1
|
Chen VL, Kuppa A, Oliveri A, Chen Y, Ponnandy P, Patel PB, Palmer ND, Speliotes EK. Human genetics of metabolic dysfunction-associated steatotic liver disease: from variants to cause to precision treatment. J Clin Invest 2025; 135:e186424. [PMID: 40166930 PMCID: PMC11957700 DOI: 10.1172/jci186424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by increased hepatic steatosis with cardiometabolic disease and is a leading cause of advanced liver disease. We review here the genetic basis of MASLD. The genetic variants most consistently associated with hepatic steatosis implicate genes involved in lipoprotein input or output, glucose metabolism, adiposity/fat distribution, insulin resistance, or mitochondrial/ER biology. The distinct mechanisms by which these variants promote hepatic steatosis result in distinct effects on cardiometabolic disease that may be best suited to precision medicine. Recent work on gene-environment interactions has shown that genetic risk is not fixed and may be exacerbated or attenuated by modifiable (diet, exercise, alcohol intake) and nonmodifiable environmental risk factors. Some steatosis-associated variants, notably those in patatin-like phospholipase domain-containing 3 (PNPLA3) and transmembrane 6 superfamily member 2 (TM6SF2), are associated with risk of developing adverse liver-related outcomes and provide information beyond clinical risk stratification tools, especially in individuals at intermediate to high risk for disease. Future work to better characterize disease heterogeneity by combining genetics with clinical risk factors to holistically predict risk and develop therapies based on genetic risk is required.
Collapse
Affiliation(s)
- Vincent L. Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Annapurna Kuppa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Antonino Oliveri
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yanhua Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Prabhu Ponnandy
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Puja B. Patel
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Nicholette D. Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Elizabeth K. Speliotes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Liu T, Zhang F, Feng Y, Han P, Gao Y. Alcohol-Metabolizing Enzymes, Liver Diseases and Cancer. Semin Liver Dis 2025; 45:99-113. [PMID: 40157374 PMCID: PMC12031026 DOI: 10.1055/a-2551-3320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Alcohol is generally believed to be metabolized in the liver by alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and to a much lesser extent cytochrome P450 2E1 (CYP2E1) and other enzymes. Recent studies suggest that gut also play important roles in the promotion of alcohol metabolism. ADH, ALDH, and CYP2E1 have several polymorphisms that markedly impact alcohol metabolism. These alcohol-metabolizing enzymes not only affect alcohol-associated liver disease (ALD), but may also modulate the pathogenesis of other liver diseases and cancer in the absence of alcohol consumption. In this review, we discuss alcohol metabolism and the roles of alcohol-metabolizing enzymes in the pathogenesis of ALD, metabolic dysfunction-associated steatotic liver disease, metabolic dysfunction and alcohol-associated liver disease, viral hepatitis, and liver cancer. We also discuss how alcohol-metabolizing enzymes may affect endogenous ethanol production, and how ethanol metabolism in the gut affects liver disease and cancer. Directions for future research on the roles of alcohol-metabolizing enzymes in liver disease and cancer are also elaborated.
Collapse
Affiliation(s)
- Tao Liu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - FeiYu Zhang
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - Yue Feng
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - PanShiLi Han
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| | - YanHang Gao
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
- China-Singapore Belt and Road Joint Laboratory on Liver Disease Research, Changchun, China
- Jilin Provincial Key Laboratory of Metabolic Liver Diseases, Jilin University, Changchun, China
| |
Collapse
|
3
|
Geng J, Ruan X, Wu X, Chen X, Fu T, Gill D, Burgess S, Chen J, Ludvigsson JF, Larsson SC, Li X, Du Z, Yuan S. Network Mendelian randomisation analysis deciphers protein pathways linking type 2 diabetes and gastrointestinal disease. Diabetes Obes Metab 2025; 27:866-875. [PMID: 39592890 PMCID: PMC7617254 DOI: 10.1111/dom.16087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/09/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024]
Abstract
AIMS The molecular mechanisms underlying the association between type 2 diabetes (T2D) and gastrointestinal (GI) disease are unclear. To identify protein pathways, we conducted a two-stage network Mendelian randomisation (MR) study. MATERIALS AND METHODS Genetic instruments for T2D were obtained from a large-scale summary-level genome-wide meta-analysis. Genetic associations with blood protein levels were obtained from three genome-wide association studies on plasma proteins (i.e. the deCODE study as the discovery and the UKB-PPP and Fenland studies as the replication). Summary-level data on 10 GI diseases were derived from genome-wide meta-analysis of the UK Biobank and FinnGen. MR and colocalisation analyses were performed. Pathways were constructed according to the directionality of total and indirect effects, and corresponding proportional mediation was estimated. Druggability assessments were conducted across four databases to prioritise protein mediators. RESULTS Genetic liability to T2D was associated with 69 proteins in the discovery protein dataset after multiple testing corrections. All associations were replicated at the nominal significance level. Among T2D-associated proteins, genetically predicted levels of nine proteins were associated with at least one of the GI diseases. Genetically predicted levels of SULT2A1 (odds ratio = 1.98, 95% CI 1.80-2.18), and ADH1B (odds ratio = 2.05, 95% CI 1.43-2.94) were associated with cholelithiasis and cirrhosis respectively. SULT2A1 and cholelithiasis (PH4 = 0.996) and ADH1B and cirrhosis (PH4 = 0.931) have strong colocalisation support, accounting for the mediation proportion of 72.8% (95% CI 45.7-99.9) and 42.9% (95% CI 15.5-70.4) respectively. CONCLUSIONS The study identified some proteins mediating T2D-GI disease associations, which provided biological insights into the underlying pathways.
Collapse
Affiliation(s)
- Jiawei Geng
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xixian Ruan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xing Wu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xuejie Chen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Tian Fu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, LondonSW7 2BX, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Jie Chen
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jonas F. Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatrics, Orebro University Hospital, Orebro, Sweden
- Department of Medicine, Celiac Disease Center at Columbia University Medical Center, New York, New York, USA
| | - Susanna C. Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, 10Uppsala, Sweden
| | - Xue Li
- Department of Big Data in Health Science School of Public Health, Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhongyan Du
- Zhejiang Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- Zhejiang Engineering Research Center for "Preventive Treatment" Smart Health of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
4
|
Miyake K, Otawa S, Kushima M, Yui H, Shinohara R, Horiuchi S, Akiyama Y, Ooka T, Kojima R, Yokomichi H, Yamagata Z. Maternal alcohol consumption during pregnancy and child development: Role of ADH1B and ALDH2 gene polymorphisms-The Yamanashi Adjunct Study of the Japan Environment and Children's Study. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2025; 49:117-127. [PMID: 39537314 PMCID: PMC11740163 DOI: 10.1111/acer.15487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The role of polymorphisms in genes regulating alcohol metabolism, particularly those modulating the impact of prenatal alcohol exposure on the neurodevelopment of offspring, remains inconclusive. Herein, we aimed to determine the involvement of ADH1B and ALDH2 gene polymorphisms in maternal alcohol consumption during pregnancy and the risk of developmental delay in offspring in a Japanese population. METHODS We analyzed 1727 mother-child pairs from the Yamanashi Adjunct Study of the Japan Environment and Children's Study. Maternal alcohol consumption during pregnancy was determined through a mid-pregnancy questionnaire and categorized into three groups: never-drinkers, those who quit drinking in early pregnancy, and current drinkers. Developmental delays in children were assessed in five domains using the Japanese version of the Ages and Stages Questionnaire, Third Edition (J-ASQ-3) at 3 years of age. We conducted a logistic regression analysis to explore the relationship between maternal drinking status during pregnancy and developmental delays in offspring with respect to maternal ADH1B (rs1229984) or ALDH2 (rs671) gene polymorphisms. RESULTS Children born to mothers who continued alcohol consumption during pregnancy had a higher risk of delayed communication skills at 3 years of age compared with children born to mothers who did not drink alcohol (adjusted odds ratio [OR], 5.82; 95% confidence interval, 1.84-18.38). Analysis by ALDH2 gene polymorphism revealed that alcohol consumption by mothers carrying the wild-type ALDH2 (*1/*1) increased the risk of delayed communication skills at 3 years of age, whereas alcohol consumption by mothers carrying a heterozygotic genotype of ALDH2 (*1/*2) enhanced the risk of developmental delay in all five domains of the J-ASQ-3. The impact of ADH1B gene polymorphism could not be clearly elucidated. CONCLUSIONS Our results suggest that alcohol consumption by pregnant females carrying the deficient variant ALDH2*2 genotype may increase the risk of developmental delay in their offspring.
Collapse
Affiliation(s)
- Kunio Miyake
- Department of Epidemiology and Environmental Medicine, Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiChuoJapan
| | - Sanae Otawa
- Center for Birth Cohort StudiesUniversity of YamanashiChuoJapan
| | - Megumi Kushima
- Center for Birth Cohort StudiesUniversity of YamanashiChuoJapan
| | - Hideki Yui
- Center for Birth Cohort StudiesUniversity of YamanashiChuoJapan
| | - Ryoji Shinohara
- Center for Birth Cohort StudiesUniversity of YamanashiChuoJapan
| | - Sayaka Horiuchi
- Department of Epidemiology and Environmental Medicine, Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiChuoJapan
| | - Yuka Akiyama
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiChuoJapan
| | - Tadao Ooka
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiChuoJapan
| | - Reiji Kojima
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiChuoJapan
| | - Hiroshi Yokomichi
- Department of Epidemiology and Environmental Medicine, Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiChuoJapan
| | - Zentaro Yamagata
- Center for Birth Cohort StudiesUniversity of YamanashiChuoJapan
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and EngineeringUniversity of YamanashiChuoJapan
| |
Collapse
|
5
|
Zhang W, Su CY, Yoshiji S, Lu T. MR Corge: sensitivity analysis of Mendelian randomization based on the core gene hypothesis for polygenic exposures. BIOINFORMATICS (OXFORD, ENGLAND) 2024; 40:btae666. [PMID: 39513749 DOI: 10.1093/bioinformatics/btae666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/19/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
SUMMARY Mendelian randomization is being utilized to assess causal effects of polygenic exposures, where many genetic instruments are subject to horizontal pleiotropy. Existing methods for detecting and correcting for horizontal pleiotropy have important assumptions that may not be fulfilled. Built upon the core gene hypothesis, we developed MR Corge for performing sensitivity analysis of Mendelian randomization. MR Corge identifies a small number of putative core instruments that are more likely to affect genes with a direct biological role in an exposure and obtains causal effect estimates based on these instruments, thereby reducing the risk of horizontal pleiotropy. Using positive and negative controls, we demonstrated that MR Corge estimates aligned with established biomedical knowledge and the results of randomized controlled trials. MR Corge may be widely applied to investigate polygenic exposure-outcome relationships. AVAILABILITY AND IMPLEMENTATION An open-sourced R package is available at https://github.com/zhwm/MRCorge.
Collapse
Affiliation(s)
- Wenmin Zhang
- Montreal Heart Institute, Montreal, QC, H1T 1C8, Canada
| | - Chen-Yang Su
- Quantitative Life Sciences Program, McGill University, Montreal, QC, H3A 0G4, Canada
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, H3A 0G1, Canada
| | - Satoshi Yoshiji
- Victor Phillip Dahdaleh Institute of Genomic Medicine, McGill University, Montreal, QC, H3A 0G1, Canada
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada
- Lady Davis Institute for Medical Research, Montreal, QC, H3T 1E2, Canada
- Programs in Metabolism and Medical & Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, United States
- Harvard Medical School, Boston, MA, 02115, United States
| | - Tianyuan Lu
- Department of Population Health Sciences, University of Wisconsin-Madison, Madison, WI, 53726, United States
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53726, United States
- Center for Demography of Health and Aging, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI, 53706, United States
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, WI, 53705, United States
| |
Collapse
|
6
|
Wang X, Xu S, Yan Y, Liu Z, Guo Y, Zhang T, Liu Y, Jiao W. Multi-omics analysis of renal vein serum with Ischemia-Reperfusion injury. Gene 2024; 926:148650. [PMID: 38851364 DOI: 10.1016/j.gene.2024.148650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Acute kidney injury (AKI) is frequently caused by renal ischemia-reperfusion injury (IRI). Identifying potential renal IRI disease biomarkers would be useful for evaluating AKI severity. OBJECTIVE We used proteomics and metabolomics to investigate the differences in renal venous blood between ischemic and healthy kidneys in an animal model by identifying differentially expressed proteins (DEPs) and differentially expressed protein metabolites (DEMs). METHODS Nine pairs of renal venous blood samples were collected before and at 20, 40, and 60 min post ischemia. The ischemia time of Group A, B and C was 20,40 and 60 min. The proteome and metabolome of renal venous blood were evaluated to establish the differences between renal venous blood before and after ischemia. RESULTS We identified 79 common DEPs in all samples of Group A, 80 in Group B, and 131 in Group C. Further common DEPs among all three groups were Tyrosineprotein kinase, GPR15LG, KAZALD1, ADH1B. We also identified 81, 64, and 83 common DEMs in each group respectively, in which 30 DEMs were further common to all groups. Bioinformatic analysis of the DEPs and DEMs was conducted. CONCLUSION This study demonstrated that different pathological processes occur during short- and long-term renal IRI. Tyrosine protein kinase, GPR15LG, Kazal-type serine peptidase inhibitor domain 1, and all-trans-retinol dehydrogenase are potential biomarkers of renal IRI.
