1
|
Anjanappa RM, Nayak S, Moily NS, Manduva V, Nadella RK, Viswanath B, Reddy YCJ, Jain S, Anand A. A linkage and exome study implicates rare variants of KANK4 and CAP2 in bipolar disorder in a multiplex family. Bipolar Disord 2020; 22:70-78. [PMID: 31400178 DOI: 10.1111/bdi.12815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Bipolar disorder (BD) is a neuropsychiatric disorder with a complex pattern of inheritance. Although many genetic studies have been conducted on BD, its genetic correlates remain uncertain. This study was aimed at identifying the genetic underpinnings of the disorder in an Indian family, which has been under comprehensive clinical evaluation and follow-up for over 12 years. METHODS We analysed a four-generation family with several of its members diagnosed for BD employing a combination of genetic linkage and exome analysis. RESULTS We obtained suggestive LOD score for a chromosome 1 and a chromosome 6 marker (D1S410; LOD = 3.01, Ө = 0; and D6S289; LOD = 1.58, Ө = 0). Manual haplotyping of the regions encompassing these two markers helped delimit a critical genomic interval of 32.44 Mb (D1S2700-D1S435; chromosome 1p31.1-13.2) and another of 10.34 Mb (D6S470-D6S422; chromosome 6p22.3-22.2). We examined the exomic sequences corresponding to these two intervals and found rare variants, NM_181712.4: c.2461G>T (p.Asp821Tyr) in KANK4 at 1p31.1-13.2; and NM_006366:c.-93G>A, in the 5' UTR of CAP2 at 6p22.3-22.2. CONCLUSIONS Our studysuggests involvement of KANK4 or CAP2 or both in BD in this family. Further analysis of these two genes in BD patients and functional evaluation of the allelic variants identified are suggested.
Collapse
Affiliation(s)
- Ram M Anjanappa
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sourav Nayak
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Nagaraj S Moily
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Vallikiran Manduva
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ravi K Nadella
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Biju Viswanath
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Yemmiganur C J Reddy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sanjeev Jain
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anuranjan Anand
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
2
|
Keshavan MS, Collin G, Guimond S, Kelly S, Prasad KM, Lizano P. Neuroimaging in Schizophrenia. Neuroimaging Clin N Am 2019; 30:73-83. [PMID: 31759574 DOI: 10.1016/j.nic.2019.09.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Schizophrenia is a chronic psychotic disorder with a lifetime prevalence of about 1%. Onset is typically in adolescence or early adulthood; characteristic symptoms include positive symptoms, negative symptoms, and impairments in cognition. Neuroimaging studies have shown substantive evidence of brain structural, functional, and neurochemical alterations that are more pronounced in the association cortex and subcortical regions. These abnormalities are not sufficiently specific to be of diagnostic value, but there may be a role for imaging techniques to provide predictions of outcome. Incorporating multimodal imaging datasets using machine learning approaches may offer better diagnostic and predictive value in schizophrenia.
Collapse
Affiliation(s)
- Matcheri S Keshavan
- Beth Israel Deaconess Medical Center, Harvard Medical School, 75 Fenwood Road, Boston, MA 02115, USA.
| | - Guusje Collin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, 43 Vassar St, Cambridge, MA 02139, USA; University Medical Center Utrecht Brain Center, Heidelberglaan 100, Postbus 85500, 3508 GA, Utrecht, the Netherlands
| | - Synthia Guimond
- Department of Psychiatry, The Royal's Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Sinead Kelly
- Beth Israel Deaconess Medical Center, Harvard Medical School, 75 Fenwood Road, Boston, MA 02115, USA
| | - Konasale M Prasad
- University of Pittsburgh School of Medicine, Suite 279, 3811 O'Hara St, Pittsburgh, PA 15213, USA; Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA; Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Paulo Lizano
- Beth Israel Deaconess Medical Center, Harvard Medical School, 75 Fenwood Road, Boston, MA 02115, USA
| |
Collapse
|
3
|
Postolache TT, del Bosque-Plata L, Jabbour S, Vergare M, Wu R, Gragnoli C. Co-shared genetics and possible risk gene pathway partially explain the comorbidity of schizophrenia, major depressive disorder, type 2 diabetes, and metabolic syndrome. Am J Med Genet B Neuropsychiatr Genet 2019; 180:186-203. [PMID: 30729689 PMCID: PMC6492942 DOI: 10.1002/ajmg.b.32712] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 11/16/2018] [Accepted: 12/07/2018] [Indexed: 12/20/2022]
Abstract
Schizophrenia (SCZ) and major depressive disorder (MDD) in treatment-naive patients are associated with increased risk for type 2 diabetes (T2D) and metabolic syndrome (MetS). SCZ, MDD, T2D, and MetS are often comorbid and their comorbidity increases cardiovascular risk: Some risk genes are likely co-shared by them. For instance, transcription factor 7-like 2 (TCF7L2) and proteasome 26S subunit, non-ATPase 9 (PSMD9) are two genes independently reported as contributing to T2D and SCZ, and PSMD9 to MDD as well. However, there are scarce data on the shared genetic risk among SCZ, MDD, T2D, and/or MetS. Here, we briefly describe T2D, MetS, SCZ, and MDD and their genetic architecture. Next, we report separately about the comorbidity of SCZ and MDD with T2D and MetS, and their respective genetic overlap. We propose a novel hypothesis that genes of the prolactin (PRL)-pathway may be implicated in the comorbidity of these disorders. The inherited predisposition of patients with SCZ and MDD to psychoneuroendocrine dysfunction may confer increased risk of T2D and MetS. We illustrate a strategy to identify risk variants in each disorder and in their comorbid psychoneuroendocrine and mental-metabolic dysfunctions, advocating for studies of genetically homogeneous and phenotype-rich families. The results will guide future studies of the shared predisposition and molecular genetics of new homogeneous endophenotypes of SCZ, MDD, and metabolic impairment.
