1
|
Singh H, Singh AK, Kar SK, Tripathi A, Dalal PK, Dikshit M. Oxidative and nitrosative stress in bipolar affective disorder and its familial aggregation. Indian J Psychiatry 2025; 67:209-218. [PMID: 40181872 PMCID: PMC11964165 DOI: 10.4103/indianjpsychiatry.indianjpsychiatry_396_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/16/2024] [Accepted: 02/06/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction Bipolar disorder (BD) is one of the most encountered disorders in psychiatric clinics. Despite extensive research and advancements in BD treatment, little is known about the disease's primary etiopathogenesis and relationship with different pathophysiological traits. The present study is aimed to evaluate the pathophysiological role of oxidative and nitrosative stress in BD patients and identify their familial aggregation. Methods Blood samples from healthy individuals, drug-naive symptomatic BD patients, and their first-degree relatives were obtained, and intracellular reactive oxygen/nitrogen species (ROS/RNS), total nitrites, neuronal nitric oxide synthase (nNOS) mRNA expression, myeloperoxidase (MPO) activity in polymorphonuclear neutrophils (PMNs), and serum cortisol levels were assessed. Results ROS, MPO activity, total-nitrite content, nNOS expression in PMNs, and serum cortisol concentration were considerably more in BD patients than in healthy volunteers. All these variables showed a substantial correlation with the YMRS score for disease severity and the presence of one or more manic episodes. Additionally, a positive correlation was noted between the MPO activity and serum cortisol levels of BD patients and their first-degree relatives. Conclusions The results of the present study advance our knowledge about the role of oxidative and nitrosative stress in BD pathophysiology and its familial aggregation. Additionally, the study demonstrates a direct correlation between the disease severity and levels of ROS/RNS, MPO, total nitrite, and nNOS transcripts in PMNs. However, future research with larger and more diverse participant populations is required to understand these pathways for use as potential biomarkers for a deeper understanding of BD pathophysiology and to improve therapeutic strategies.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Psychiatry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Abhishek K. Singh
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Sujita K. Kar
- Department of Psychiatry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Adarsh Tripathi
- Department of Psychiatry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Pronob K. Dalal
- Department of Psychiatry, King George’s Medical University, Lucknow, Uttar Pradesh, India
| | - Madhu Dikshit
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
2
|
Mete G, Fidan Ç, Demirci A, Ozen Yalcin D, Devrim E, Elgun Ulkar S, Ozturk HS. Evaluation of serum arginine metabolic pathway markers in patients with bipolar disorder and schizophrenia. Int J Psychiatry Clin Pract 2024; 28:218-223. [PMID: 39955087 DOI: 10.1080/13651501.2025.2466506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
OBJECTIVES Research on new serum parameters in bipolar disorder (BD) and schizophrenia is crucial for early diagnosis and understanding of disease pathophysiology. The arginine metabolic pathway has been found to be associated with several neuropsychiatric disorders in recent years. This study aims to investigate the role of serum markers involved in different steps of the arginine metabolic pathway in BD and schizophrenia. METHODS Sixty healthy volunteers, sixty patients with schizophrenia and sixty patients with BD were included in the study. We analysed ornithine decarboxylase (ODC), arginine decarboxylase (ADC) and agmatinase levels using enzyme-linked immunosorbent assay. Enzymatic colorimetric methods were used for nitric oxide (NO), nitric oxide synthase (NOS) and arginase measurement. RESULTS Serum agmatinase levels were significantly lower in BD and schizophrenia (p < 0.01). ODC and ADC levels were significantly lower in BD group compared to the control and schizophrenia groups (p < 0.001; p < 0.01). Serum NO levels were significantly higher and NOS levels were significantly lower in BD (p < 0.001; p < 0.05). Arginase levels were also lower in BD (p < 0.05). CONCLUSIONS Enzymes and substrates of the arginine metabolic pathway are promising markers in BD and schizophrenia. These markers can also be used to enable the diagnosis, when an adequate verbal communication is impossible.