Collapse
Affiliation(s)
- Xinning Wang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Shang Xu
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yongchao Yan
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Zhilong Liu
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yize Guo
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Tianwei Zhang
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yunbo Liu
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Wei Jiao
- Department of Urology, Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Wang Y, He G, Zloh M, Shen T, He Z. Integrating network pharmacology and computational biology to propose Yiqi Sanjie formula's mechanisms in treating NSCLC: molecular docking, ADMET, and molecular dynamics simulation. Transl Cancer Res 2024; 13:3798-3813. [PMID: 39145086 PMCID: PMC11319956 DOI: 10.21037/tcr-24-972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024]
Abstract
Background Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related deaths globally. Current treatments often do not fully meet efficacy and quality of life expectations. Traditional Chinese medicine (TCM), particularly the Yiqi Sanjie formula, shows promise but lacks clear mechanistic understanding. This study addresses this gap by investigating the therapeutic effects and underlying mechanisms of Yiqi Sanjie formula in NSCLC. Methods We utilized network pharmacology to identify potential NSCLC drug targets of the Yiqi Sanjie formula via the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Compounds with favorable oral bioavailability and drug-likeness scores were selected. Molecular docking was conducted using AutoDock Vina with structural data from the Protein Data Bank and PubChem. Molecular dynamics (MD) simulations were performed with Desmond Molecular Dynamics System, analyzing interactions up to 500 nanoseconds using the OPLS4 force field. ADMET predictions were executed using SwissADME and ADMETlab 2.0, assessing pharmacokinetic properties. Results Using network pharmacology tools, we performed Search Tool for the Retrieval of Interaction Genes/Proteins (STRING) analysis for protein-protein interaction, Kyoto Encyclopedia of Genes and Genomes (KEGG) for pathway enrichment, and gene ontology (GO) for functional enrichment, identifying crucial signaling pathways and biological processes influenced by the hit compounds bifendate, xambioona, and hederagenin. STRING analysis indicated substantial connectivity among the targets, suggesting significant interactions within the cell cycle regulation and growth factor signaling pathways as outlined in our KEGG results. The GO analysis highlighted their involvement in critical biological processes such as cell cycle control, apoptosis, and drug response. Molecular docking simulations quantified the binding efficiencies of the identified compounds with their targets-CCND1, CDK4, and EGFR-selected based on high docking scores that suggest strong potential interactions crucial for NSCLC inhibition. Subsequent MD simulations validated the stability of these complexes, supporting their potential as therapeutic interventions. Additionally, the novel identification of ADH1B as a target underscores its prospective significance in NSCLC therapy, further expanded by our comprehensive bioinformatics approach. Conclusions Our research demonstrates the potential of integrating network pharmacology and computational biology to elucidate the mechanisms of the Yiqi Sanjie formula in NSCLC treatment. The identified compounds could lead to novel targeted therapies, especially for patients with overexpressed targets. The discovery of ADH1B as a therapeutic target adds a new dimension to NSCLC treatment strategies. Further studies, both in vitro and in vivo, are needed to confirm these computational findings and advance these compounds towards clinical trials.
Collapse
Affiliation(s)
- Yunzhen Wang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guijuan He
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Mire Zloh
- UCL School of Pharmacy, University College London, London, UK
- Faculty of Pharmacy, University Business Academy, Novi Sad, Serbia
| | - Tao Shen
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengfu He
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Jordan A, Näslund-Koch C, Vedel-Krogh S, Egil Bojesen S, Skov L. Alcohol consumption and risk of psoriasis: Results from observational and genetic analyses in more than 100,000 individuals from the Danish general population. JAAD Int 2024; 15:197-205. [PMID: 38707928 PMCID: PMC11066682 DOI: 10.1016/j.jdin.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2024] [Indexed: 05/07/2024] Open
Abstract
Background Psoriasis is associated with high alcohol consumption, but the causality of this relationship is unclear. Objective We aimed to use a Mendelian randomization approach to investigate the causal effects of alcohol on incident psoriasis. Methods We included 102,655 adults from the prospective Copenhagen studies. All participants filled out a questionnaire on alcohol consumption, were physically examined, and had blood drawn for biochemical and genetic analyses. We created a genetic instrument based on the number of fast-metabolizing alleles in alcohol dehydrogenase 1B and alcohol dehydrogenase 1C, known to be associated with alcohol consumption, to test whether alcohol consumption was causally associated with psoriasis. Results Observationally, we found an increased risk of incident psoriasis among individuals with high alcohol consumption compared to those with low alcohol consumption with a hazard ratio of 1.30 (95% confidence interval 1.05-1.60) in the fully adjusted model. Using genetic data to predict alcohol consumption to avoid confounding and reverse causation, we found no association between number of fast-metabolizing alleles and risk of psoriasis. Limitations Alcohol consumption was self-reported and psoriasis was defined using the International Classification of Diseases 10th revision and 8th revision codes. Conclusion Alcohol consumption is observationally but not causally associated with incident psoriasis.
Collapse
Affiliation(s)
- Alexander Jordan
- Department of Dermatology and Allergy, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Charlotte Näslund-Koch
- Department of Dermatology and Allergy, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe Vedel-Krogh
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Copenhagen General Population Study, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Stig Egil Bojesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Copenhagen General Population Study, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Copenhagen City Heart Study, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
| | - Lone Skov
- Department of Dermatology and Allergy, Copenhagen University Hospital - Herlev and Gentofte, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Liu H, Li K, Xia J, Zhu J, Cheng Y, Zhang X, Ye H, Wang P. Prediction of esophageal cancer risk based on genetic variants and environmental risk factors in Chinese population. BMC Cancer 2024; 24:598. [PMID: 38755535 PMCID: PMC11100074 DOI: 10.1186/s12885-024-12370-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Results regarding whether it is essential to incorporate genetic variants into risk prediction models for esophageal cancer (EC) are inconsistent due to the different genetic backgrounds of the populations studied. We aimed to identify single-nucleotide polymorphisms (SNPs) associated with EC among the Chinese population and to evaluate the performance of genetic and non-genetic factors in a risk model for developing EC. METHODS A meta-analysis was performed to systematically identify potential SNPs, which were further verified by a case-control study. Three risk models were developed: a genetic model with weighted genetic risk score (wGRS) based on promising SNPs, a non-genetic model with environmental risk factors, and a combined model including both genetic and non-genetic factors. The discrimination ability of the models was compared using the area under the receiver operating characteristic curve (AUC) and the net reclassification index (NRI). The Akaike information criterion (AIC) and Bayesian information criterion (BIC) were used to assess the goodness-of-fit of the models. RESULTS Five promising SNPs were ultimately utilized to calculate the wGRS. Individuals in the highest quartile of the wGRS had a 4.93-fold (95% confidence interval [CI]: 2.59 to 9.38) increased risk of EC compared with those in the lowest quartile. The genetic or non-genetic model identified EC patients with AUCs ranging from 0.618 to 0.650. The combined model had an AUC of 0.707 (95% CI: 0.669 to 0.743) and was the best-fitting model (AIC = 750.55, BIC = 759.34). The NRI improved when the wGRS was added to the risk model with non-genetic factors only (NRI = 0.082, P = 0.037). CONCLUSIONS Among the three risk models for EC, the combined model showed optimal predictive performance and can help to identify individuals at risk of EC for tailored preventive measures.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Keming Li
- Zhengzhou Center for Disease Control and Prevention, Zhengzhou City, 450042, Henan Province, China
| | - Junfen Xia
- Office of Health Care, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Jicun Zhu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Yifan Cheng
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Xiaoyue Zhang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Hua Ye
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou City, 450052, Henan Province, China
| | - Peng Wang
- Department of Epidemiology and Statistics, College of Public Health, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China.
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou City, 450052, Henan Province, China.
| |
Collapse
|
10
|
Jennings MV, Martínez-Magaña JJ, Courchesne-Krak NS, Cupertino RB, Vilar-Ribó L, Bianchi SB, Hatoum AS, Atkinson EG, Giusti-Rodriguez P, Montalvo-Ortiz JL, Gelernter J, Artigas MS, Elson SL, Edenberg HJ, Fontanillas P, Palmer AA, Sanchez-Roige S. A phenome-wide association and Mendelian randomisation study of alcohol use variants in a diverse cohort comprising over 3 million individuals. EBioMedicine 2024; 103:105086. [PMID: 38580523 PMCID: PMC11121167 DOI: 10.1016/j.ebiom.2024.105086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/01/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Alcohol consumption is associated with numerous negative social and health outcomes. These associations may be direct consequences of drinking, or they may reflect common genetic factors that influence both alcohol consumption and other outcomes. METHODS We performed exploratory phenome-wide association studies (PheWAS) of three of the best studied protective single nucleotide polymorphisms (SNPs) in genes encoding ethanol metabolising enzymes (ADH1B: rs1229984-T, rs2066702-A; ADH1C: rs698-T) using up to 1109 health outcomes across 28 phenotypic categories (e.g., substance-use, mental health, sleep, immune, cardiovascular, metabolic) from a diverse 23andMe cohort, including European (N ≤ 2,619,939), Latin American (N ≤ 446,646) and African American (N ≤ 146,776) populations to uncover new and perhaps unexpected associations. These SNPs have been consistently implicated by both candidate gene studies and genome-wide association studies of alcohol-related behaviours but have not been investigated in detail for other relevant phenotypes in a hypothesis-free approach in such a large cohort of multiple ancestries. To provide insight into potential causal effects of alcohol consumption on the outcomes significant in the PheWAS, we performed univariable two-sample and one-sample Mendelian randomisation (MR) analyses. FINDINGS The minor allele rs1229984-T, which is protective against alcohol behaviours, showed the highest number of PheWAS associations across the three cohorts (N = 232, European; N = 29, Latin American; N = 7, African American). rs1229984-T influenced multiple domains of health. We replicated associations with alcohol-related behaviours, mental and sleep conditions, and cardio-metabolic health. We also found associations with understudied traits related to neurological (migraines, epilepsy), immune (allergies), musculoskeletal (fibromyalgia), and reproductive health (preeclampsia). MR analyses identified evidence of causal effects of alcohol consumption on liability for 35 of these outcomes in the European cohort. INTERPRETATION Our work demonstrates that polymorphisms in genes encoding alcohol metabolising enzymes affect multiple domains of health beyond alcohol-related behaviours. Understanding the underlying mechanisms of these effects could have implications for treatments and preventative medicine. FUNDING MVJ, NCK, SBB, SSR and AAP were supported by T32IR5226 and 28IR-0070. SSR was also supported by NIDA DP1DA054394. NCK and RBC were also supported by R25MH081482. ASH was supported by funds from NIAAA K01AA030083. JLMO was supported by VA 1IK2CX002095. JLMO and JJMM were also supported by NIDA R21DA050160. JJMM was also supported by the Kavli Postdoctoral Award for Academic Diversity. EGA was supported by K01MH121659 from the NIMH/NIH, the Caroline Wiess Law Fund for Research in Molecular Medicine and the ARCO Foundation Young Teacher-Investigator Fund at Baylor College of Medicine. MSA was supported by the Instituto de Salud Carlos III and co-funded by the European Union Found: Fondo Social Europeo Plus (FSE+) (P19/01224, PI22/00464 and CP22/00128).
Collapse
Affiliation(s)
- Mariela V Jennings
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - José Jaime Martínez-Magaña
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, Orange, West Haven, CT, USA
| | | | - Renata B Cupertino
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Laura Vilar-Ribó
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Sevim B Bianchi
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Alexander S Hatoum
- Department of Psychology & Brain Sciences, Washington University in St. Louis, St Louis, MO, USA
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Paola Giusti-Rodriguez
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - Janitza L Montalvo-Ortiz
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, Orange, West Haven, CT, USA; National Center of Posttraumatic Stress Disorder, VA CT Healthcare Center, West Haven, CT, USA
| | - Joel Gelernter
- VA CT Healthcare Center, Department Psychiatry, West Haven, CT, USA; Departments Psychiatry, Genetics, and Neuroscience, Yale Univ. School of Medicine, New Haven, CT, USA
| | - María Soler Artigas
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain; Department of Mental Health, Hospital Universitari Vall d'Hebron, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain; Department of Genetics, Microbiology, and Statistics, Faculty of Biology, Universitat de Barcelona, Barcelona, Spain
| | | | - Howard J Edenberg
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
11
|
Deiana G, Sun R, Huang J, Napolioni V, Ciccocioppo R. Contribution of infectious diseases to the selection of ADH1B and ALDH2 gene variants in Asian populations. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:855-866. [PMID: 38462538 PMCID: PMC11073917 DOI: 10.1111/acer.15288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The gene variants ADH1B*2 (Arg48His, rs1229984) and ALDH2*2 (Glu504Lys, rs671) are common in East Asian populations but rare in other populations. We propose that selective pressures from pathogen exposure and dietary changes during the neolithic transition favored these variants. Thus, their current association with differences in alcohol sensitivity likely results from phenotypic plasticity rather than direct natural selection. METHODS Samples sourced from the Allele Frequency Database (ALFRED) were utilized to compute the average frequency of ADH1B*2 and ALDH2*2 across 88 and 61 countries, respectively. Following computation of the average national allele frequencies, we tested the significance of their correlations with ecological variables. Subsequently, we subjected them to Principal Component Analysis (PCA) and Elastic Net regularization. For comprehensive evaluation, we collected individual-level phenotypic associations, compiling a Phenome-Wide Association Study (PheWAS) spanning multiple ethnicities. RESULTS Following multiple testing correction, ADH1B*2 displayed significant correlations with Neolithic transition timing (r = 0.405, p.adj = 2.013e-03, n = 57) and historical trypanosome burden (r = -0.418, p.adj = 0.013, n = 57). The first two components of PCA explained 47.7% of the total variability across countries, with the top three contributors being the historical indices of population density and trypanosome and leprosy burdens. Historical burdens of the Mycobacteria tuberculosis and leprosy were the sole predictive variables with positive coefficients that survived Elastic Net regularization. CONCLUSIONS Our analyses suggest that Mycobacteria may have played a role in the joint selection of ADH1B*2 and ALDH2*2, expanding the "toxic aldehyde hypothesis" to include Mycobacterium leprae. Additionally, our hypothesis, linked to dietary shifts from rice domestication, emphasizes nutritional deficiencies as a key element in the selective pressure exerted by Mycobacteria. This offers a plausible explanation for the high frequency of ADH1B*2 and ALDH2*2 in Asian populations.