Collapse
Affiliation(s)
- Teodor T. Postolache
- Department of Psychiatry, Mood and Anxiety Program, University of Maryland School of Medicine, Baltimore, Maryland,Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 19, Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Denver, Colorado,Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, Maryland
| | - Laura del Bosque-Plata
- National Institute of Genomic Medicine, Nutrigenetics and Nutrigenomic Laboratory, Mexico City, Mexico
| | - Serge Jabbour
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolic Disease, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Michael Vergare
- Department of Psychiatry and Human Behavior, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Rongling Wu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania,Department of Statistics, Penn State College of Medicine, Hershey, Pennsylvania
| | - Claudia Gragnoli
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolic Disease, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania,Department of Public Health Sciences, Penn State College of Medicine, Hershey, Pennsylvania,Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome, Italy
| |
Collapse
|
4
|
Waters RP, Rivalan M, Bangasser DA, Deussing JM, Ising M, Wood SK, Holsboer F, Summers CH. Evidence for the role of corticotropin-releasing factor in major depressive disorder. Neurosci Biobehav Rev 2015; 58:63-78. [PMID: 26271720 DOI: 10.1016/j.neubiorev.2015.07.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 06/24/2015] [Accepted: 07/24/2015] [Indexed: 01/05/2023]
Abstract
Major depressive disorder (MDD) is a devastating disease affecting over 300 million people worldwide, and costing an estimated 380 billion Euros in lost productivity and health care in the European Union alone. Although a wealth of research has been directed toward understanding and treating MDD, still no therapy has proved to be consistently and reliably effective in interrupting the symptoms of this disease. Recent clinical and preclinical studies, using genetic screening and transgenic rodents, respectively, suggest a major role of the CRF1 gene, and the central expression of CRF1 receptor protein in determining an individual's risk of developing MDD. This gene is widely expressed in brain tissue, and regulates an organism's immediate and long-term responses to social and environmental stressors, which are primary contributors to MDD. This review presents the current state of knowledge on CRF physiology, and how it may influence the occurrence of symptoms associated with MDD. Additionally, this review presents findings from multiple laboratories that were presented as part of a symposium on this topic at the annual 2014 meeting of the International Behavioral Neuroscience Society (IBNS). The ideas and data presented in this review demonstrate the great progress that has been made over the past few decades in our understanding of MDD, and provide a pathway forward toward developing novel treatments and detection methods for this disorder.
Collapse
Affiliation(s)
| | | | | | - J M Deussing
- Max Planck Institute of Psychiatry, Munich, Germany
| | - M Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| | - S K Wood
- University of South Carolina School of Medicine, Columbia, SC, USA
| | - F Holsboer
- Max Planck Institute of Psychiatry, Munich, Germany; HMNC GmbH, Munich, Germany
| | - Cliff H Summers
- University of South Dakota, Vermillion, SD, USA; Sanford School of Medicine, Vermillion, SD, USA.
| |
Collapse
|
5
|
Koyama Y, Hattori T, Nishida T, Hori O, Tohyama M. Alterations in dendrite and spine morphology of cortical pyramidal neurons in DISC1-binding zinc finger protein (DBZ) knockout mice. Front Neuroanat 2015; 9:52. [PMID: 25983680 PMCID: PMC4415407 DOI: 10.3389/fnana.2015.00052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/14/2015] [Indexed: 11/13/2022] Open
Abstract
Dendrite and dendritic spine formation are crucial for proper brain function. DISC1-binding zinc finger protein (DBZ) was first identified as a Disrupted-In-Schizophrenia1 (DISC1) binding partner. DBZ is highly expressed in the cerebral cortex of developing and adult rodents and is involved in neurite formation, cell positioning, and the development of interneurons and oligodendrocytes. The functional roles of DBZ in postnatal brain remain unknown; thus we investigated cortical pyramidal neuron morphology in DBZ knockout (KO) mice. Morphological analyses by Golgi staining alone in DBZ KO mice revealed decreased dendritic arborization, increased spine density. A morphological analysis of the spines revealed markedly increased numbers of thin spines. To investigate whole spine structure in detail, electron tomographic analysis using ultra-high voltage electron microscopy (UHVEM) combined with Golgi staining was performed. Tomograms and three-dimensional models of spines revealed that the spines of DBZ KO mice exhibited two types of characteristic morphology, filopodia-like spines and abnormal thin-necked spines having an extremely thin spine neck. Moreover, conventional electron microscopy revealed significantly decreased number of postsynaptic densities (PSDs) in spines of DBZ KO mice. In conclusion, DBZ deficiency impairs the morphogenesis of dendrites and spines in cortical pyramidal neurons.