Collapse
Affiliation(s)
- Gulsah Mete
- Department of Biochemistry, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Çigdem Fidan
- Department of Biochemistry, Faculty of Medicine, Ankara University, Ankara, Turkey
- Department of Biochemistry, Faculty of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Adem Demirci
- Department of Psychiatry, Sincan Training and Research Hospital, Ankara, Turkey
| | - Demet Ozen Yalcin
- Department of Psychiatry, Sincan Training and Research Hospital, Ankara, Turkey
| | - Erdinc Devrim
- Department of Biochemistry, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Serenay Elgun Ulkar
- Department of Biochemistry, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Hasan Serdar Ozturk
- Department of Biochemistry, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
3
|
Zhou QG, Zhu XH, Nemes AD, Zhu DY. Neuronal nitric oxide synthase and affective disorders. IBRO Rep 2018; 5:116-132. [PMID: 30591953 PMCID: PMC6303682 DOI: 10.1016/j.ibror.2018.11.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Affective disorders including major depressive disorder (MDD), bipolar disorder (BPD), and general anxiety affect more than 10% of population in the world. Notably, neuronal nitric oxide synthase (nNOS), a downstream signal molecule of N-methyl-D-aspartate receptors (NMDARs) activation, is abundant in many regions of the brain such as the prefrontal cortex (PFC), hippocampus, amygdala, dorsal raphe nucleus (DRN), locus coeruleus (LC), and hypothalamus, which are closely associated with the pathophysiology of affective disorders. Decreased levels of the neurotransmitters including 5-hydroxytryptamine or serotonin (5-HT), noradrenalin (NA), and dopamine (DA) as well as hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis are common pathological changes of MDD, BPD, and anxiety. Increasing data suggests that nNOS in the hippocampus play a crucial role in the etiology of MDD whereas nNOS-related dysregulation of the nitrergic system in the LC is closely associated with the pathogenesis of BPD. Moreover, hippocampal nNOS is implicated in the role of serotonin receptor 1 A (5-HTR1 A) in modulating anxiety behaviors. Augment of nNOS and its carboxy-terminal PDZ ligand (CAPON) complex mediate stress-induced anxiety and disrupting the nNOS-CAPON interaction by small molecular drug generates anxiolytic effect. To date, however, the function of nNOS in affective disorders is not well reviewed. Here, we summarize works about nNOS and its signal mechanisms implicated in the pathophysiology of affective disorders. On the basis of this review, it is suggested that future research should more fully focus on the role of nNOS in the pathomechanism and treatment of affective disorders.
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Xian-Hui Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Ashley D Nemes
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - Dong-Ya Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| |
Collapse
|
4
|
Ghasemi M, Claunch J, Niu K. Pathologic role of nitrergic neurotransmission in mood disorders. Prog Neurobiol 2018; 173:54-87. [PMID: 29890213 DOI: 10.1016/j.pneurobio.2018.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/30/2018] [Accepted: 06/05/2018] [Indexed: 02/08/2023]
Abstract
Mood disorders are chronic, recurrent mental diseases that affect millions of individuals worldwide. Although over the past 40 years the biogenic amine models have provided meaningful links with the clinical phenomena of, and the pharmacological treatments currently employed in, mood disorders, there is still a need to examine the contribution of other systems to the neurobiology and treatment of mood disorders. This article reviews the current literature describing the potential role of nitric oxide (NO) signaling in the pathophysiology and thereby the treatment of mood disorders. The hypothesis has arisen from several observations including (i) altered NO levels in patients with mood disorders; (ii) antidepressant effects of NO signaling blockers in both clinical and pre-clinical studies; (iii) interaction between conventional antidepressants/mood stabilizers and NO signaling modulators in several biochemical and behavioral studies; (iv) biochemical and physiological evidence of interaction between monoaminergic (serotonin, noradrenaline, and dopamine) system and NO signaling; (v) interaction between neurotrophic factors and NO signaling in mood regulation and neuroprotection; and finally (vi) a crucial role for NO signaling in the inflammatory processes involved in pathophysiology of mood disorders. These accumulating lines of evidence have provided a new insight into novel approaches for the treatment of mood disorders.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA.
