada K, Itokawa M, Toyota T, Meerabux JMA, Minabe Y, Mori N, Inada T, Yoshikawa T. Extended analyses support the association of a functional (GT)n polymorphism in the GRIN2A promoter with Japanese schizophrenia. Neurosci Lett 2005; 378:102-5. [PMID: 15774266 DOI: 10.1016/j.neulet.2004.12.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2004] [Revised: 12/06/2004] [Accepted: 12/07/2004] [Indexed: 10/26/2022]
Abstract
Dysfunction of the N-methyl-D-aspartate (NMDA) type glutamate receptor has been proposed as a mechanism in the etiology of schizophrenia. Recently, we identified a variable (GT)n repeat in the promoter region of the NMDA NR2A subunit gene (GRIN2A), and showed its association with schizophrenia in a case-control study, together with a correlation between the length of the repeat and severity of chronic outcome. In this study, we extended our analyses, by increasing the number of case-control samples to a total of 672 schizophrenics and 686 controls, and excluded potential sample stratification effects. We confirmed the significant allelic association between the repeat polymorphism and disease (P = 0.011), and as in the previous study, we observed an over-representation of longer alleles in schizophrenia. These results suggest a probable genetic effect for the GRIN2A promoter (GT)n variation on the predisposition to schizophrenia in Japanese cohorts.
Collapse
|
11
|
Deng X, Shibata H, Ninomiya H, Tashiro N, Iwata N, Ozaki N, Fukumaki Y. Association study of polymorphisms in the excitatory amino acid transporter 2 gene (SLC1A2) with schizophrenia. BMC Psychiatry 2004; 4:21. [PMID: 15296513 PMCID: PMC514708 DOI: 10.1186/1471-244x-4-21] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2004] [Accepted: 08/06/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The glutamatergic dysfunction hypothesis of schizophrenia suggests that genes involved in glutametergic transmission are candidates for schizophrenic susceptibility genes. We have been performing systematic association studies of schizophrenia with the glutamate receptor and transporter genes. In this study we report an association study of the excitatory amino acid transporter 2 gene, SLC1A2 with schizophrenia. METHODS We genotyped 100 Japanese schizophrenics and 100 controls recruited from the Kyushu area for 11 single nucleotide polymorphism (SNP) markers distributed in the SLC1A2 region using the direct sequencing and pyrosequencing methods, and examined allele, genotype and haplotype association with schizophrenia. The positive finding observed in the Kyushu samples was re-examined using 100 Japanese schizophrenics and 100 controls recruited from the Aichi area. RESULTS We found significant differences in genotype and allele frequencies of SNP2 between cases and controls (P = 0.013 and 0.008, respectively). After Bonferroni corrections, the two significant differences disappeared. We tested haplotype associations for all possible combinations of SNP pairs. SNP2 showed significant haplotype associations with the disease (P = 9.4 x 10-5, P = 0.0052 with Bonferroni correction, at the lowest) in 8 combinations. Moreover, the significant haplotype association of SNP2-SNP7 was replicated in the cumulative analysis of our two sample sets. CONCLUSION We concluded that at least one susceptibility locus for schizophrenia is probably located within or nearby SLC1A2 in the Japanese population.
Collapse
Affiliation(s)
- Xiangdong Deng
- Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroki Shibata
- Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Hideaki Ninomiya
- Fukuoka Prefectural Dazaifu Hospital Psychiatric Center, Dazaifu, Fukuoka, Japan
| | - Nobutada Tashiro
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Norio Ozaki
- Department of Psychiatry, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yasuyuki Fukumaki
- Division of Disease Genes, Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
12
|
Iwata N, Suzuki T, Ikeda M, Kitajima T, Yamanouchi Y, Inada T, Ozaki N. No association with the neuregulin 1 haplotype to Japanese schizophrenia. Mol Psychiatry 2004; 9:126-7. [PMID: 14699424 DOI: 10.1038/sj.mp.4001456] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Fukumaki Y, Shibata H. Glutamate receptor genes as candidates for schizophrenia susceptibility. Drug Dev Res 2003. [DOI: 10.1002/ddr.10293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|