Collapse
Affiliation(s)
- Yoshihisa Koyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka UniversitySuita, Osaka, Japan
| | - Tsuyoshi Hattori
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical SciencesKanazawa, Ishikawa, Japan
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui SuitaOsaka, Japan
| | - Tomoki Nishida
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka UniversitySuita, Osaka, Japan
| | - Osamu Hori
- Department of Neuroanatomy, Kanazawa University Graduate School of Medical SciencesKanazawa, Ishikawa, Japan
| | - Masaya Tohyama
- Division of Molecular Brain Science, Research Institute of Traditional Asian Medicine, Kinki UniversityOsaka-sayama, Osaka, Japan
- Osaka Prefectural Hospital OrganizationOsaka, Japan
| |
Collapse
|
6
|
Nakajima H, Koizumi K. Family with sequence similarity 107: A family of stress responsive small proteins with diverse functions in cancer and the nervous system (Review). Biomed Rep 2014; 2:321-325. [PMID: 24748967 PMCID: PMC3990222 DOI: 10.3892/br.2014.243] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 02/04/2014] [Indexed: 12/11/2022] Open
Abstract
Under conditions of acute stress, rapid adaptation is crucial for maximizing biological survival. The responses to environmental stress are often complex, involving numerous genes and integrating events at the cellular and organismal levels. The heat shock proteins (HSPs) are a family of highly conserved proteins that play critical roles in maintaining cell homeostasis and protecting cells under chronic and acute stress conditions. The genes for these stress-responding proteins are widely distributed in organisms, tissues and cells. HSPs participate in a variety of physiological processes and are associated with various types of disease. In this review, we focused on family with sequence similarity 107 (FAM107), a novel unique protein family that exhibits functional similarity with HSPs during the cellular stress response. This review aimed to summarize the biological properties of FAM107 in cancer and the nervous system.
Collapse
Affiliation(s)
- Hideo Nakajima
- Department of Oncology, Ageo Central General Hospital, Ageo, Saitama 362-8588, Japan ; Center for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Keita Koizumi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan
| |
Collapse
|
7
|
Koyama Y, Hattori T, Shimizu S, Taniguchi M, Yamada K, Takamura H, Kumamoto N, Matsuzaki S, Ito A, Katayama T, Tohyama M. DBZ (DISC1-binding zinc finger protein)-deficient mice display abnormalities in basket cells in the somatosensory cortices. J Chem Neuroanat 2013; 53:1-10. [PMID: 23912123 DOI: 10.1016/j.jchemneu.2013.07.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 07/22/2013] [Accepted: 07/24/2013] [Indexed: 10/26/2022]
Abstract
Disrupted-in-schizophrenia 1 (DISC1)-binding zinc finger protein (DBZ) is a DISC1-interacting molecule and the interaction between DBZ and DISC1 is involved in neurite outgrowth in vitro. DBZ is highly expressed in brain, especially in the cortex. However, the physiological roles of DBZ in vivo have not been clarified. Here, we show that development of basket cells, a morphologically defined class of parvalbumin (PV)-containing interneurons, is disturbed in DBZ knockout (KO) mice. DBZ mRNA was highly expressed in the ventral area of the subventricular zone of the medial ganglionic eminence, where PV-containing cortical interneurons were generated, at embryonic 14.5 days (E14.5). Although the expression level for PV and the number of PV-containing interneurons were not altered in the cortices of DBZ KO mice, basket cells were less branched and had shorter processes in the somatosensory cortices of DBZ KO mice compared with those in the cortices of WT mice. Furthermore, in the somatosensory cortices of DBZ KO mice, the level of mRNAs for the gamma-aminobutyric acid-synthesizing enzymes GAD67 was decreased. These findings show that DBZ is involved in the morphogenesis of basket cells.