| | - Joshua Claunch
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Kathy Niu
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| |
Collapse
|
5
|
Sprooten E, Gupta CN, Knowles EEM, McKay DR, Mathias SR, Curran JE, Kent JW, Carless MA, Almeida MA, Dyer TD, Göring HHH, Olvera RL, Kochunov P, Fox PT, Duggirala R, Almasy L, Calhoun VD, Blangero J, Turner JA, Glahn DC. Genome-wide significant linkage of schizophrenia-related neuroanatomical trait to 12q24. Am J Med Genet B Neuropsychiatr Genet 2015; 168:678-86. [PMID: 26440917 PMCID: PMC4639444 DOI: 10.1002/ajmg.b.32360] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 07/31/2015] [Indexed: 11/08/2022]
Abstract
The insula and medial prefrontal cortex (mPFC) share functional, histological, transcriptional, and developmental characteristics, and they serve higher cognitive functions of theoretical relevance to schizophrenia and related disorders. Meta-analyses and multivariate analysis of structural magnetic resonance imaging (MRI) scans indicate that gray matter density and volume reductions in schizophrenia are the most consistent and pronounced in a network primarily composed of the insula and mPFC. We used source-based morphometry, a multivariate technique optimized for structural MRI, in a large sample of randomly ascertained pedigrees (N = 887) to derive an insula-mPFC component and to investigate its genetic determinants. Firstly, we replicated the insula-mPFC gray matter component as an independent source of gray matter variation in the general population, and verified its relevance to schizophrenia in an independent case-control sample. Secondly, we showed that the neuroanatomical variation defined by this component is largely determined by additive genetic variation (h(2) = 0.59), and genome-wide linkage analysis resulted in a significant linkage peak at 12q24 (LOD = 3.76). This region has been of significant interest to psychiatric genetics as it contains the Darier's disease locus and other proposed susceptibility genes (e.g., DAO, NOS1), and it has been linked to affective disorders and schizophrenia in multiple populations. Thus, in conjunction with previous clinical studies, our data imply that one or more psychiatric risk variants at 12q24 are co-inherited with reductions in mPFC and insula gray matter concentration. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emma Sprooten
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
,Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, CT
| | | | - Emma EM Knowles
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
,Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, CT
| | - D Reese McKay
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
,Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, CT
| | - Samuel R Mathias
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
,Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, CT
| | - Joanne E Curran
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Jack W Kent
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Melanie A Carless
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Marcio A Almeida
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Thomas D Dyer
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Harald HH Göring
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Rene L Olvera
- Department of Psychiatry, University of Texas Health Science Center San Antonio, San Antonio, TX
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Peter T Fox
- Research Imaging Institute, University of Texas Health Science Center San Antonio, San Antonio, TX
| | - Ravi Duggirala
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Laura Almasy
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Vince D. Calhoun
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
,The Mind Research Network, Albuquerque, NM
,Department of Psychiatry, University of New Mexico, Albuquerque, NM
,Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Jessica A Turner
- The Mind Research Network, Albuquerque, NM
,Department of Psychology and Neuroscience Institute, Georgia State University, Atlanta, GA
| | - David C Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT
,Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, CT
| |
Collapse
|
6
|
Freudenberg F, Alttoa A, Reif A. Neuronal nitric oxide synthase (NOS1) and its adaptor, NOS1AP, as a genetic risk factors for psychiatric disorders. GENES BRAIN AND BEHAVIOR 2015; 14:46-63. [PMID: 25612209 DOI: 10.1111/gbb.12193] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/17/2014] [Accepted: 12/03/2014] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO) is a gaseous transmitter produced by nitric oxide synthases (NOSs). The neuronal isoform (NOS-I, encoded by NOS1) is the main source of NO in the central nervous system (CNS). Animal studies suggest that nitrinergic dysregulation may lead to behavioral abnormalities. Unfortunately, the large number of animal studies is not adequately reflected by publications concerning humans. These include post-mortem studies, determination of biomarkers, and genetic association studies. Here, we review the evidence for the role of NO in psychiatric disorders by focusing on the human NOS1 gene as well as biomarker studies. Owing to the complex regulation of NOS1 and the varying function of NOS-I in different brain regions, no simple, unidirectional association is expected. Rather, the 'where, when and how much' of NO formation is decisive. Present data, although still preliminary and partially conflicting, suggest that genetically driven reduced NO signaling in the prefrontal cortex is associated with schizophrenia and cognition. Both NOS1 and its interaction partner NOS1AP have a role therein. Also, reduced NOS1 expression in the striatum determined by a length polymorphism in a NOS1 promoter (NOS1 ex1f-VNTR) goes along with a variety of impulsive behaviors. An association of NOS1 with mood disorders, suggested by animal models, is less clear on the genetic level; however, NO metabolites in blood may serve as biomarkers for major depression and bipolar disorder. As the nitrinergic system comprises a relevant target for pharmacological interventions, further studies are warranted not only to elucidate the pathophysiology of mental disorders, but also to evaluate NO function as a biomarker.