Collapse
Affiliation(s)
- Giovanni Deiana
- Center for Neuroscience, Pharmacology Unit, School of Pharmacy, University of Camerino
| | - Ruinan Sun
- Department of Public and Ecosystem Health, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Jie Huang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, China
- Institute for Global Health and Development, Peking University, Beijing, China
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino
| | - Roberto Ciccocioppo
- Center for Neuroscience, Pharmacology Unit, School of Pharmacy, University of Camerino
| |
Collapse
|
12
|
Chen Z, Wang X, Teng Z, Liu M, Liu F, Huang J, Liu Z. Modifiable lifestyle factors influencing psychiatric disorders mediated by plasma proteins: A systemic Mendelian randomization study. J Affect Disord 2024; 350:582-589. [PMID: 38246286 DOI: 10.1016/j.jad.2024.01.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Psychiatric disorders are emerging as a serious public health hazard, influencing an increasing number of individuals worldwide. However, the effect of modifiable lifestyle factors on psychiatric disorders remains unclear. METHODS Genome-wide association studies (GWAS) summary statistics were obtained mainly from Psychiatric Genomics Consortium and UK Biobank, with sample sizes varying between 10,000 and 1,200,000. The two-sample Mendelian randomization (MR) method was applied to investigate the causal associations between 45 lifestyle factors and 13 psychiatric disorders, and screen potential mediator proteins from 2992 candidate plasma proteins. We implemented a four-step framework with step-by-step screening incorporating two-step, univariable, and multivariable MR. RESULTS We found causal effects of strenuous sports or other exercise on Tourette's syndrome (OR [95%CI]: 0.0047 [5.24E-04-0.042]); lifelong smoking index on attention-deficit hyperactivity disorder (10.53 [6.96-15.93]), anxiety disorders (3.44 [1.95-6.05]), bipolar disorder (BD) (2.25 [1.64-3.09]), BD II (2.89 [1.81-4.62]), and major depressive disorder (MDD) (2.47 [1.90-3.20]); and educational years on anorexia nervosa (AN) (1.47 [1.22-1.76]), and MDD (0.74 [0.66-0.83]). Five proteins were found to have causal associations with psychiatric disorders, namely ADH1B, GHDC, STOM, CD226, and TP63. STOM, a membrane protein deficient in the erythrocytes of hereditary stomatocytosis patients, may mediate the effect of educational attainment on AN. LIMITATIONS The mechanisms underlying the effects of lifestyle factors on psychiatric disorders require further investigation. CONCLUSIONS These findings could help assess the risk of psychiatric disorders based on lifestyle factors and also support lifestyle interventions as a prevention strategy for mental illness.
Collapse
Affiliation(s)
- Zhuohui Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
| | - Ziwei Teng
- National Clinical Research Centre for Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengdong Liu
- Department of Psychology, University of Washington, Seattle, WA, USA
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Huang
- National Clinical Research Centre for Mental Disorders, Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Psychiatry, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hypothalamic Pituitary Research Centre, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
13
|
Zhang H, Ruan WJ, Chou SP, Saha TD, Fan AZ, Huang B, White AM. Exploring patterns of alcohol use and alcohol use disorder among Asian Americans with a finer lens. Drug Alcohol Depend 2024; 257:111120. [PMID: 38402754 DOI: 10.1016/j.drugalcdep.2024.111120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND National survey data suggest Asian Americans (AA) are less likely to consume alcohol and develop AUD than Americans in other groups. However, it is common for AA to be born outside of the US and carry gene variants that alter alcohol metabolism, both of which can lead to lower levels of alcohol involvement. The current study examined differences in alcohol use and AUD between AA and other groups before and after controlling for birth location and gene variants. DESIGN Past year alcohol measures were examined from adults 18+ (N=22,848) in the 2012-2013 National Epidemiologic Survey on Alcohol and Related Conditions III before and after controlling for birth location (inside or outside of the US) and gene variants (ALDH2*2 and ADH1B*2/ADH1B*3). Gender gaps in alcohol measures also were assessed. RESULTS Before adjustments, AA were less likely than White Americans to drink in the previous year (OR=0.50, 95% CI 0.41-0.62), binge (OR=0.68, 95% CI 0.52-0.88), engage in frequent heavy drinking (OR=0.55, 95% CI 0.42-0.73), and reach criteria for AUD (OR=0.71, 95% CI 0.53-0.94). After controlling for birth location and gene variants, AA remained less likely to drink in the past year (OR=0.54, 95% CI 0.41-0.70) but all other differences disappeared. Gender gaps were only observed for AA born outside of the US, highlighting the importance of experience rather than racial category per se. CONCLUSIONS Findings indicate that heterogeneity among AA leads to spurious generalizations regarding alcohol use and AUD and challenge the model minority myth.
Collapse
Affiliation(s)
- Haitao Zhang
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA
| | - W June Ruan
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA
| | - S Patricia Chou
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA
| | - Tulshi D Saha
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA
| | - Amy Z Fan
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA
| | - Boji Huang
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA
| | - Aaron M White
- Epidemiology and Biometry Branch, Division of Epidemiology and Prevention Research, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, USA.
| |
Collapse
|
14
|
Koh AP, Smith MI, Dando R. Bitter taste function-related genes are implicated in the behavioral association between taste preference and ethanol preference in male mice. Physiol Behav 2024; 276:114473. [PMID: 38262572 DOI: 10.1016/j.physbeh.2024.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Alcohol use disorder in humans is highly heritable, and as a term is synonymous with alcoholism, alcohol dependence, and alcohol addiction. Defined by the NIAAA as a medical condition characterized by an impaired ability to stop or control alcohol use despite adverse social, occupational, or health consequences, the genetic basis of alcohol dependence is much studied. However, an intriguing component to alcohol acceptance exists outside of genetics or social factors. In fact, mice of identical genetic backgrounds without any prior experience of tasting ethanol display widely varying preferences to it, far beyond those seen for typical taste solutions. Here, we hypothesized that a preference for ethanol, which tastes both bitter and sweet to humans, would be influenced by taste function. Using a mouse model of taste behavior, we tested preferences for bitter and sweet in mice that, without training or previous experience, either preferred or avoided ethanol solutions in consumption trials. Data showed clear sex differences, in which male mice that preferred ethanol also preferred a bitter quinine solution, whereas female mice that preferred ethanol also preferred a sweet sucralose solution. Male mice preferring ethanol also exhibited lower expression levels of mRNA for genes encoding the bitter taste receptors T2R26 and T2R37, and the bitter transducing G-protein subunit GNAT3, suggesting that the higher ethanol preference observed in the male mice may be due to bitter signaling, including that arising from ethanol, being weaker in this group. Results further support links between ethanol consumption and taste response, and may be relevant to substance abuse issues in human populations.
Collapse
Affiliation(s)
- Anna P Koh
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States
| | - Molly I Smith
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States
| | - Robin Dando
- Department of Food Science, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
15
|
Chuah MH, Leask MP, Topless RK, Gamble GD, Sumpter NA, Stamp LK, Merriman TR, Dalbeth N. Interaction of genetic variation at ADH1B and MLXIPL with alcohol consumption for elevated serum urate level and gout among people of European ethnicity. Arthritis Res Ther 2024; 26:45. [PMID: 38331848 PMCID: PMC10851571 DOI: 10.1186/s13075-024-03279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/29/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Alcohol consumption is a risk factor for hyperuricaemia and gout. Multiple single-nucleotide polymorphisms (SNPs) have been identified as associated with both alcohol consumption and serum urate or gout in separate genome-wide association studies (GWAS). This study aimed to identify and characterise interactions between these shared signals of genetic association and alcohol consumption for serum urate level, hyperuricaemia, and gout. METHODS This research was conducted using the UK Biobank resource. The association of alcohol consumption with serum urate and gout was tested among 458,405 European participants. Candidate SNPs were identified by comparing serum urate, gout, and alcohol consumption GWAS for shared signals of association. Multivariable-adjusted linear and logistic regression analyses were conducted with the inclusion of interaction terms to identify SNP-alcohol consumption interactions for association with serum urate level, hyperuricaemia, and gout. The nature of these interactions was characterised using genotype-stratified association analyses. RESULTS Alcohol consumption was associated with elevated serum urate and gout. For serum urate level, non-additive interactions were identified between alcohol consumption and rs1229984 at the ADH1B locus (P = 3.0 × 10-44) and rs6460047 at the MLXIPL locus (P = 1.4 × 10-4). ADH1B also demonstrated interaction with alcohol consumption for hyperuricaemia (P = 7.9 × 10-13) and gout (P = 8.2 × 10-9). Beer intake had the most significant interaction with ADH1B for association with serum urate and gout among men, while wine intake had the most significant interaction among women. In the genotype-stratified association analyses, ADH1B and MLXIPL were associated with serum urate level and ADH1B was associated with hyperuricaemia and gout among consumers of alcohol but not non-consumers. CONCLUSIONS In this large study of European participants, novel interactions with alcohol consumption were identified at ADH1B and MLXIPL for association with serum urate level and at ADH1B for association with hyperuricaemia and gout. The association of ADH1B with serum urate and gout may occur through the modulation of alcohol metabolism rate among consumers of alcohol.
Collapse
Affiliation(s)
- Min H Chuah
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, New Zealand
| | - Megan P Leask
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ruth K Topless
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Gregory D Gamble
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, New Zealand
| | - Nicholas A Sumpter
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lisa K Stamp
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Tony R Merriman
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Rd, Grafton, Auckland, New Zealand.
| |
Collapse
|
16
|
Abstract
Alcohol-associated liver disease (ALD) is a major cause of chronic liver disease worldwide, and comprises a spectrum of several different disorders, including simple steatosis, steatohepatitis, cirrhosis, and superimposed hepatocellular carcinoma. Although tremendous progress has been made in the field of ALD over the last 20 years, the pathogenesis of ALD remains obscure, and there are currently no FDA-approved drugs for the treatment of ALD. In this Review, we discuss new insights into the pathogenesis and therapeutic targets of ALD, utilizing the study of multiomics and other cutting-edge approaches. The potential translation of these studies into clinical practice and therapy is deliberated. We also discuss preclinical models of ALD, interplay of ALD and metabolic dysfunction, alcohol-associated liver cancer, the heterogeneity of ALD, and some potential translational research prospects for ALD.
Collapse
|
17
|
Shirasu N, Yasunaga S. An idea to explore: Determination of single nucleotide polymorphisms in alcohol metabolism-related genes using PCR-based assays to understand the link between an individual's genotype and phenotype. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 52:117-126. [PMID: 37815103 DOI: 10.1002/bmb.21794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Here, we propose a laboratory exercise to quickly determine single nucleotide polymorphisms (SNPs) in human alcohol dehydrogenase 1B (ADH1B) and aldehyde dehydrogenase 2 (ALDH2) genes involved in alcohol metabolism. In this exercise, two different genotyping methods based on polymerase chain reaction (PCR), namely allele-specific (AS) PCR and a PCR-restriction fragment polymorphism (RFLP) analysis, can be performed under the same PCR program (2-step × 35 cycles, 35 min total) in parallel using a hair root lysate as a template. In AS-PCR, the target regions of the G- or A-alleles of both genes are allele-specifically amplified in a single PCR tube. In the PCR-RFLP analysis, the two genes are amplified simultaneously in a single tube, and then a portion of the PCR product is double-digested with restriction enzymes MslI and Eam1104I for 5 min. The resulting reaction products of each method are electrophoresed side by side, and the genotypes are determined from the DNA band patterns. With the optimized protocol, the whole process from template preparation to genotyping can be completed in about 75 min. During PCR, students also perform an ethanol patch test to estimate their ability to metabolize alcohol. This series of experiments can help students learn the principles and applications of PCR/SNP analyses. By comparing the genotypes revealed by PCR and the phenotypes revealed by the patch tests, students can gain a better understanding of the clinical value of genetic testing.