Collapse
Affiliation(s)
- Yoshihisa Koyama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Saul MC, Gessay GM, Gammie SC. A new mouse model for mania shares genetic correlates with human bipolar disorder. PLoS One 2012; 7:e38128. [PMID: 22675514 PMCID: PMC3366954 DOI: 10.1371/journal.pone.0038128] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/04/2012] [Indexed: 11/18/2022] Open
Abstract
Bipolar disorder (BPD) is a debilitating heritable psychiatric disorder. Contemporary rodent models for the manic pole of BPD have primarily utilized either single locus transgenics or treatment with psychostimulants. Our lab recently characterized a mouse strain termed Madison (MSN) that naturally displays a manic phenotype, exhibiting elevated locomotor activity, increased sexual behavior, and higher forced swimming relative to control strains. Lithium chloride and olanzapine treatments attenuate this phenotype. In this study, we replicated our locomotor activity experiment, showing that MSN mice display generationally-stable mania relative to their outbred ancestral strain, hsd:ICR (ICR). We then performed a gene expression microarray experiment to compare hippocampus of MSN and ICR mice. We found dysregulation of multiple transcripts whose human orthologs are associated with BPD and other psychiatric disorders including schizophrenia and ADHD, including: Epor, Smarca4, Cmklr1, Cat, Tac1, Npsr1, Fhit, and P2rx7. RT-qPCR confirmed dysregulation for all of seven transcripts tested. Using a novel genome enrichment algorithm, we found enrichment in genome regions homologous to human loci implicated in BPD in replicated linkage studies including homologs of human cytobands 1p36, 3p14, 3q29, 6p21–22, 12q24, 16q24, and 17q25. Using a functional network analysis, we found dysregulation of a gene system related to chromatin packaging, a result convergent with recent human findings on BPD. Our findings suggest that MSN mice represent a polygenic model for the manic pole of BPD showing much of the genetic systems complexity of the corresponding human disorder. Further, the high degree of convergence between our findings and the human literature on BPD brings up novel questions about evolution by analogy in mammalian genomes.
Collapse
Affiliation(s)
- Michael C Saul
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America.
| | | | | |
Collapse
|
9
|
Regenold WT, Pratt M, Nekkalapu S, Shapiro PS, Kristian T, Fiskum G. Mitochondrial detachment of hexokinase 1 in mood and psychotic disorders: implications for brain energy metabolism and neurotrophic signaling. J Psychiatr Res 2012; 46:95-104. [PMID: 22018957 DOI: 10.1016/j.jpsychires.2011.09.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/12/2011] [Accepted: 09/29/2011] [Indexed: 01/08/2023]
Abstract
The pathophysiology of mood and psychotic disorders, including unipolar depression (UPD), bipolar disorder (BPD) and schizophrenia (SCHZ), is largely unknown. Numerous studies, from molecular to neuroimaging, indicate that some individuals with these disorders have impaired brain energy metabolism evidenced by abnormal glucose metabolism and mitochondrial dysfunction. However, underlying mechanisms are unclear. A critical feature of brain energy metabolism is attachment to the outer mitochondrial membrane (OMM) of hexokinase 1 (HK1), an initial and rate-limiting enzyme of glycolysis. HK1 attachment to the OMM greatly enhances HK1 enzyme activity and couples cytosolic glycolysis to mitochondrial oxidative phosphorylation, through which the cell produces most of its adenosine triphosphate (ATP). HK1 mitochondrial attachment is also important to the survival of neurons and other cells through prevention of apoptosis and oxidative damage. Here we show, for the first time, a decrease in HK1 attachment to the OMM in postmortem parietal cortex brain tissue of individuals with UPD, BPD and SCHZ compared to tissue from controls without psychiatric illness. Furthermore, we show that HK1 mitochondrial detachment is associated with increased activity of the polyol pathway, an alternative, anaerobic pathway of glucose metabolism. These findings were observed in samples from both medicated and medication-free individuals. We propose that HK1 mitochondrial detachment could be linked to these disorders through impaired energy metabolism, increased vulnerability to oxidative stress, and impaired brain growth and development.
Collapse
Affiliation(s)
- W T Regenold
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Tang B, Thornton-Wells T, Askland KD. Comparative linkage meta-analysis reveals regionally-distinct, disparate genetic architectures: application to bipolar disorder and schizophrenia. PLoS One 2011; 6:e19073. [PMID: 21559500 PMCID: PMC3084739 DOI: 10.1371/journal.pone.0019073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Accepted: 03/25/2011] [Indexed: 11/18/2022] Open
Abstract
New high-throughput, population-based methods and next-generation sequencing capabilities hold great promise in the quest for common and rare variant discovery and in the search for ”missing heritability.” However, the optimal analytic strategies for approaching such data are still actively debated, representing the latest rate-limiting step in genetic progress. Since it is likely a majority of common variants of modest effect have been identified through the application of tagSNP-based microarray platforms (i.e., GWAS), alternative approaches robust to detection of low-frequency (1–5% MAF) and rare (<1%) variants are of great importance. Of direct relevance, we have available an accumulated wealth of linkage data collected through traditional genetic methods over several decades, the full value of which has not been exhausted. To that end, we compare results from two different linkage meta-analysis methods—GSMA and MSP—applied to the same set of 13 bipolar disorder and 16 schizophrenia GWLS datasets. Interestingly, we find that the two methods implicate distinct, largely non-overlapping, genomic regions. Furthermore, based on the statistical methods themselves and our contextualization of these results within the larger genetic literatures, our findings suggest, for each disorder, distinct genetic architectures may reside within disparate genomic regions. Thus, comparative linkage meta-analysis (CLMA) may be used to optimize low-frequency and rare variant discovery in the modern genomic era.