Collapse
Affiliation(s)
- F Freudenberg
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | | | | |
Collapse
|
7
|
Nasyrova RF, Ivashchenko DV, Ivanov MV, Neznanov NG. Role of nitric oxide and related molecules in schizophrenia pathogenesis: biochemical, genetic and clinical aspects. Front Physiol 2015; 6:139. [PMID: 26029110 PMCID: PMC4426711 DOI: 10.3389/fphys.2015.00139] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 04/18/2015] [Indexed: 12/14/2022] Open
Abstract
Currently, schizophrenia is considered a multifactorial disease. Over the past 50 years, many investigators have considered the role of toxic free radicals in the etiology of schizophrenia. This is an area of active research which is still evolving. Here, we review the recent data and current concepts on the roles of nitric oxide (NO) and related molecules in the pathogenesis of schizophrenia. NO is involved in storage, uptake and release of mediators and neurotransmitters, including glutamate, acetylcholine, noradrenaline, GABA, taurine and glycine. In addition, NO diffuses across cell membranes and activates its own extrasynaptic receptors. Further, NO is involved in peroxidation and reactive oxidative stress. Investigations reveal significant disturbances in NO levels in the brain structures (cerebellum, hypothalamus, hippocampus, striatum) and fluids of subjects with schizophrenia. Given the roles of NO in central nervous system development, these changes may result in neurodevelopmental changes associated with schizophrenia. We describe here the recent literature on NOS gene polymorphisms on schizophrenia, which all point to consistent results. We also discuss how NO may be a new target for the therapy of mental disorders. Currently there have been 2 randomized double-blind placebo-controlled trials of L-lysine as an NOS inhibitor in the CNS.
Collapse
Affiliation(s)
- Regina F Nasyrova
- V.M. Bekhterev Saint Petersburg Psychoneurological Research Institute Saint Petersburg, Russia
| | - Dmitriy V Ivashchenko
- V.M. Bekhterev Saint Petersburg Psychoneurological Research Institute Saint Petersburg, Russia
| | - Mikhail V Ivanov
- V.M. Bekhterev Saint Petersburg Psychoneurological Research Institute Saint Petersburg, Russia
| | - Nikolay G Neznanov
- V.M. Bekhterev Saint Petersburg Psychoneurological Research Institute Saint Petersburg, Russia
| |
Collapse
|
8
|
Dietrich-Muszalska A, Bartosz G, Sadowska-Bartosz I. The Role of Nitric Oxide and Nitrosative Stress in Schizophrenia. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-1-4939-0440-2_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Barua S, Chadman KK, Kuizon S, Buenaventura D, Stapley NW, Ruocco F, Begum U, Guariglia SR, Brown WT, Junaid MA. Increasing maternal or post-weaning folic acid alters gene expression and moderately changes behavior in the offspring. PLoS One 2014; 9:e101674. [PMID: 25006883 PMCID: PMC4090150 DOI: 10.1371/journal.pone.0101674] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/10/2014] [Indexed: 01/17/2023] Open
Abstract
Background Studies have indicated that altered maternal micronutrients and vitamins influence the development of newborns and altered nutrient exposure throughout the lifetime may have potential health effects and increased susceptibility to chronic diseases. In recent years, folic acid (FA) exposure has significantly increased as a result of mandatory FA fortification and supplementation during pregnancy. Since FA modulates DNA methylation and affects gene expression, we investigated whether the amount of FA ingested during gestation alters gene expression in the newborn cerebral hemisphere, and if the increased exposure to FA during gestation and throughout the lifetime alters behavior in C57BL/6J mice. Methods Dams were fed FA either at 0.4 mg or 4 mg/kg diet throughout the pregnancy and the resulting pups were maintained on the diet throughout experimentation. Newborn pups brain cerebral hemispheres were used for microarray analysis. To confirm alteration of several genes, quantitative RT-PCR (qRT-PCR) and Western blot analyses were performed. In addition, various behavior assessments were conducted on neonatal and adult offspring. Results Results from microarray analysis suggest that the higher dose