Collapse
Affiliation(s)
- Naoto Shirasu
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shin'ichiro Yasunaga
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
18
|
Larsson SC, Butterworth AS, Burgess S. Mendelian randomization for cardiovascular diseases: principles and applications. Eur Heart J 2023; 44:4913-4924. [PMID: 37935836 PMCID: PMC10719501 DOI: 10.1093/eurheartj/ehad736] [Citation(s) in RCA: 216] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/13/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023] Open
Abstract
Large-scale genome-wide association studies conducted over the last decade have uncovered numerous genetic variants associated with cardiometabolic traits and risk factors. These discoveries have enabled the Mendelian randomization (MR) design, which uses genetic variation as a natural experiment to improve causal inferences from observational data. By analogy with the random assignment of treatment in randomized controlled trials, the random segregation of genetic alleles when DNA is transmitted from parents to offspring at gamete formation is expected to reduce confounding in genetic associations. Mendelian randomization analyses make a set of assumptions that must hold for valid results. Provided that the assumptions are well justified for the genetic variants that are employed as instrumental variables, MR studies can inform on whether a putative risk factor likely has a causal effect on the disease or not. Mendelian randomization has been increasingly applied over recent years to predict the efficacy and safety of existing and novel drugs targeting cardiovascular risk factors and to explore the repurposing potential of available drugs. This review article describes the principles of the MR design and some applications in cardiovascular epidemiology.
Collapse
Affiliation(s)
- Susanna C Larsson
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
| | - Stephen Burgess
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Papworth Road, Cambridge, UK
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Sun KY, Bai X, Chen S, Bao S, Kapoor M, Zhang C, Backman J, Joseph T, Maxwell E, Mitra G, Gorovits A, Mansfield A, Boutkov B, Gokhale S, Habegger L, Marcketta A, Locke A, Kessler MD, Sharma D, Staples J, Bovijn J, Gelfman S, Gioia AD, Rajagopal V, Lopez A, Varela JR, Alegre J, Berumen J, Tapia-Conyer R, Kuri-Morales P, Torres J, Emberson J, Collins R, Cantor M, Thornton T, Kang HM, Overton J, Shuldiner AR, Cremona ML, Nafde M, Baras A, Abecasis G, Marchini J, Reid JG, Salerno W, Balasubramanian S. A deep catalog of protein-coding variation in 985,830 individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539329. [PMID: 37214792 PMCID: PMC10197621 DOI: 10.1101/2023.05.09.539329] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Coding variants that have significant impact on function can provide insights into the biology of a gene but are typically rare in the population. Identifying and ascertaining the frequency of such rare variants requires very large sample sizes. Here, we present the largest catalog of human protein-coding variation to date, derived from exome sequencing of 985,830 individuals of diverse ancestry to serve as a rich resource for studying rare coding variants. Individuals of African, Admixed American, East Asian, Middle Eastern, and South Asian ancestry account for 20% of this Exome dataset. Our catalog of variants includes approximately 10.5 million missense (54% novel) and 1.1 million predicted loss-of-function (pLOF) variants (65% novel, 53% observed only once). We identified individuals with rare homozygous pLOF variants in 4,874 genes, and for 1,838 of these this work is the first to document at least one pLOF homozygote. Additional insights from the RGC-ME dataset include 1) improved estimates of selection against heterozygous loss-of-function and identification of 3,459 genes intolerant to loss-of-function, 83 of which were previously assessed as tolerant to loss-of-function and 1,241 that lack disease annotations; 2) identification of regions depleted of missense variation in 457 genes that are tolerant to loss-of-function; 3) functional interpretation for 10,708 variants of unknown or conflicting significance reported in ClinVar as cryptic splice sites using splicing score thresholds based on empirical variant deleteriousness scores derived from RGC-ME; and 4) an observation that approximately 3% of sequenced individuals carry a clinically actionable genetic variant in the ACMG SF 3.1 list of genes. We make this important resource of coding variation available to the public through a variant allele frequency browser. We anticipate that this report and the RGC-ME dataset will serve as a valuable reference for understanding rare coding variation and help advance precision medicine efforts.
Collapse
Affiliation(s)
| | | | - Siying Chen
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Suying Bao
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Adam Locke
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | - Jesus Alegre
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Jaime Berumen
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Roberto Tapia-Conyer
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Pablo Kuri-Morales
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Jason Torres
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jonathan Emberson
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Rory Collins
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | - Mona Nafde
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | |
Collapse
|
20
|
Chen Y, Du X, Kuppa A, Feitosa MF, Bielak LF, O'Connell JR, Musani SK, Guo X, Kahali B, Chen VL, Smith AV, Ryan KA, Eirksdottir G, Allison MA, Bowden DW, Budoff MJ, Carr JJ, Chen YDI, Taylor KD, Oliveri A, Correa A, Crudup BF, Kardia SLR, Mosley TH, Norris JM, Terry JG, Rotter JI, Wagenknecht LE, Halligan BD, Young KA, Hokanson JE, Washko GR, Gudnason V, Province MA, Peyser PA, Palmer ND, Speliotes EK. Genome-wide association meta-analysis identifies 17 loci associated with nonalcoholic fatty liver disease. Nat Genet 2023; 55:1640-1650. [PMID: 37709864 PMCID: PMC10918428 DOI: 10.1038/s41588-023-01497-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is common and partially heritable and has no effective treatments. We carried out a genome-wide association study (GWAS) meta-analysis of imaging (n = 66,814) and diagnostic code (3,584 cases versus 621,081 controls) measured NAFLD across diverse ancestries. We identified NAFLD-associated variants at torsin family 1 member B (TOR1B), fat mass and obesity associated (FTO), cordon-bleu WH2 repeat protein like 1 (COBLL1)/growth factor receptor-bound protein 14 (GRB14), insulin receptor (INSR), sterol regulatory element-binding transcription factor 1 (SREBF1) and patatin-like phospholipase domain-containing protein 2 (PNPLA2), as well as validated NAFLD-associated variants at patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily 2 (TM6SF2), apolipoprotein E (APOE), glucokinase regulator (GCKR), tribbles homolog 1 (TRIB1), glycerol-3-phosphate acyltransferase (GPAM), mitochondrial amidoxime-reducing component 1 (MARC1), microsomal triglyceride transfer protein large subunit (MTTP), alcohol dehydrogenase 1B (ADH1B), transmembrane channel like 4 (TMC4)/membrane-bound O-acyltransferase domain containing 7 (MBOAT7) and receptor-type tyrosine-protein phosphatase δ (PTPRD). Implicated genes highlight mitochondrial, cholesterol and de novo lipogenesis as causally contributing to NAFLD predisposition. Phenome-wide association study (PheWAS) analyses suggest at least seven subtypes of NAFLD. Individuals in the top 10% and 1% of genetic risk have a 2.5-fold to 6-fold increased risk of NAFLD, cirrhosis and hepatocellular carcinoma. These genetic variants identify subtypes of NAFLD, improve estimates of disease risk and can guide the development of targeted therapeutics.
Collapse
Affiliation(s)
- Yanhua Chen
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Xiaomeng Du
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Annapurna Kuppa
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey R O'Connell
- Department of Endocrinology, Diabetes and Nutrition, University of Maryland - Baltimore, Baltimore, MD, USA
| | - Solomon K Musani
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Bratati Kahali
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Vincent L Chen
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Albert V Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Kathleen A Ryan
- Department of Endocrinology, Diabetes and Nutrition, University of Maryland - Baltimore, Baltimore, MD, USA
| | | | - Matthew A Allison
- Department of Family Medicine, University of California San Diego, San Diego, CA, USA
| | - Donald W Bowden
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Matthew J Budoff
- Department of Internal Medicine, Lundquist Institute at Harbor-UCLA, Torrance, CA, USA
| | - John Jeffrey Carr
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yii-Der I Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Antonino Oliveri
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Adolfo Correa
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Breland F Crudup
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Thomas H Mosley
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - James G Terry
- Department of Radiology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Lynne E Wagenknecht
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brian D Halligan
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Kendra A Young
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - John E Hokanson
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - George R Washko
- Department of Medicine, Division of Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA, USA
| | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Department of Medicine, University of Iceland, Reykjavik, Iceland
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Patricia A Peyser
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Elizabeth K Speliotes
- Department of Internal Medicine, Division of Gastroenterology and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Rancelis T, Domarkiene I, Ambrozaityte L, Utkus A. Implementing Core Genes and an Omnigenic Model for Behaviour Traits Prediction in Genomics. Genes (Basel) 2023; 14:1630. [PMID: 37628681 PMCID: PMC10454355 DOI: 10.3390/genes14081630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
A high number of genome variants are associated with complex traits, mainly due to genome-wide association studies (GWAS). Using polygenic risk scores (PRSs) is a widely accepted method for calculating an individual's complex trait prognosis using such data. Unlike monogenic traits, the practical implementation of complex traits by applying this method still falls behind. Calculating PRSs from all GWAS data has limited practical usability in behaviour traits due to statistical noise and the small effect size from a high number of genome variants involved. From a behaviour traits perspective, complex traits are explored using the concept of core genes from an omnigenic model, aiming to employ a simplified calculation version. Simplification may reduce the accuracy compared to a complete PRS encompassing all trait-associated variants. Integrating genome data with datasets from various disciplines, such as IT and psychology, could lead to better complex trait prediction. This review elucidates the significance of clear biological pathways in understanding behaviour traits. Specifically, it highlights the essential role of genes related to hormones, enzymes, and neurotransmitters as robust core genes in shaping these traits. Significant variations in core genes are prominently observed in behaviour traits such as stress response, impulsivity, and substance use.
Collapse
Affiliation(s)
- Tautvydas Rancelis
- Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Santariskiu Str. 2, LT-08661 Vilnius, Lithuania; (I.D.); (L.A.); (A.U.)
| | | | | | | |
Collapse
|
22
|
Long G, Wang D, Tang J, Tang W. Development of tryptophan metabolism patterns to predict prognosis and immunotherapeutic responses in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:7593-7615. [PMID: 37540213 PMCID: PMC10457071 DOI: 10.18632/aging.204928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023]
Abstract
Tryptophan metabolism is associated with tumorigenesis and tumor immune response in various cancers. Liver is the main place where tryptophan catabolism is performed. However, the role of tryptophan metabolism in hepatocellular carcinoma (HCC) has not been well clarified. In the present study, we described the mutations of 42 tryptophan metabolism-related genes (TRPGs) in HCC cohorts. Then, HCC patients were well distributed into two subtypes based on the expression profiles of the 42 TRPGs. The clinicopathological characteristics and tumor microenvironmental landscape of the two subtypes were profiled. We also established a TRPGs scoring system and identified four hallmark TRPGs, including ACSL3, ADH1B, ALDH2, and HADHA. Univariate and multivariate Cox regression analysis revealed that the TRPG signature was an independent prognostic indicator for HCC patients. Besides, the predictive accuracy of the TRPG signature was assessed by the receiver operating characteristic curve (ROC) analysis. These results showed that the TRPG risk model had an excellent capability in predicting survival in both TCGA and GEO HCC cohorts. Moreover, we discovered that the TRPG signature was significantly related to the different immune infiltration and therapeutic drug sensitivity. The functional experiments and immunohistochemistry staining analysis also validated the results above. Our comprehensive analysis enhanced our understanding of TRPGs in HCC. A novel predictive model based on TRPGs was built, which may be considered as a beneficial tool for predicting the clinical outcomes of HCC patients.
Collapse
Affiliation(s)
- Guo Long
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Dong Wang
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Jianing Tang
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Weifeng Tang
- Department of Gastroenterology, The Second Hospital of Zhuzhou, Zhuzhou 412005, Hunan, China
| |
Collapse
|
23
|
Stuart KV, Luben RN, Warwick AN, Madjedi KM, Patel PJ, Biradar MI, Sun Z, Chia MA, Pasquale LR, Wiggs JL, Kang JH, Kim J, Aschard H, Tran JH, Lentjes MAH, Foster PJ, Khawaja AP. The Association of Alcohol Consumption with Glaucoma and Related Traits: Findings from the UK Biobank. Ophthalmol Glaucoma 2023; 6:366-379. [PMID: 36481453 PMCID: PMC10239785 DOI: 10.1016/j.ogla.2022.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 05/12/2023]
Abstract
PURPOSE To examine the associations of alcohol consumption with glaucoma and related traits, to assess whether a genetic predisposition to glaucoma modified these associations, and to perform Mendelian randomization (MR) experiments to probe causal effects. DESIGN Cross-sectional observational and gene-environment interaction analyses in the UK Biobank. Two-sample MR experiments using summary statistics from large genetic consortia. PARTICIPANTS UK Biobank participants with data on intraocular pressure (IOP) (n = 109 097), OCT-derived macular inner retinal layer thickness measures (n = 46 236) and glaucoma status (n = 173 407). METHODS Participants were categorized according to self-reported drinking behaviors. Quantitative estimates of alcohol intake were derived from touchscreen questionnaires and food composition tables. We performed a 2-step analysis, first comparing categories of alcohol consumption (never, infrequent, regular, and former drinkers) before assessing for a dose-response effect in regular drinkers only. Multivariable linear, logistic, and restricted cubic spline regression, adjusted for key sociodemographic, medical, anthropometric, and lifestyle factors, were used to examine associations. We assessed whether any association was modified by a multitrait glaucoma polygenic risk score. The inverse-variance weighted method was used for the main MR analyses. MAIN OUTCOME MEASURES Intraocular pressure, macular retinal nerve fiber layer (mRNFL) thickness, macular ganglion cell-inner plexiform layer (mGCIPL) thickness, and prevalent glaucoma. RESULTS Compared with infrequent drinkers, regular drinkers had higher IOP (+0.17 mmHg; P < 0.001) and thinner mGCIPL (-0.17 μm; P = 0.049), whereas former drinkers had a higher prevalence of glaucoma (odds ratio, 1.53; P = 0.002). In regular drinkers, alcohol intake was adversely associated with all outcomes in a dose-dependent manner (all P < 0.001). Restricted cubic spline regression analyses suggested nonlinear associations, with apparent threshold effects at approximately 50 g (∼6 UK or 4 US alcoholic units)/week for mRNFL and mGCIPL thickness. Significantly stronger alcohol-IOP associations were observed in participants at higher genetic susceptibility to glaucoma (Pinteraction < 0.001). Mendelian randomization analyses provided evidence for a causal association with mGCIPL thickness. CONCLUSIONS Alcohol intake was consistently and adversely associated with glaucoma and related traits, and at levels below current United Kingdom (< 112 g/week) and United States (women, < 98 g/week; men, < 196 g/week) guidelines. Although we cannot infer causality definitively, these results will be of interest to people with or at risk of glaucoma and their advising physicians. FINANCIAL DISCLOSURE(S) Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Kelsey V Stuart
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom.