Collapse
Affiliation(s)
- Brady Tang
- Biostatistics Graduate Program, Brown University, Providence, Rhode Island, United States of America
| | - Tricia Thornton-Wells
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kathleen D. Askland
- Department of Psychiatry and Human Behavior, Butler Hospital, The Warren Alpert School of Medicine of Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
11
|
Ronan PJ, Summers CH. Molecular Signaling and Translational Significance of the Corticotropin Releasing Factor System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:235-92. [DOI: 10.1016/b978-0-12-385506-0.00006-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Kremeyer B, García J, Müller H, Burley MW, Herzberg I, Parra MV, Duque C, Vega J, Montoya P, López MC, Bedoya G, Reus V, Palacio C, López C, Ospina-Duque J, Freimer NB, Ruiz-Linares A. Genome-wide linkage scan of bipolar disorder in a Colombian population isolate replicates Loci on chromosomes 7p21-22, 1p31, 16p12 and 21q21-22 and identifies a novel locus on chromosome 12q. Hum Hered 2010; 70:255-68. [PMID: 21071953 PMCID: PMC3068751 DOI: 10.1159/000320914] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 09/03/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Bipolar disorder (BP) is a severe psychiatric illness, characterised by alternating episodes of depression and mania, which ranks among the top ten causes of morbidity and life-long disability world-wide. We have previously performed a whole-genome linkage scan on 6 pedigrees segregating severe BP from the well-characterised population isolate of Antioquia, Colombia. We recently collected genotypes for the same set of 382 autosomal microsatellite markers in 9 additional Antioquian BP pedigrees. Here, we report the analysis of the combined pedigree set. METHODS Linkage analysis using both parametric and nonparametric approaches was conducted for 3 different diagnostic models: severe BP only (BPI); mood disorders (BPI, BPII and major depression); and psychosis (operationally defined by the occurrence of at least 1 episode of hallucinations and/or delusions). RESULTS AND CONCLUSION For BPI only, the most interesting result was obtained for chromosome 7p21.1-p22.2 under a recessive model of inheritance (heterogeneity LOD score = 2.80), a region that had previously been linked to BP in a study on Portuguese Island families. For both BPI and mood disorders, nonparametric analyses identified a locus on chromosome 12ct-q14 (nonparametric linkage = 2.55 and 2.35, respectively). This locus has not previously been reported as a candidate region for BP. Additional candidate regions were found on chromosomes 1p22-31 (mood disorders) and 21q21-22 (BPI), 2 loci that have repeatedly been implicated in BP susceptibility. Linkage analysis of psychosis as a phenotype identified candidate regions on chromosomes 2q24-31 and 16p12-q12. The finding on chromosome 16p is noteworthy because the same locus has been implicated by genome-wide association analyses of BP.
Collapse
Affiliation(s)
- B Kremeyer
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lopez de Lara C, Jaitovich-Groisman I, Cruceanu C, Mamdani F, Lebel V, Yerko V, Beck A, Young LT, Rouleau G, Grof P, Alda M, Turecki G. Implication of synapse-related genes in bipolar disorder by linkage and gene expression analyses. Int J Neuropsychopharmacol 2010; 13:1397-410. [PMID: 20667171 PMCID: PMC3525668 DOI: 10.1017/s1461145710000714] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several chromosomal regions have been linked to bipolar disorder (BD). However, the search for specific genes has been hampered by inconsistent findings, partly due to genetic and phenotypic heterogeneity. We focused on lithium-responsive bipolar patients, a subgroup thought to be more homogeneous and conducted a multistage study including an initial linkage study followed up by fine mapping and gene expression. Our sample consisted of 36 families (275 genotyped individuals, 132 affected) recruited through probands who were responders to long-term lithium treatment. We conducted a genome-wide scan with 811 microsatellite markers followed by fine mapping. Gene expression studies of candidate regions were conducted on six post-mortem prefrontal brain regions of 20 individuals (8 BD and 12 controls). We identified regions 3p25, 3p14 and 14q11 as showing the highest genome-wide linkage signal (LOD 2.53, 2.04 and 3.19, respectively). Fine mapping provided further support for 3p25, while only modest support was found in the other two regions. We identified a group of synaptic, mitochondrial and apoptotic genes with altered expression patterns in BD. Analysis of an independent microarray dataset supported the implication of synapse-related and mitochondrial genes in BD. In conclusion, using two complementary strategies, we found evidence of linkage to lithium-responsive BD on 3p25, 3p14 and 14q11 as well as significantly dysregulated genes on these regions suggesting altered synaptic and mitochondrial function in BD. Further studies are warranted to demonstrate the functional role of these genes in BD.