of FA supplementation during gestation alters the expression of a number of genes in the newborns’ cerebral hemispheres, including many involved in development. QRT-PCR confirmed alterations of nine genes including down-regulation of Cpn2, Htr4, Zfp353, Vgll2 and up-regulation of Xist, Nkx6-3, Leprel1, Nfix, Slc17a7. The alterations in the expression of Slc17a7 and Vgll2 were confirmed at the protein level. Pups exposed to the higher dose of FA exhibited increased ultrasonic vocalizations, greater anxiety-like behavior and hyperactivity. These findings suggest that although FA plays a significant role in mammalian cellular machinery, there may be a loss of benefit from higher amounts of FA. Unregulated high FA supplementation during pregnancy and throughout the life course may have lasting effects, with alterations in brain development resulting in changes in behavior.
Collapse
Affiliation(s)
- Subit Barua
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Kathryn K. Chadman
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Salomon Kuizon
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Diego Buenaventura
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Nathan W. Stapley
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Felicia Ruocco
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Umme Begum
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Sara R. Guariglia
- Department of Environmental Health Sciences, Columbia University, New York, United States of America
| | - W. Ted Brown
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
| | - Mohammed A. Junaid
- Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, United States of America
- Graduate Center and College of Staten Island, City University of New York, Staten Island, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
Hammamieh R, Chakraborty N, Gautam A, Miller SA, Muhie S, Meyerhoff J, Jett M. Transcriptomic analysis of the effects of a fish oil enriched diet on murine brains. PLoS One 2014; 9:e90425. [PMID: 24632812 PMCID: PMC3954562 DOI: 10.1371/journal.pone.0090425] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 01/29/2014] [Indexed: 12/15/2022] Open
Abstract
The health benefits of fish oil enriched with high omega-3 polyunsaturated fatty acids (n-3 PUFA) are widely documented. Fish oil as dietary supplements, however, show moderate clinical efficacy, highlighting an immediate scope of systematic in vitro feedback. Our transcriptomic study was designed to investigate the genomic shift of murine brains fed on fish oil enriched diets. A customized fish oil enriched diet (FD) and standard lab diet (SD) were separately administered to two randomly chosen populations of C57BL/6J mice from their weaning age until late adolescence. Statistical analysis mined 1,142 genes of interest (GOI) differentially altered in the hemibrains collected from the FD- and SD-fed mice at the age of five months. The majority of identified GOI (∼40%) encodes proteins located in the plasma membrane, suggesting that fish oil primarily facilitated the membrane-oriented biofunctions. FD potentially augmented the nervous system's development and functions by selectively stimulating the Src-mediated calcium-induced growth cascade and the downstream PI3K-AKT-PKC pathways. FD reduced the amyloidal burden, attenuated oxidative stress, and assisted in somatostatin activation—the signatures of attenuation of Alzheimer's disease, Parkinson's disease, and affective disorder. FD induced elevation of FKBP5 and suppression of BDNF, which are often linked with the improvement of anxiety disorder, depression, and post-traumatic stress disorder. Hence we anticipate efficacy of FD in treating illnesses such as depression that are typically triggered by the hypoactivities of dopaminergic, adrenergic, cholinergic, and GABAergic networks. Contrastingly, FD's efficacy could be compromised in treating illnesses such as bipolar disorder and schizophrenia, which are triggered by hyperactivities of the same set of neuromodulators. A more comprehensive investigation is recommended to elucidate the implications of fish oil on disease pathomechanisms, and the result-driven repositioning of fish oil utilization may revitalize its therapeutic efficacy.