| | - Robert N Luben
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom; MRC Epidemiology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Alasdair N Warwick
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom; UCL Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Kian M Madjedi
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom; Department of Ophthalmology, University of Calgary, Calgary, Alberta, Canada
| | - Praveen J Patel
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Mahantesh I Biradar
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Zihan Sun
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Mark A Chia
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Janey L Wiggs
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts
| | - Jae H Kang
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jihye Kim
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Hugues Aschard
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Institut Pasteur, Université Paris Cité, Department of Computational Biology, Paris, France
| | - Jessica H Tran
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Paul J Foster
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
24
|
Dykstra RE, Beadnell B, Rosengren DB, Schumacher JA, Daugherty R. A Lifestyle Risk Reduction Model for Preventing High-Risk Substance Use Across the Lifespan. PREVENTION SCIENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR PREVENTION RESEARCH 2023; 24:863-875. [PMID: 37269468 PMCID: PMC10409837 DOI: 10.1007/s11121-023-01549-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2023] [Indexed: 06/05/2023]
Abstract
While effective models of alcohol and drug prevention exist, they often focus solely on youth or young adults. This article describes the Lifestyle Risk Reduction Model (LRRM), an approach applicable across the lifespan. The intent behind the LRRM is to guide the development of prevention and treatment programs provided to individuals and small groups. The LRRM authors' goals are to help individuals reduce risk for impairment, addiction, and substance use's negative consequences. The LRRM identifies six key principles that conceptualize the development of substance-related problems by drawing parallels with health conditions, such as heart disease and diabetes, which often result from combined effects of biological risk and behavioral choices. The model also proposes five conditions that describe important steps for individuals as they progress toward greater perception of risk and lower risk behavior. One LRRM-based indicated prevention program (Prime For Life) shows positive results in cognitive outcomes and in impaired driving recidivism for people across the lifespan. The model emphasizes common elements across the lifespan, responds to contexts and challenges that change across the life course, complements other models, and is usable for universal, selective, and indicated prevention programs.
Collapse
|
25
|
Liu TT, Yin DT, Wang N, Li N, Dong G, Peng MF. Identifying and analyzing the key genes shared by papillary thyroid carcinoma and Hashimoto's thyroiditis using bioinformatics methods. Front Endocrinol (Lausanne) 2023; 14:1140094. [PMID: 37324256 PMCID: PMC10266228 DOI: 10.3389/fendo.2023.1140094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Background Hashimoto's thyroiditis (HT) is a chronic autoimmune disease that poses a risk factor for papillary thyroid carcinoma (PTC). The present study aimed to identify the key genes shared by HT and PTC for advancing the current understanding of their shared pathogenesis and molecular mechanisms. Methods HT- and PTC-related datasets (GSE138198 and GSE33630, respectively) were retrieved from the Gene Expression Omnibus (GEO) database. Genes significantly related to the PTC phenotype were identified using weighted gene co-expression network analysis (WGCNA). Differentially expressed genes (DEGs) were identified between PTC and healthy samples from GSE33630, and between HT and normal samples from GSE138198. Subsequently, functional enrichment analysis was performed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Transcription factors and miRNAs regulating the common genes in PTC and HT were forecasted using the Harmonizome and miRWalk databases, respectively, and drugs targeting these genes were investigated using the Drug-Gene Interaction Database (DGIdb). The key genes in both GSE138198 and GSE33630 were further identified via Receiver Operating Characteristic (ROC) analysis. The expression of key genes was verified in external validation set and clinical samples using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Results In total, 690 and 1945 DEGs were associated with PTC and HT, respectively; of these, 56 were shared and exhibited excellent predictive accuracy in the GSE138198 and GSE33630 cohorts. Notably, four genes, Alcohol Dehydrogenase 1B (ADH1B), Active BCR-related (ABR), alpha-1 antitrypsin (SERPINA1), and lysophosphatidic acid receptor 5 (LPAR5) were recognized as key genes shared by HT and PTC. Subsequently, EGR1 was identified as a common transcription factor regulating ABR, SERPINA1, and LPAR5 expression. These findings were confirmed using qRT-PCR and immunohistochemical analysis. Conclusion Four (ADH1B, ABR, SERPINA1, and LPAR5) out of 56 common genes exhibited diagnostic potential in HT and PTC. Notably, this study, for the first time, defined the close relationship between ABR and HT/PTC progression. Overall, this study provides a basis for understanding the shared pathogenesis and underlying molecular mechanisms of HT and PTC, which might help improve patient diagnosis and prognosis.
Collapse
Affiliation(s)
- Ting-ting Liu
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - De-tao Yin
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Engineering Research Center of Multidisciplinary Diagnosis and Treatment of Thyroid Cancer of Henan Province, Zhengzhou, China
- Key Medicine Laboratory of Thyroid Cancer of Henan Province, Zhengzhou, China
| | - Nan Wang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Na Li
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Dong
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng-fan Peng
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Genetic Influences on Fetal Alcohol Spectrum Disorder. Genes (Basel) 2023; 14:genes14010195. [PMID: 36672936 PMCID: PMC9859092 DOI: 10.3390/genes14010195] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/06/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) encompasses the range of deleterious outcomes of prenatal alcohol exposure (PAE) in the affected offspring, including developmental delay, intellectual disability, attention deficits, and conduct disorders. Several factors contribute to the risk for and severity of FASD, including the timing, dose, and duration of PAE and maternal factors such as age and nutrition. Although poorly understood, genetic factors also contribute to the expression of FASD, with studies in both humans and animal models revealing genetic influences on susceptibility. In this article, we review the literature related to the genetics of FASD in humans, including twin studies, candidate gene studies in different populations, and genetic testing identifying copy number variants. Overall, these studies suggest different genetic factors, both in the mother and in the offspring, influence the phenotypic outcomes of PAE. While further work is needed, understanding how genetic factors influence FASD will provide insight into the mechanisms contributing to alcohol teratogenicity and FASD risk and ultimately may lead to means for early detection and intervention.
Collapse
|
27
|
McQuillan MA, Ranciaro A, Hansen MEB, Fan S, Beggs W, Belay G, Woldemeskel D, Tishkoff SA. Signatures of Convergent Evolution and Natural Selection at the Alcohol Dehydrogenase Gene Region are Correlated with Agriculture in Ethnically Diverse Africans. Mol Biol Evol 2022; 39:msac183. [PMID: 36026493 PMCID: PMC9547508 DOI: 10.1093/molbev/msac183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The alcohol dehydrogenase (ADH) family of genes encodes enzymes that catalyze the metabolism of ethanol into acetaldehyde. Nucleotide variation in ADH genes can affect the catalytic properties of these enzymes and is associated with a variety of traits, including alcoholism and cancer. Some ADH variants, including the ADH1B*48His (rs1229984) mutation in the ADH1B gene, reduce the risk of alcoholism and are under positive selection in multiple human populations. The advent of Neolithic agriculture and associated increase in fermented foods and beverages is hypothesized to have been a selective force acting on such variants. However, this hypothesis has not been tested in populations outside of Asia. Here, we use genome-wide selection scans to show that the ADH gene region is enriched for variants showing strong signals of positive selection in multiple Afroasiatic-speaking, agriculturalist populations from Ethiopia, and that this signal is unique among sub-Saharan Africans. We also observe strong selection signals at putatively functional variants in nearby lipid metabolism genes, which may influence evolutionary dynamics at the ADH region. Finally, we show that haplotypes carrying these selected variants were introduced into Northeast Africa from a West-Eurasian source within the last ∼2,000 years and experienced positive selection following admixture. These selection signals are not evident in nearby, genetically similar populations that practice hunting/gathering or pastoralist subsistence lifestyles, supporting the hypothesis that the emergence of agriculture shapes patterns of selection at ADH genes. Together, these results enhance our understanding of how adaptations to diverse environments and diets have influenced the African genomic landscape.
Collapse
Affiliation(s)
| | - Alessia Ranciaro
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | | | - Shaohua Fan
- Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai, China
| | - William Beggs
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| | - Gurja Belay
- Department of Microbial Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dawit Woldemeskel
- Department of Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
28
|
Xu W, Ding H, Zhang M, Liu L, Yin M, Weng Z, Xu C. The prognostic role of fatty acid metabolism-related genes in patients with gastric cancer. Transl Cancer Res 2022; 11:3593-3609. [PMID: 36388036 PMCID: PMC9641091 DOI: 10.21037/tcr-22-761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/02/2022] [Indexed: 08/30/2023]
Abstract
BACKGROUND With the deepening research on fatty acid metabolism, people have achieved a preliminary understanding of it in the development and prognosis of tumors. However, few studies are still on the expression pattern and prognostic value of fatty acid metabolism-related genes in gastric cancer (GC). METHODS We chose 93 genes relevant to fatty acid metabolism from the Gene Set Enrichment Analysis (GSEA) database. We analyzed differentially expressed genes (DEGs) in The Cancer Genome Atlas (TCGA) patients. Univariate Cox analysis and LASSO regression were used to select the genes most related to prognosis and therefore developed a prognosis model. In addition, a dataset of 76 samples from Gene Expression Omnibus (GEO) selected as a test set to aid in the development of a prognostic model. The prognostic relevance of this model was confirmed using Kaplan-Meier survival analysis, univariate/multivariate Cox analysis, and receiver operating characteristic (ROC) curve. Finally, enrichment analysis and protein-protein interaction (PPI) were used to analyze the functional differences of patients with different risk. Immune infiltration analysis based on CIBERSORT could check the infiltration degree and immune function changes of immune cell subtypes in patients with different risk groups. RESULTS Overexpression of ELOVL4, ADH4, CPT1C, and ADH1B was linked to poor overall survival (OS) in GC patients, according to our findings. Furthermore, according to prognostic factors, patients with lower risk score tend to have better prognosis than patients with higher risk score. In addition, we also found that the infiltration levels of B cells, dendritic cells, auxiliary T cells, mast cells, neutrophils and tumor-infiltrating lymphocytes in patients with high-risk group were significantly increased, and the type II IFN response of immune cells, CCR and MHC class I receptor functions were significantly enhanced, suggesting that the tumor microenvironment immune activity in patients with high-risk group was active. CONCLUSIONS Four fatty acid metabolism-related genes were discovered to be closely connected to the prognosis of individuals with GC. Through analysis and verification, we believed that this prognostic model was reliable and instructive in the prediction of the prognosis of GC.
Collapse
Affiliation(s)
- Wei Xu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - He Ding
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Man Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lu Liu
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Minyue Yin
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhen Weng
- Cyrus Tang Hematology Center and Ministry of Education Engineering Center of Hematological Disease, and the Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chunfang Xu
- The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
29
|
Legaki E, Tsaklakidou D, Hatzimanolis A, Segredou E, Petalotis M, Moularogiorgou G, Mouchtouri V, Lykouras L, Stefanis NC, Gazouli M. Association of Alcohol Use Disorder Risk With ADH1B, DRD2, FAAH, SLC39A8, GCKR, and PDYN Genetic Polymorphisms. In Vivo 2022; 36:2092-2104. [PMID: 36099111 PMCID: PMC9463892 DOI: 10.21873/invivo.12935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Alcohol use disorder (AUD) is a chronic, multifactorial psychiatric condition with an enormous impact on public health and social cost. Genetic studies suggest a heritability, and genome-wide association studies (GWAS) have revealed genetic polymorphisms influencing AUD development. Our study aimed to investigate known variants located in ADH1B, DRD2, FAAH, SLC39A8, GCKR, and PDYN genes (rs1229984, rs7121986, rs324420, rs13107325, rs1260326, rs2281285 respectively) in an AUD Greek cohort in order to shed more light on the genetic predisposition to AUD. MATERIALS AND METHODS Alcohol-dependent individuals (n=251) meeting both the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) and the ICD-10 guidelines for alcohol abuse and dependence, and control individuals (n=280) were recruited. DNA was extracted from whole blood and PCR-restriction fragment length polymorphism (RFLP-PCR) or allele-specific PCR method was used for genotyping. RESULTS Individuals carrying the FAAH rs324420 A allele were significantly associated with increased risk of AUD (p<0.0001). SLC39A8 rs13107325 T allele and ADH1B rs1229984 T allele are overrepresented in control subjects (p<0.0001 and p<0.0001, respectively). The associations are maintained following an adjustment for age and sex and Bonferroni correction. GCKR rs13107325, DRD2 rs7121986, and PDYN rs2281285 polymorphisms did not show a significant association with AUD in the studied population after Bonferroni correction. CONCLUSION Susceptibility to AUD is related to variations in FAAH, ADH1B, and SLC39A8 genes. These polymorphisms could serve as potential biomarkers for AUD risk.