Collapse
|
14
|
Genome-wide linkage scans for major depression in individuals with alcohol dependence. J Psychiatr Res 2010; 44:616-9. [PMID: 20074746 PMCID: PMC2878856 DOI: 10.1016/j.jpsychires.2009.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 12/10/2009] [Accepted: 12/12/2009] [Indexed: 01/09/2023]
Abstract
Major depression is more prevalent among individuals with alcoholism than in the general population. Twin studies have found a moderate degree of genetic correlation for alcohol dependence (AD) and major depression (MD), suggesting the existence of loci that confer susceptibility to both disorders. The aim of the present study was to conduct genome-wide linkage analyses to identify loci and to replicate prior evidence for linkage to MD, and to search for linkage regions that may confer risk to the co-occurrence of depression and alcoholism in a sample of sib-pairs affected with AD. A set of 1020 microsatellite markers (average marker spacing of 4cM) were genotyped in 1289 subjects, which consisted of 473 informative families for analysis of depressive traits and 626 sibling pairs for analysis of symptoms of MD and AD. For univariate linkage results for depression, there were six regions (1q, 2p, 4q, 12q, 13q, and 22q) with multipoint LOD scores in excess of 1.00; the highest peak was on chromosome 4q32.3 near marker D4S2952 (LOD=2.17, p=0.0008) for symptoms of MD. Bivariate linkage analysis of symptoms of MD and AD identified only one region at 22q11.21 with LOD>1, which overlapped with the region for symptoms of MD. Several of these regions replicate previously reported linkage results for major depression and emotion-related traits and events, such as neuroticism and suicide attempts. These identified genomic locations, together with results from prior studies, indicate potential regions of interests that may contain susceptibility loci to the risk of depression among individuals with alcohol dependence.
Collapse
|
15
|
Binder EB, Nemeroff CB. The CRF system, stress, depression and anxiety-insights from human genetic studies. Mol Psychiatry 2010; 15:574-88. [PMID: 20010888 PMCID: PMC3666571 DOI: 10.1038/mp.2009.141] [Citation(s) in RCA: 274] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 10/10/2009] [Accepted: 11/15/2009] [Indexed: 01/20/2023]
Abstract
A concatenation of findings from preclinical and clinical studies support a preeminent function for the corticotropin-releasing factor (CRF) system in mediating the physiological response to external stressors and in the pathophysiology of anxiety and depression. Recently, human genetic studies have provided considerable support to several long-standing hypotheses of mood and anxiety disorders, including the CRF hypothesis. These data, reviewed in this report, are congruent with the hypothesis that this system is of paramount importance in mediating stress-related psychopathology. More specifically, variants in the gene encoding the CRF(1) receptor interact with adverse environmental factors to predict risk for stress-related psychiatric disorders. In-depth characterization of these variants will likely be important in furthering our understanding of the long-term consequences of adverse experience.
Collapse
Affiliation(s)
- E B Binder
- Max-Planck Institute of Psychiatry, Munich, Germany.
| | | |
Collapse
|
16
|
Oedegaard KJ, Greenwood TA, Lunde A, Fasmer OB, Akiskal HS, Kelsoe JR. A genome-wide linkage study of bipolar disorder and co-morbid migraine: replication of migraine linkage on chromosome 4q24, and suggestion of an overlapping susceptibility region for both disorders on chromosome 20p11. J Affect Disord 2010; 122:14-26. [PMID: 19819557 PMCID: PMC5660919 DOI: 10.1016/j.jad.2009.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 06/10/2009] [Indexed: 12/29/2022]
Abstract
Migraine and Bipolar Disorder (BPAD) are clinically heterogeneous disorders of the brain with a significant, but complex, genetic component. Epidemiological and clinical studies have demonstrated a high degree of co-morbidity between migraine and BPAD. Several genome-wide linkage studies in BPAD and migraine have shown overlapping regions of linkage on chromosomes, and two functionally similar voltage-dependent calcium channels CACNA1A and CACNA1C have been identified in familial hemiplegic migraine and recently implicated in two whole genome BPAD association studies, respectively. We hypothesized that using migraine co-morbidity to look at subsets of BPAD families in a genetic linkage analysis would prove useful in identifying genetic susceptibility regions in both of these disorders. We used BPAD with co-morbid migraine as an alternative phenotype definition in a re-analysis of the NIMH Bipolar Genetics Initiative wave 4 data set. In this analysis we selected only those families in which at least two members were diagnosed with migraine by a doctor according to patients' reports. Nonparametric linkage analysis performed on 31 families segregating both BPAD and migraine identified a linkage signal on chromosome 4q24 for migraine (but not BPAD) with a peak LOD of 2.26. This region has previously been implicated in two independent migraine linkage studies. In addition we identified a locus on chromosome 20p11 with overlapping elevated LOD scores for both migraine (LOD=1.95) and BPAD (LOD=1.67) phenotypes. This region has previously been implicated in two BPAD linkage studies, and, interestingly, it harbors a known potassium dependant sodium/calcium exchanger gene, SLC24A3, that plays a critical role in neuronal calcium homeostasis. Our findings replicate a previously identified migraine linkage locus on chromosome 4 (not co-segregating with BPAD) in a sample of BPAD families with co-morbid migraine, and suggest a susceptibility locus on chromosome 20, harboring a gene for the migraine/BPAD phenotype. Together these data suggest that some genes may predispose to both bipolar disorder and migraine.