Collapse
Affiliation(s)
- Rasha Hammamieh
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
- * E-mail:
| | - Nabarun Chakraborty
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Aarti Gautam
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Stacy-Ann Miller
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Seid Muhie
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - James Meyerhoff
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Marti Jett
- United States Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| |
Collapse
|
11
|
Impact of neonatal NOS-1 inhibitor exposure on neurobehavioural measures and prefrontal-temporolimbic integration in the rat nucleus accumbens. Int J Neuropsychopharmacol 2014; 17:275-87. [PMID: 24025168 DOI: 10.1017/s1461145713000990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide (NO) is a gaseous neurotransmitter that plays a significant role in the establishment and refinement of functional neural circuits. Genetic and post-mortem studies have suggested that neuronal NO synthase (NOS-1) activity may be compromised in frontal and temporal lobes, and related structures, in schizophrenia. The goal of this study was to determine if there is a link between neonatal disruptions in NO signalling and disturbances in the development and function of prefrontal-temporolimbic circuits. Neonatal rats were injected on postnatal days PD3-5 with the selective NOS-1 inhibitor Nω-propyl-L-arginine (NPA) and tested in adulthood (≥PD60) or as juveniles (PD30). Adult rats treated with NPA as neonates exhibited increased amphetamine-induced locomotion compared to animals receiving vehicle as neonates, whereas this was not observed in juvenile rats treated with NPA as neonates. Adult rats exposed to NPA as neonates also exhibited deficits in social interaction and short-term recognition memory, as well as reduced brain weight, compared to vehicle-treated controls. Finally, neonatal NPA exposure increased the responsiveness of nucleus accumbens neurons to prefrontal cortical input and disrupted the modulation of cortico-accumbens circuits by hippocampal afferents that is normally observed in adult animals. These results show for the first time that neonatal inhibition of NOS-1 during a critical neurodevelopmental period leads to aberrant behaviours that manifest in adulthood, as well as electrophysiological abnormalities in prefrontal-temporolimbic circuits. Greater understanding of the role of NOS-1 in the development of these circuits will shed light on how developmental insults translate to pathophysiology associated with schizophrenia.
Collapse
|
12
|
Weber H, Klamer D, Freudenberg F, Kittel-Schneider S, Rivero O, Scholz CJ, Volkert J, Kopf J, Heupel J, Herterich S, Adolfsson R, Alttoa A, Post A, Grußendorf H, Kramer A, Gessner A, Schmidt B, Hempel S, Jacob CP, Sanjuán J, Moltó MD, Lesch KP, Freitag CM, Kent L, Reif A. The genetic contribution of the NO system at the glutamatergic post-synapse to schizophrenia: further evidence and meta-analysis. Eur Neuropsychopharmacol 2014; 24:65-85. [PMID: 24220657 DOI: 10.1016/j.euroneuro.2013.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/09/2013] [Accepted: 09/20/2013] [Indexed: 10/26/2022]
Abstract
NO is a pleiotropic signaling molecule and has an important role in cognition and emotion. In the brain, NO is produced by neuronal nitric oxide synthase (NOS-I, encoded by NOS1) coupled to the NMDA receptor via PDZ interactions; this protein-protein interaction is disrupted upon binding of NOS1 adapter protein (encoded by NOS1AP) to NOS-I. As both NOS1 and NOS1AP were associated with schizophrenia, we here investigated these genes in greater detail by genotyping new samples and conducting a meta-analysis of our own and published data. In doing so, we confirmed association of both genes with schizophrenia and found evidence for their interaction in increasing risk towards disease. Our strongest finding was the NOS1 promoter SNP rs41279104, yielding an odds ratio of 1.29 in the meta-analysis. As findings from heterologous cell systems have suggested that the risk allele decreases gene expression, we studied the effect of the variant on NOS1 expression in human post-mortem brain samples and found that the risk allele significantly decreases expression of NOS1 in the prefrontal cortex. Bioinformatic analyses suggest that this might be due the replacement of six transcription factor binding sites by two new binding sites as a consequence of proxy SNPs. Taken together, our data argue that genetic variance in NOS1 resulting in lower prefrontal brain expression of this gene contributes to schizophrenia liability, and that NOS1 interacts with NOS1AP in doing so. The NOS1-NOS1AP PDZ interface may thus well constitute a novel target for small molecules in at least some forms of schizophrenia.