Collapse
Affiliation(s)
- Evangelia Legaki
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Domna Tsaklakidou
- Addiction Unit, 2nd University Department of Psychiatry, "Attikon" University General Hospital, Athens, Greece
| | - Alex Hatzimanolis
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece
| | - Eirini Segredou
- Department of Alcohol Dependence, Psychiatric Hospital of Attica - Dafni, Haidari, Greece
| | - Markos Petalotis
- Department of Alcohol Dependence, Psychiatric Hospital of Attica - Dafni, Haidari, Greece
| | | | - Varvara Mouchtouri
- Department of Alcohol Dependence, Psychiatric Hospital of Attica - Dafni, Haidari, Greece
| | - Lefteris Lykouras
- Addiction Unit, 2nd University Department of Psychiatry, "Attikon" University General Hospital, Athens, Greece
| | - Nikos C Stefanis
- First Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Eginition Hospital, Athens, Greece;
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece;
- 2 Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Sciences, Hellenic Open University, Patras, Greece
| |
Collapse
|
30
|
Im PK, Yang L, Kartsonaki C, Chen Y, Guo Y, Du H, Lin K, Kerosi R, Hacker A, Liu J, Yu C, Lv J, Walters RG, Li L, Chen Z, Millwood IY. Alcohol metabolism genes and risks of site-specific cancers in Chinese adults: An 11-year prospective study. Int J Cancer 2022; 150:1627-1639. [PMID: 35048370 PMCID: PMC7612513 DOI: 10.1002/ijc.33917] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Two genetic variants that alter alcohol metabolism, ALDH2-rs671 and ADH1B-rs1229984, can modify oesophageal cancer risk associated with alcohol consumption in East Asians, but their associations with other cancers remain uncertain. ALDH2-rs671 G>A and ADH1B-rs1229984 G>A were genotyped in 150 722 adults, enrolled from 10 areas in China during 2004 to 2008. After 11 years' follow-up, 9339 individuals developed cancer. Cox regression was used to estimate hazard ratios (HRs) for site-specific cancers associated with these genotypes, and their potential interactions with alcohol consumption. Overall, the A-allele frequency was 0.21 for ALDH2-rs671 and 0.69 for ADH1B-rs1229984, with A-alleles strongly associated with lower alcohol consumption. Among men, ALDH2-rs671 AA genotype was associated with HR of 0.69 (95% confidence interval: 0.53-0.90) for IARC alcohol-related cancers (n = 1900), compared to GG genotype. For ADH1B-rs1229984, the HRs of AG and AA vs GG genotype were 0.80 (0.69-0.93) and 0.75 (0.64-0.87) for IARC alcohol-related cancers, 0.61 (0.39-0.96) and 0.61 (0.39-0.94) for head and neck cancer (n = 196) and 0.68 (0.53-0.88) and 0.60 (0.46-0.78) for oesophageal cancer (n = 546). There were no significant associations of these genotypes with risks of liver (n = 651), colorectal (n = 556), stomach (n = 725) or lung (n = 1135) cancers. Among male drinkers, the risks associated with higher alcohol consumption were greater among ALDH2-rs671 AG than GG carriers for head and neck, oesophageal and lung cancers (Pinteraction < .02). Among women, only 2% drank alcohol regularly, with no comparable associations observed between genotype and cancer. These findings support the causal effects of alcohol consumption on upper aerodigestive tract cancers, with ALDH2-rs671 AG genotype further exacerbating the risks.
Collapse
Affiliation(s)
- Pek Kei Im
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Ling Yang
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Christiana Kartsonaki
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Yiping Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Yu Guo
- Chinese Academy of Medical SciencesBeijingChina
| | - Huaidong Du
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Kuang Lin
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Rene Kerosi
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Alex Hacker
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Jingchao Liu
- NCDs Prevention and Control DepartmentWuzhong CDCSuzhouChina
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
| | - Robin G. Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public HealthPeking UniversityBeijingChina
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | - Iona Y. Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
- Medical Research Council Population Health Research Unit (MRC PHRU), Nuffield Department of Population HealthUniversity of OxfordOxfordUK
| | | |
Collapse
|
31
|
Zhao N, Zhang Y, Cheng R, Zhang D, Li F, Guo Y, Qiu Z, Dong X, Ban X, Sun B, Zhao X. Spatial maps of hepatocellular carcinoma transcriptomes highlight an unexplored landscape of heterogeneity and a novel gene signature for survival. Cancer Cell Int 2022; 22:57. [PMID: 35109839 PMCID: PMC8812006 DOI: 10.1186/s12935-021-02430-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/24/2021] [Indexed: 01/07/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) often presents with satellite nodules, rendering current curative treatments ineffective in many patients. The heterogeneity of HCC is a major challenge in personalized medicine. The emergence of spatial transcriptomics (ST) provides a powerful strategy for delineating the complex molecular landscapes of tumours. Methods In this study, the heterogeneity of tissue-wide gene expression in tumour and adjacent nonneoplastic tissues using ST technology were investigated. The transcriptomes of nearly 10,820 tissue regions and identified the main gene expression clusters and their specific marker genes (differentially expressed genes, DEGs) in patients were analysed. The DEGs were analysed from two perspectives. First, two distinct gene profiles were identified to be associated with satellite nodules and conducted a more comprehensive analysis of both gene profiles. Their clinical relevance in human HCC was validated with Kaplan–Meier (KM) Plotter. Second, DEGs were screened with The Cancer Genome Atlas (TCGA) database to divide the HCC cohort into high- and low-risk groups according to Cox analysis. HCC patients from the International Cancer Genome Consortium (ICGC) cohort were used for validation. KM analysis was used to compare the overall survival (OS) between the high- and low-risk groups. Univariate and multivariate Cox analyses were applied to determine the independent predictors for OS. Results Novel markers for the prediction of satellite nodules were identified and a tumour clusters-specific marker gene signature model (6 genes) for HCC prognosis was constructed. Conclusion The establishment of marker gene profiles may be an important step towards an unbiased view of HCC, and the 6-gene signature can be used for prognostic prediction in HCC. This analysis will help us to clarify one of the possible sources of HCC heterogeneity and uncover pathogenic mechanisms and novel antitumour drug targets. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02430-9.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Yanhui Zhang
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Runfen Cheng
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Fan Li
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Yuhong Guo
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Zhiqiang Qiu
- Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Xinchao Ban
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Baocun Sun
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China. .,Department of Pathology, Cancer Hospital of Tianjin Medical University, Tianjin, 300060, China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China.
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin, 300070, China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
32
|
Gelernter J, Polimanti R. Genetics of substance use disorders in the era of big data. Nat Rev Genet 2021; 22:712-729. [PMID: 34211176 PMCID: PMC9210391 DOI: 10.1038/s41576-021-00377-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Substance use disorders (SUDs) are conditions in which the use of legal or illegal substances, such as nicotine, alcohol or opioids, results in clinical and functional impairment. SUDs and, more generally, substance use are genetically complex traits that are enormously costly on an individual and societal basis. The past few years have seen remarkable progress in our understanding of the genetics, and therefore the biology, of substance use and abuse. Various studies - including of well-defined phenotypes in deeply phenotyped samples, as well as broadly defined phenotypes in meta-analysis and biobank samples - have revealed multiple risk loci for these common traits. A key emerging insight from this work establishes a biological and genetic distinction between quantity and/or frequency measures of substance use (which may involve low levels of use without dependence), versus symptoms related to physical dependence.
Collapse
Affiliation(s)
- Joel Gelernter
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA.
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA.
| | - Renato Polimanti
- Department of Psychiatry, Yale University School of Medicine, West Haven, CT, USA
- Department of Psychiatry, Veterans Affairs Connecticut Healthcare Center, West Haven, CT, USA
| |
Collapse
|
33
|
Guo L, Dou Y, Yang Y, Zhang S, Kang Y, Shen L, Tang L, Zhang Y, Li C, Wang J, Liang T, Li X. Protein profiling reveals potential isomiR-associated cross-talks among RNAs in cholangiocarcinoma. Comput Struct Biotechnol J 2021; 19:5722-5734. [PMID: 34745457 PMCID: PMC8551523 DOI: 10.1016/j.csbj.2021.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/29/2021] [Accepted: 10/10/2021] [Indexed: 12/04/2022] Open
Abstract
Cholangiocarcinomas (CCAs) are tumors that arise from the cholangiocytes. Although some genes have been shown with important roles in pathological process, interactions or cross-talks among different RNAs are important to understand the detailed molecular mechanisms in cancer development, especially discussing cross-talks among isomiRs and other RNAs. Herein, to characterize crucial genes in CCA, the protein expression profile was performed to survey potential crucial mRNAs and related non-coding RNAs (ncRNAs) in mRNA-ncRNA network, mainly including miRNAs/isomiRs and lncRNAs. Deregulated mRNAs were firstly obtained if consistent expression patterns were found at protein and mRNA levels, and related miRNAs/isomiRs were screened according to regulatory relationships. Diverse isomiRs from a given miRNA locus also contributed to interactions between the small RNAs and target mRNAs, and miRNAs were further used to survey related lncRNAs to expand the interactions. Thus, several groups of RNAs were constructed as candidate competitive endogenous RNA (ceRNA) networks. Finally, we found that RAB11FIP1:miR-101-3p:MIR3142HG may be a potential ceRNA network, and the interactions among them may be more complex due to variety of isomiRs. Simultaneously, RAB11FIP1 and miR-194-5p were also detected other related lncRNAs (FBXL19-AS1, SNHG1 and PVT1) that may be crucial in coding-non-coding RNA regulatory network. Our results show that diverse isomiRs with sequence and expression heterogeneities contribute to ceRNA regulatory network that may have crucial roles in CCA, which will expand our understanding of interactions among diverse RNAs and their contributions in cancer development.
Collapse
Key Words
- BLCA, bladder urothelial carcinoma
- BRCA, breast invasive carcinoma
- CHOL, cholangiocarcinoma
- COAD, colon adenocarcinoma
- Cholangiocarcinoma (CCA)
- Cross-talk
- ESCA, esophageal carcinoma
- HNSC, head and neck squamous cell carcinoma
- KICH, kidney chromophobe
- KIRC, Kidney renal clear cell carcinoma
- KIRP, kidney renal papillary cell carcinoma
- LIHC, liver hepatocellular carcinoma
- LUAD, lung adenocarcinoma
- LUSC, lung squamous cell carcinoma
- Long non-coding RNA (lncRNA)
- PRAD, prostate adenocarcinoma
- Protein profiling
- STAD, stomach adenocarcinoma
- THCA, thyroid carcinoma
- UCEC, uterine corpus endometrial carcinoma
- isomiR
- microRNA (miRNA)
Collapse
Affiliation(s)
- Li Guo
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yuyang Dou
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yifei Yang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Shiqi Zhang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Yihao Kang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lulu Shen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Lihua Tang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yaodong Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Wang
- Department of Bioinformatics, Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiangcheng Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
34
|
Abstract
Recent human activity has profoundly transformed Earth biomes on a scale and at rates that are unprecedented. Given the central role of symbioses in ecosystem processes, functions, and services throughout the Earth biosphere, the impacts of human-driven change on symbioses are critical to understand. Symbioses are not merely collections of organisms, but co-evolved partners that arise from the synergistic combination and action of different genetic programs. They function with varying degrees of permanence and selection as emergent units with substantial potential for combinatorial and evolutionary innovation in both structure and function. Following an articulation of operational definitions of symbiosis and related concepts and characteristics of the Anthropocene, we outline a basic typology of anthropogenic change (AC) and a conceptual framework for how AC might mechanistically impact symbioses with select case examples to highlight our perspective. We discuss surprising connections between symbiosis and the Anthropocene, suggesting ways in which new symbioses could arise due to AC, how symbioses could be agents of ecosystem change, and how symbioses, broadly defined, of humans and "farmed" organisms may have launched the Anthropocene. We conclude with reflections on the robustness of symbioses to AC and our perspective on the importance of symbioses as ecosystem keystones and the need to tackle anthropogenic challenges as wise and humble stewards embedded within the system.