Collapse
Affiliation(s)
- K J Oedegaard
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093-0603, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
The neuronal PAS domain 3 (NPAS3) gene encodes a neuronal transcription factor that is implicated in psychiatric disorders by the identification of a human chromosomal translocation associated with schizophrenia and a mouse knockout model with behavioural and hippocampal neurogenesis defects. To determine its contribution to the risk of psychiatric illness in the general population, we genotyped 70 single-nucleotide polymorphisms across the NPAS3 gene in 368 individuals with bipolar disorder, 386 individuals with schizophrenia and 455 controls. Modestly significant single-marker and global and individual haplotypes were identified in four discrete regions of the gene. The presence of both risk and protective haplotypes at each of these four regions indicated locus and allelic heterogeneity within NPAS3 and suggested a model whereby interactions between variants across the gene might contribute to susceptibility to illness. This was supported by predicting the most likely haplotype for each individual at each associated region and then calculating an NPAS3-mediated 'net genetic load' value. This value differed significantly from controls for both bipolar disorder (P=0.0000010) and schizophrenia (P=0.0000012). Logistic regression analysis also confirmed the combinatorial action of the four associated regions on disease risk. In addition, sensitivity/specificity plots showed that the extremes of the genetic loading distribution possess the greatest predictive power-a feature suggesting multiplicative allele interaction. These data add to recent evidence that the combinatorial analysis of a number of relatively small effect size haplotypes may have significant power to predict an individual's risk of a complex genetic disorder such as psychiatric illness.
Collapse
|
18
|
Venken T, Alaerts M, Souery D, Goossens D, Sluijs S, Navon R, Van Broeckhoven C, Mendlewicz J, Del-Favero J, Claes S. Chromosome 10q harbors a susceptibility locus for bipolar disorder in Ashkenazi Jewish families. Mol Psychiatry 2008; 13:442-50. [PMID: 17579605 DOI: 10.1038/sj.mp.4002039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report the results of a 10 cM density genome-wide scan and further fine mapping of three chromosomal candidate regions in 10 Belgian multigenerational families with bipolar (BP) disorder. This two-stage approach revealed significant evidence for linkage on chromosome 10q21.3-10q22.3, showing a maximum multipoint parametric heterogeneity logarithm of odds (HLOD) score of 3.28 and a nonparametric linkage (NPL) score of 4.00. Most of the chromosome 10q evidence was derived from a single, large Ashkenazi Jewish pedigree. Haplotype analysis in this pedigree shows that the patients share a 14-marker haplotype, defining a chromosomal candidate region of 19.2 cM. This region was reported previously as a candidate region for BP disorder in several independent linkage analysis studies and in one large meta-analysis. It was also implicated in a linkage study on schizophrenia (SZ) in Ashkenazi Jewish families. Additionally, we found suggestive evidence for linkage on chromosome 19q13.2-13.4 (HLOD 2.01, NPL 1.09) and chromosome 7q21-q22 (HLOD 1.45, NPL 2.28). Together, these observations suggest that a gene located on chromosome 10q21.3-10q22.3 is underlying the susceptibility both for SZ and for BP disorder in at least the Ashkenazi Jewish population.