Collapse
Affiliation(s)
- H Weber
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany; Microarray Core Unit, IZKF Würzburg, University Hospital of Würzburg, Germany
| | - D Klamer
- Department of Pharmacology, The Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - F Freudenberg
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany
| | - S Kittel-Schneider
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany
| | - O Rivero
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany; CIBERSAM, Universitat de Valencia, Valencia, Spain
| | - C-J Scholz
- Microarray Core Unit, IZKF Würzburg, University Hospital of Würzburg, Germany
| | - J Volkert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany
| | - J Kopf
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany
| | - J Heupel
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany
| | - S Herterich
- Comprehensive Heart Failure Center, University of Würzburg, Germany
| | - R Adolfsson
- Department of Clinivcal Sciences, Psychiatry, Umeå University, Sweden
| | - A Alttoa
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany
| | - A Post
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany
| | - H Grußendorf
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany
| | - A Kramer
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany
| | - A Gessner
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany
| | - B Schmidt
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany
| | - S Hempel
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany
| | - C P Jacob
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany
| | - J Sanjuán
- CIBERSAM, Universitat de Valencia, Valencia, Spain
| | - M D Moltó
- CIBERSAM, Universitat de Valencia, Valencia, Spain
| | - K-P Lesch
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany; Comprehensive Heart Failure Center, University of Würzburg, Germany
| | - C M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University of Frankfurt, Germany
| | - L Kent
- School of Medicine, University of St Andrews, Scotland, UK
| | - A Reif
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Germany; Comprehensive Heart Failure Center, University of Würzburg, Germany.
| |
Collapse
|
13
|
Gao SF, Qi XR, Zhao J, Balesar R, Bao AM, Swaab DF. Decreased NOS1 expression in the anterior cingulate cortex in depression. Cereb Cortex 2013; 23:2956-2964. [PMID: 22989585 DOI: 10.1093/cercor/bhs285] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Decreased function of the anterior cingulate cortex (ACC) is crucially involved in the pathogenesis of depression. A key role of nitric oxide (NO) has also been proposed. We aimed to determine the NO content in the cerebrospinal fluid (CSF) and the expression of NO synthase (NOS) isoforms, that is, NOS1, NOS2, and NOS3 in the ACC in depression. In depressive patients, CSF-NOx levels (the levels of the NO metabolites nitrite and nitrate) were significantly decreased (P = 0.007), indicating a more general decrease of NO production in this disorder. This agreed with a trend toward lower NOS1-mRNA levels (P = 0.083) and a significant decrease of NOS1-immunoreactivity (ir) (P = 0.043) in ACC. In controls, there was a significant positive correlation between ACC-NOS1-ir cell densities and their CSF-NOx levels. Furthermore, both localization of NOS1 in pyramidal neurons that are known to be glutamatergic and co-localization between NOS1 and GABAergic neurons were observed in human ACC. The diminished ACC-NOS1 expression and decreased CSF-NOx levels may be involved in the alterations of ACC activity in depression, possibly by affecting glutamatergic and GABAergic neurotransmission.
Collapse
Affiliation(s)
- Shang-Feng Gao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, PR China and
| | | | | | | | | | | |
Collapse
|