Collapse
Affiliation(s)
- Erik F. Y. Hom
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS 38677 USA
| | - Alexandra S. Penn
- Department of Sociology and Centre for Evaluation of Complexity Across the Nexus, University of Surrey, Guildford, Surrey, GU2 7XH UK
| |
Collapse
|
35
|
Sandoval-Plata G, Morgan K, Abhishek A. Variants in urate transporters, ADH1B, GCKR and MEPE genes associate with transition from asymptomatic hyperuricaemia to gout: results of the first gout versus asymptomatic hyperuricaemia GWAS in Caucasians using data from the UK Biobank. Ann Rheum Dis 2021; 80:1220-1226. [PMID: 33832965 DOI: 10.1136/annrheumdis-2020-219796] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To perform a genome-wide association study (GWAS) of gout cases versus asymptomatic hyperuricaemia (AH) controls, and gout cases versus normouricaemia controls, and to generate a polygenic risk score (PRS) to determine gout-case versus AH-control status. METHODS Gout cases and AH controls (serum urate (SU) ≥6.0 mg/dL) from the UK Biobank were divided into discovery (4934 cases, 56 948 controls) and replication (2115 cases, 24 406 controls) cohorts. GWAS was conducted and PRS generated using summary statistics in discovery cohort as the base dataset and the replication cohort as the target dataset. The predictive ability of the model was evaluated. GWAS were performed to identify variants associated with gout compared with normouricaemic controls using SU <6.0 mg/dL and <7.0 mg/dL thresholds, respectively. RESULTS Thirteen independent single nucleotide polymorphisms (SNPs) in ABCG2, SLC2A9, SLC22A11, GCKR, MEPE, PPM1K-DT, LOC105377323 and ADH1B reached genome-wide significance and replicated as predictors of AH to gout transition. Twelve of 13 associations were novel for this transition, and rs1229984 (ADH1B) was identified as GWAS locus for gout for the first time. The best PRS model was generated from association data of 17 SNPs; and had predictive ability of 58.5% that increased to 69.2% on including demographic factors. Two novel SNPs rs760077(MTX1) and rs3800307(PRSS16) achieved GWAS significance for association with gout compared with normouricaemic controls using both SU thresholds. CONCLUSION The association of urate transporters with gout supports the central role of hyperuricaemia in its pathogenesis. Larger GWAS are required to identify if variants in inflammatory pathways contribute to progression from AH to gout.
Collapse
Affiliation(s)
- Gabriela Sandoval-Plata
- Academic Rheumatology, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre, NIHR, Nottingham, UK
- Human Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Kevin Morgan
- Human Genetics, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Abhishek Abhishek
- Academic Rheumatology, University of Nottingham, Nottingham, UK
- Nottingham Biomedical Research Centre, NIHR, Nottingham, UK
| |
Collapse
|
36
|
Zhang ZM, Yang L, Wan Y, Jiang S, Shang EX, Qian DW, Duan JA. The synergic renoprotective effect of Rehmanniae Radix Preparata and Corni Fructus on adenine-induced chronic kidney disease rats based on integrated plasma metabolomics and network pharmacology approach. Life Sci 2021; 278:119545. [PMID: 33930370 DOI: 10.1016/j.lfs.2021.119545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 01/20/2023]
Abstract
AIMS Rehmanniae Radix Preparata (RR) and Corni Fructus (CF) are commonly used together for the treatment of chronic kidney disease (CKD) in the clinical practices for thousands of years. However, little information on their synergy mechanism is available. MAIN METHODS In this study, an integrated approach combining ultra performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based metabonomics and network pharmacology was adopted to elucidate the cooperation mechanism of RR and CF on the amelioration of CKD. Furthermore, the targets from network pharmacology and metabolism pathways were jointly analyzed. Finally, the activities of key metabolic enzymes were experimentally validated by ELISA. KEY FINDINGS Metabolic profiling indicated that the metabolic disturbance in plasma was markedly alleviated after treatment. Nine putative biomarkers mainly involving in phenylalanine, tyrosine and tryptophan biosynthesis and tyrosine metabolism were identified. Moreover, the compound-target-pathway network of RR and CF for CKD treatment was constructed by network pharmacology, which was related to tyrosine metabolism and arginine and proline metabolism. The results were partly consistent with the findings of plasma metabolomics. SIGNIFICANCE In conclusion, this study solidly supported and enhanced current understanding of the synergy effects of RR and CF on CKD. Meanwhile, it also confirmed the feasibility of combining metabolomics and network pharmacology to identify active components and elucidate the pharmacological effects of traditional Chinese medicines (TCMs).
Collapse
Affiliation(s)
- Zhi-Miao Zhang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Lei Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Yue Wan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Shu Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Da-Wei Qian
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, PR China.
| |
Collapse
|
37
|
Rodriguez FD, Coveñas R. Biochemical Mechanisms Associating Alcohol Use Disorders with Cancers. Cancers (Basel) 2021; 13:cancers13143548. [PMID: 34298760 PMCID: PMC8306032 DOI: 10.3390/cancers13143548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/01/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Of all yearly deaths attributable to alcohol consumption globally, approximately 12% are due to cancers, representing approximately 0.4 million deceased individuals. Ethanol metabolism disturbs cell biochemistry by targeting the structure and function of essential biomolecules (proteins, nucleic acids, and lipids) and by provoking alterations in cell programming that lead to cancer development and cancer malignancy. A better understanding of the metabolic and cell signaling realm affected by ethanol is paramount to designing effective treatments and preventive actions tailored to specific neoplasias. Abstract The World Health Organization identifies alcohol as a cause of several neoplasias of the oropharynx cavity, esophagus, gastrointestinal tract, larynx, liver, or female breast. We review ethanol’s nonoxidative and oxidative metabolism and one-carbon metabolism that encompasses both redox and transfer reactions that influence crucial cell proliferation machinery. Ethanol favors the uncontrolled production and action of free radicals, which interfere with the maintenance of essential cellular functions. We focus on the generation of protein, DNA, and lipid adducts that interfere with the cellular processes related to growth and differentiation. Ethanol’s effects on stem cells, which are responsible for building and repairing tissues, are reviewed. Cancer stem cells (CSCs) of different origins suffer disturbances related to the expression of cell surface markers, enzymes, and transcription factors after ethanol exposure with the consequent dysregulation of mechanisms related to cancer metastasis or resistance to treatments. Our analysis aims to underline and discuss potential targets that show more sensitivity to ethanol’s action and identify specific metabolic routes and metabolic realms that may be corrected to recover metabolic homeostasis after pharmacological intervention. Specifically, research should pay attention to re-establishing metabolic fluxes by fine-tuning the functioning of specific pathways related to one-carbon metabolism and antioxidant processes.
Collapse
Affiliation(s)
- Francisco D. Rodriguez
- Department of Biochemistry and Molecular Biology, Faculty of Chemistry, University of Salamanca, 37007 Salamanca, Spain
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), 37007 Salamanca, Spain;
- Correspondence: ; Tel.: +34-677-510-030
| | - Rafael Coveñas
- Group GIR USAL: BMD (Bases Moleculares del Desarrollo), 37007 Salamanca, Spain;
- Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
38
|
Szentkereszty-Kovács Z, Gáspár K, Szegedi A, Kemény L, Kovács D, Törőcsik D. Alcohol in Psoriasis-From Bench to Bedside. Int J Mol Sci 2021; 22:ijms22094987. [PMID: 34067223 PMCID: PMC8125812 DOI: 10.3390/ijms22094987] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 01/22/2023] Open
Abstract
Alcohol affects the symptoms, compliance and comorbidities as well as the safety and efficacy of treatments in psoriatic patients. In this review, we aim to summarize and link clinical observations with a molecular background, such as signaling pathways at the cellular level and genetic variations, and to provide an overview of how this knowledge could influence our treatment selection and patient management.
Collapse
Affiliation(s)
- Zita Szentkereszty-Kovács
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (Z.S.-K.); (K.G.); (A.S.); (D.K.)
| | - Krisztián Gáspár
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (Z.S.-K.); (K.G.); (A.S.); (D.K.)
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Andrea Szegedi
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (Z.S.-K.); (K.G.); (A.S.); (D.K.)
- Division of Dermatological Allergology, Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Lajos Kemény
- HCEMM-USZ Skin Research Group, Department of Dermatology and Allergology, University of Szeged, Korányi fasor 6, 6720 Szeged, Hungary;
- MTA-SZTE Dermatological Research Group, Eötvös Loránd Research Network (ELKH), Korányi fasor 6, 6720 Szeged, Hungary
| | - Dóra Kovács
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (Z.S.-K.); (K.G.); (A.S.); (D.K.)
| | - Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary; (Z.S.-K.); (K.G.); (A.S.); (D.K.)
- Correspondence: ; Tel.: +36-52-255-602
| |
Collapse
|
39
|
Hade AC, Philips MA, Reimann E, Jagomäe T, Eskla KL, Traks T, Prans E, Kõks S, Vasar E, Väli M. Chronic Alcohol Use Induces Molecular Genetic Changes in the Dorsomedial Thalamus of People with Alcohol-Related Disorders. Brain Sci 2021; 11:435. [PMID: 33805312 PMCID: PMC8066746 DOI: 10.3390/brainsci11040435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/12/2023] Open
Abstract
The Mediodorsal (MD) thalamus that represents a fundamental subcortical relay has been underrepresented in the studies focusing on the molecular changes in the brains of subjects with alcohol use disorder (AUD). In the current study, MD thalamic regions from AUD subjects and controls were analyzed with Affymetrix Clariom S human microarray. Long-term alcohol use induced a significant (FDR ≤ 0.05) upregulation of 2802 transcripts and downregulation of 1893 genes in the MD thalamus of AUD subjects. A significant upregulation of GRIN1 (glutamate receptor NMDA type 1) and FTO (alpha-ketoglutarate dependent dioxygenase) was confirmed in western blot analysis. Immunohistochemical staining revealed similar heterogenous distribution of GRIN1 in the thalamic nuclei of both AUD and control subjects. The most prevalent functional categories of upregulated genes were related to glutamatergic and GABAergic neurotransmission, cellular metabolism, and neurodevelopment. The prevalent gene cluster among down-regulated genes was immune system mediators. Forty-two differentially expressed genes, including FTO, ADH1B, DRD2, CADM2, TCF4, GCKR, DPP6, MAPT and CHRH1, have been shown to have strong associations (FDR p < 10-8) with AUD or/and alcohol use phenotypes in recent GWA studies. Despite a small number of subjects, we were able to detect robust molecular changes in the mediodorsal thalamus caused by alcohol emphasizing the importance of deeper brain structures such as diencephalon, in the development of AUD-related dysregulation of neurocircuitry.
Collapse
Affiliation(s)
- Andreas-Christian Hade
- Department of Pathological Anatomy and Forensic Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (A.-C.H.); (M.V.)
- Forensic Medical Examination Department, Estonian Forensic Science Institute, 30 Tervise Street, 13419 Tallinn, Estonia
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (T.J.); (K.-L.E.); (E.V.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Ene Reimann
- Estonian Genome Centre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia;
| | - Toomas Jagomäe
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (T.J.); (K.-L.E.); (E.V.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Kattri-Liis Eskla
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (T.J.); (K.-L.E.); (E.V.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Tanel Traks
- Department of Dermatology and Venerology, Institute of Clinical Medicine, University of Tartu, 51010 Tartu, Estonia;
| | - Ele Prans
- Department of Anaesthesiology and Intensive Care, Tartu University Hospital, 50406 Tartu, Estonia;
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia
| | - Eero Vasar
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, 50411 Tartu, Estonia; (T.J.); (K.-L.E.); (E.V.)
- Centre of Excellence in Genomics and Translational Medicine, University of Tartu, 50411 Tartu, Estonia
| | - Marika Väli
- Department of Pathological Anatomy and Forensic Medicine, University of Tartu, 19 Ravila Street, 50411 Tartu, Estonia; (A.-C.H.); (M.V.)
- Forensic Medical Examination Department, Estonian Forensic Science Institute, 30 Tervise Street, 13419 Tallinn, Estonia
| |
Collapse
|
40
|
Corpas M, Megy K, Mistry V, Metastasio A, Lehmann E. Whole Genome Interpretation for a Family of Five. Front Genet 2021; 12:535123. [PMID: 33763108 PMCID: PMC7982663 DOI: 10.3389/fgene.2021.535123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/15/2021] [Indexed: 12/19/2022] Open
Abstract
Although best practices have emerged on how to analyse and interpret personal genomes, the utility of whole genome screening remains underdeveloped. A large amount of information can be gathered from various types of analyses via whole genome sequencing including pathogenicity screening, genetic risk scoring, fitness, nutrition, and pharmacogenomic analysis. We recognize different levels of confidence when assessing the validity of genetic markers and apply rigorous standards for evaluation of phenotype associations. We illustrate the application of this approach on a family of five. By applying analyses of whole genomes from different methodological perspectives, we are able to build a more comprehensive picture to assist decision making in preventative healthcare and well-being management. Our interpretation and reporting outputs provide input for a clinician to develop a healthcare plan for the individual, based on genetic and other healthcare data.
Collapse
Affiliation(s)
- Manuel Corpas
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom.,Institute of Continuing Education Madingley Hall Madingley, University of Cambridge, Cambridge, United Kingdom.,Facultad de Ciencias de la Salud, Universidad Internacional de La Rioja, Madrid, Spain
| | - Karyn Megy
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom.,Department of Haematology, University of Cambridge & National Health Service (NHS) Blood and Transplant, Cambridge, United Kingdom
| | | | - Antonio Metastasio
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom.,Camden and Islington NHS Foundation Trust, London, United Kingdom
| | - Edmund Lehmann
- Cambridge Precision Medicine Limited, ideaSpace, University of Cambridge Biomedical Innovation Hub, Cambridge, United Kingdom
| |
Collapse
|
41
|
Chai X, Guo J, Dong R, Yang X, Deng C, Wei C, Xu J, Han W, Lu J, Gao C, Gao D, Huang C, Ke A, Li S, Li H, Tian Y, Gu Z, Liu S, Liu H, Chen Q, Liu F, Zhou J, Fan J, Shi G, Wu F, Cai J. Quantitative acetylome analysis reveals histone modifications that may predict prognosis in hepatitis B-related hepatocellular carcinoma. Clin Transl Med 2021; 11:e313. [PMID: 33783990 PMCID: PMC7939233 DOI: 10.1002/ctm2.313] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Lysine acetylation (Kac) as an important posttranslational modification of histones is essential for the regulation of gene expression in hepatocellular carcinoma (HCC). However, the atlas of whole acetylated proteins in HCC tissues and the difference in protein acetylation between normal human tissues and HCC tissues are unknown. In this report, we characterized the proteome and acetyl proteome (acetylome) profile of normal, paracancerous, and HCC liver tissues in human clinical samples by quantitative proteomics techniques. We identified 6781 acetylation sites of 2582 proteins and quantified 2492 acetylation sites of 1190 proteins in normal, paracancerous, and HCC liver tissues. Among them, 15 proteins were multiacetylated with more than 10 lysine residues. The histone acetyltransferases p300 and CBP were found to be hyperacetylated in hepatitis B virus pathway. Moreover, we found that 250 Kac sites of 214 proteins were upregulated and 662 Kac sites of 451 proteins were downregulated in HCC compared with normal liver tissues. Additionally, the acetylation levels of lysine 120 in histone H2B (H2BK120ac), lysine 18 in histone H3.3 (H3.3K18ac), and lysine 77 in histone H4 (H4K77ac) were increased in HCC. Interestingly, the higher levels of H2BK120ac, H3.3K18ac, and H4K77ac were significantly associated with worse prognosis, such as poorer survival and higher recurrence in an independent clinical cohort of HCC patients. Overall, this study lays a foundation for understanding the functions of acetylation in HCC and provides potential prognostic factors for the diagnosis and therapy of HCC.