Collapse
Affiliation(s)
- T Venken
- Department of Molecular Genetics, Flanders Institute for Biotechnology VIB, Antwerpen, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The DISC locus is located at the breakpoint of a balanced t(1;11) chromosomal translocation in a large and unique Scottish family. This translocation segregates in a highly statistically significant manner with a broad diagnosis of psychiatric illness, including schizophrenia, bipolar disorder and major depression, as well as with a narrow diagnosis of schizophrenia alone. Two novel genes were identified at this locus and due to the high prevalence of schizophrenia in this family, they were named Disrupted-in-Schizophrenia-1 (DISC1) and Disrupted-in-Schizophrenia-2 (DISC2). DISC1 encodes a novel multifunctional scaffold protein, whereas DISC2 is a putative noncoding RNA gene antisense to DISC1. A number of independent genetic linkage and association studies in diverse populations support the original linkage findings in the Scottish family and genetic evidence now implicates the DISC locus in susceptibility to schizophrenia, schizoaffective disorder, bipolar disorder and major depression as well as various cognitive traits. Despite this, with the exception of the t(1;11) translocation, robust evidence for a functional variant(s) is still lacking and genetic heterogeneity is likely. Of the two genes identified at this locus, DISC1 has been prioritized as the most probable candidate susceptibility gene for psychiatric illness, as its protein sequence is directly disrupted by the translocation. Much research has been undertaken in recent years to elucidate the biological functions of the DISC1 protein and to further our understanding of how it contributes to the pathogenesis of schizophrenia. These data are the main subject of this review; however, the potential involvement of DISC2 in the pathogenesis of psychiatric illness is also discussed. A detailed picture of DISC1 function is now emerging, which encompasses roles in neurodevelopment, cytoskeletal function and cAMP signalling, and several DISC1 interactors have also been defined as independent genetic susceptibility factors for psychiatric illness. DISC1 is a hub protein in a multidimensional risk pathway for major mental illness, and studies of this pathway are opening up opportunities for a better understanding of causality and possible mechanisms of intervention.
Collapse
Affiliation(s)
- J E Chubb
- Medical Genetics Section, The Centre for Molecular Medicine, Western General Hospital, The University of Edinburgh, Edinburgh, UK
| | | | | | | | | |
Collapse
|
20
|
Cassidy F, Zhao C, Badger J, Claffey E, Dobrin S, Roche S, McKeon P. Genome-wide scan of bipolar disorder and investigation of population stratification effects on linkage: support for susceptibility loci at 4q21, 7q36, 9p21, 12q24, 14q24, and 16p13. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:791-801. [PMID: 17455214 DOI: 10.1002/ajmg.b.30524] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bipolar disorder (BPD) is a complex genetic disorder with cycling symptoms of depression and mania. Despite the extreme complexity of this psychiatric disorder, attempts to localize genes which confer vulnerability to the disorder have had some success. Chromosomal regions including 4p16, 12q24, 18p11, 18q22, and 21q21 have been repeatedly linked to BPD in different populations. Here we present the results of a whole genome scan for linkage to BPD in an Irish population. Our most significant result was at 14q24 which yielded a non-parametric LOD (NPL) score of 3.27 at the D14S588 marker with a nominal P-value of 0.0006 under a narrow (bipolar type I only) model of affection. We previously reported linkage to 14q22-24 in a subset of the families tested in this analysis. We also obtained suggestive evidence for linkage at 4q21, 9p21, 12q24, and 16p13, chromosomal regions that have all been previously linked to BPD. Additionally, we report on a novel approach to linkage analysis, STRUCTURE-Guided Linkage Analysis (SGLA), which is designed to reduce genetic heterogeneity and increase the power to detect linkage. Application of this technique resulted in more highly significant evidence for linkage of BPD to three regions including 16p13, a locus that has been repeatedly linked to numerous psychiatric disorders.
Collapse
MESH Headings
- Bipolar Disorder/genetics
- Chromosomes, Human, Pair 12/genetics
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 16/genetics
- Chromosomes, Human, Pair 4/genetics
- Chromosomes, Human, Pair 7/genetics
- Chromosomes, Human, Pair 9/genetics
- Female
- Genetic Linkage
- Genetic Predisposition to Disease
- Genomics
- Humans
- Ireland
- Male
- Siblings
Collapse
Affiliation(s)
- F Cassidy
- Smurfit Institute of Genetics, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | |
Collapse
|
21
|
Venken T, Del-Favero J. Chasing genes for mood disorders and schizophrenia in genetically isolated populations. Hum Mutat 2007; 28:1156-70. [PMID: 17659644 DOI: 10.1002/humu.20582] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Major affective disorders and schizophrenia are among the most common brain diseases worldwide and their predisposition is influenced by a complex interaction of genetic and environmental factors. So far, traditional linkage mapping studies for these complex disorders have not achieved the same success as the positional cloning of genes for Mendelian diseases. The struggle to identify susceptibility genes for complex disorders has stimulated the development of alternative approaches, including studies in genetically isolated populations. Since isolated populations are likely to have both a reduced number of genetic vulnerability factors and environmental background and are therefore considered to be more homogeneous compared to outbred populations, the use of isolated populations in genetic studies is expected to improve the chance of finding susceptibility loci and genes. Here we review the role of isolated populations, based on linkage and association studies, in the identification of susceptibility genes for bipolar disorder and schizophrenia.
Collapse
Affiliation(s)
- Tine Venken
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerpen, Belgium
| | | |
Collapse
|