Collapse
Affiliation(s)
- Xiaoqiang Chai
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Jianfei Guo
- Shanghai Center for Plant Stress BiologyCenter for Excellence in Plant Molecular SciencesChinese Academy of SciencesShanghaiChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Ruizhao Dong
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Xuan Yang
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Chao Deng
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
- School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Chuanyuan Wei
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - JiaJie Xu
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
- School of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Weiyu Han
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Jiacheng Lu
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Chao Gao
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Dongmei Gao
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Cheng Huang
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Aiwu Ke
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Shuangqi Li
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Huanping Li
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Yingming Tian
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Zhongkai Gu
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Shuxian Liu
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Hang Liu
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Qilong Chen
- Institute of Interdisciplinary Integrative Medicine ResearchShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Feng Liu
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Jian Zhou
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Jia Fan
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Guoming Shi
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Feizhen Wu
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| | - Jiabin Cai
- Department of Liver Surgery and Transplantation of Zhongshan Hospital, Liver Cancer Institute of Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Laboratory of epigenetics of Institutes of Biomedical Sciences, Key Laboratory of Birth Defects of Children's HospitalFudan UniversityShanghaiChina
| |
Collapse
|
42
|
Birolo G, Aneli S, Di Gaetano C, Cugliari G, Russo A, Allione A, Casalone E, Giorgio E, Paraboschi EM, Ardissino D, Duga S, Asselta R, Matullo G. Functional and clinical implications of genetic structure in 1686 Italian exomes. Hum Mutat 2021; 42:272-289. [PMID: 33326653 DOI: 10.1002/humu.24156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 11/13/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
To reconstruct the phenotypical and clinical implications of the Italian genetic structure, we thoroughly analyzed a whole-exome sequencing data set comprised of 1686 healthy Italian individuals. We found six previously unreported variants with remarkable frequency differences between Northern and Southern Italy in the HERC2, OR52R1, ADH1B, and THBS4 genes. We reported 36 clinically relevant variants (submitted as pathogenic, risk factors, or drug response in ClinVar) with significant frequency differences between Italy and Europe. We then explored putatively pathogenic variants in the Italian exome. On average, our Italian individuals carried 16.6 protein-truncating variants (PTVs), with 2.5% of the population having a PTV in one of the 59 American College of Medical Genetics (ACMG) actionable genes. Lastly, we looked for PTVs that are likely to cause Mendelian diseases. We found four heterozygous PTVs in haploinsufficient genes (KAT6A, PTCH1, and STXBP1) and three homozygous PTVs in genes causing recessive diseases (DPYD, FLG, and PYGM). Comparing frequencies from our data set to other public databases, like gnomAD, we showed the importance of population-specific databases for a more accurate assessment of variant pathogenicity. For this reason, we made aggregated frequencies from our data set publicly available as a tool for both clinicians and researchers (http://nigdb.cineca.it; NIG-ExIT).
Collapse
Affiliation(s)
- Giovanni Birolo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Serena Aneli
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Alessia Russo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Elisa Giorgio
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elvezia M Paraboschi
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Diego Ardissino
- Division of Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Giuseppe Matullo
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
43
|
Morales LD, Cromack DT, Tripathy D, Fourcaudot M, Kumar S, Curran JE, Carless M, Göring HHH, Hu SL, Lopez-Alvarenga JC, Garske KM, Pajukanta P, Small KS, Glastonbury CA, Das SK, Langefeld C, Hanson RL, Hsueh WC, Norton L, Arya R, Mummidi S, Blangero J, DeFronzo RA, Duggirala R, Jenkinson CP. Further evidence supporting a potential role for ADH1B in obesity. Sci Rep 2021; 11:1932. [PMID: 33479282 PMCID: PMC7820614 DOI: 10.1038/s41598-020-80563-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 12/06/2020] [Indexed: 01/22/2023] Open
Abstract
Insulin is an essential hormone that regulates glucose homeostasis and metabolism. Insulin resistance (IR) arises when tissues fail to respond to insulin, and it leads to serious health problems including Type 2 Diabetes (T2D). Obesity is a major contributor to the development of IR and T2D. We previously showed that gene expression of alcohol dehydrogenase 1B (ADH1B) was inversely correlated with obesity and IR in subcutaneous adipose tissue of Mexican Americans. In the current study, a meta-analysis of the relationship between ADH1B expression and BMI in Mexican Americans, African Americans, Europeans, and Pima Indians verified that BMI was increased with decreased ADH1B expression. Using established human subcutaneous pre-adipocyte cell lines derived from lean (BMI < 30 kg m-2) or obese (BMI ≥ 30 kg m-2) donors, we found that ADH1B protein expression increased substantially during differentiation, and overexpression of ADH1B inhibited fatty acid binding protein expression. Mature adipocytes from lean donors expressed ADH1B at higher levels than obese donors. Insulin further induced ADH1B protein expression as well as enzyme activity. Knockdown of ADH1B expression decreased insulin-stimulated glucose uptake. Our findings suggest that ADH1B is involved in the proper development and metabolic activity of adipose tissues and this function is suppressed by obesity.
Collapse
Affiliation(s)
- Liza D Morales
- South Texas Diabetes and Obesity Institute Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, TX, USA.
| | | | - Devjit Tripathy
- South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Marcel Fourcaudot
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Satish Kumar
- South Texas Diabetes and Obesity Institute Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, TX, USA
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, TX, USA
| | - Melanie Carless
- Department of Population Health, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Harald H H Göring
- South Texas Diabetes and Obesity Institute Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, TX, USA
| | - Shirley L Hu
- University of Texas Health Houston, School of Public Health, Brownsville, TX, USA
| | - Juan Carlos Lopez-Alvarenga
- South Texas Diabetes and Obesity Institute Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, TX, USA
| | - Kristina M Garske
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | - Swapan K Das
- Internal Medicine-Endocrinology and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carl Langefeld
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Robert L Hanson
- Phoenix Epidemiology and Clinical Research Branch, NIDDK, Phoenix, AZ, USA
| | - Wen-Chi Hsueh
- Phoenix Epidemiology and Clinical Research Branch, NIDDK, Phoenix, AZ, USA
| | - Luke Norton
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Rector Arya
- South Texas Diabetes and Obesity Institute Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, TX, USA
| | - Srinivas Mummidi
- South Texas Diabetes and Obesity Institute Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, TX, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, TX, USA
| | - Ralph A DeFronzo
- South Texas Veterans Health Care System, San Antonio, TX, USA
- Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ravindranath Duggirala
- South Texas Diabetes and Obesity Institute Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, TX, USA
| | - Christopher P Jenkinson
- South Texas Diabetes and Obesity Institute Department of Human Genetics, School of Medicine, University of Texas Rio Grande Valley, Edinburg/Harlingen/Brownsville, TX, USA.
| |
Collapse
|
44
|
Barber GC, Chong BF. SnapshotDx Quiz: October 2020. J Invest Dermatol 2020. [DOI: 10.1016/j.jid.2020.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Gupta I, Dandavate R, Gupta P, Agrawal V, Kapoor M. Recent advances in genetic studies of alcohol use disorders. CURRENT GENETIC MEDICINE REPORTS 2020; 8:27-34. [PMID: 33344068 PMCID: PMC7748121 DOI: 10.1007/s40142-020-00185-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Alcohol use disorder (AUD) is a complex genetic disorder with very high heritability. This polygenic disorder not only results in increased morbidity and mortality, it is also a substantial social and economic burden on families and the nation. For past three decades, several genetic studies were conducted to identify genes and pathways associated with AUD. This review aims to summarize past efforts and recent advances in genetic association studies of AUD and related traits. RECENT FINDINGS Initial genetic association studies achieved a limted success and suffered from low power due to small sample sizes. AUD is a polygenic trait and data from several thousands individuals was required to identify the genetic factors of small effect sizes. The scenario changed recently with technological advances and significant reduction in cost of the genome wide association analyses (GWAS). This enabled researchers to generate genomic data on mega biobanks and cohorts with access to extensive clinical and non-clinical phenotypes. Public access to data from biobanks and collaborative efforts of researchers lead to identification of several novel loci associated with AUDs and related traits. Efforts are now underway to identify the causal variants under the GWAS loci to identify target genes and biological mechanisms underpining AUDs. Many GWAS variants occur in promoter or enhancer regions of the genes and are involved in regulation of gene expression of causal genes. This, large amounts of "omics" data from projects such as "ENCODE", RoadMap and GTEx is also helping researchers to integrate "multi-omics" data to interpret functional significance of GWAS variants. SUMMARY With current review, we aim to present the recent advances in genetic and molecular studies of AUDs. Recent successes in genetic studies of AUDs will definetely motivate researchers and lead to better therapeutic interventions for this complex disorder.
Collapse
Affiliation(s)
| | - Rohan Dandavate
- Indian Institute of Science Education and Research, Bhopal, India
| | - Pallavi Gupta
- Indian Institute of Science Education and Research, Bhopal, India
| | - Viplav Agrawal
- Indian Institute of Science Education and Research, Bhopal, India
| | - Manav Kapoor
- Icahn School of Medicine at Mount Sinai, New york, USA
| |
Collapse
|
46
|
Vesnina A, Prosekov A, Kozlova O, Atuchin V. Genes and Eating Preferences, Their Roles in Personalized Nutrition. Genes (Basel) 2020; 11:genes11040357. [PMID: 32230794 PMCID: PMC7230842 DOI: 10.3390/genes11040357] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
At present, personalized diets, which take into account consumer genetic characteristics, are growing popular. Nutrigenetics studies the effect of gene variations on metabolism and nutrigenomics, which branches off further and investigates how nutrients and food compounds affect genes. This work deals with the mutations affecting the assimilation of metabolites, contributing to nutrigenetic studies. We searched for the genes responsible for eating preferences which allow for the tailoring of personalized diets. Presently, genetic nutrition is growing in demand, as it contributes to the prevention and/or rehabilitation of non-communicable diseases, both monogenic and polygenic. In this work, we showed single-nucleotide polymorphisms in genes-missense mutations that change the functions of coded proteins, resulting in a particular eating preferences or a disease. We studied the genes influencing food preferences-particularly those responsible for fats and carbohydrates absorption, food intolerance, metabolism of vitamins, taste sensations, oxidation of xenobiotics, eating preferences and food addiction. As a result, 34 genes were identified that affect eating preferences. Significant shortcomings were found in the methods/programs for developing personalized diets that are used today, and the weaknesses were revealed in the development of nutrigenetics (inconsistency of data on SNP genes, ignoring population genetics data, difficult information to understand consumer, etc.). Taking into account all the shortcomings, an approximate model was proposed in the review for selecting an appropriate personalized diet. In the future, it is planned to develop the proposed model for the compilation of individual diets.
Collapse
Affiliation(s)
- Anna Vesnina
- Department of Bionanotechnology, Kemerovo State University, 650043 Kemerovo, Russia; (A.V.); (O.K.)
| | - Alexander Prosekov
- Laboratory of Biocatalysis, Kemerovo State University, 650043 Kemerovo, Russia;
| | - Oksana Kozlova
- Department of Bionanotechnology, Kemerovo State University, 650043 Kemerovo, Russia; (A.V.); (O.K.)
| | - Victor Atuchin
- Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, 630090 Novosibirsk, Russia
- Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, 630090 Novosibirsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Correspondence: ; Tel.: +7-(383)-3308889
| |
Collapse
|
47
|
Govind P, Pavethynath S, Sawabe M, Arai T, Muramatsu M. Association between rs1229984 in ADH1B and cancer prevalence in a Japanese population. Mol Clin Oncol 2020; 12:503-510. [PMID: 32337031 PMCID: PMC7179391 DOI: 10.3892/mco.2020.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 01/15/2020] [Indexed: 12/24/2022] Open
Abstract
Alcohol consumption is an established risk factor for cancer, but little is known regarding the effect of genetic polymorphisms in alcohol metabolism genes on alcohol-related cancer risk in the Japanese population. Associations between the ADH1B gene (alcohol dehydrogenase 1B), single nucleotide polymorphism (SNP) rs1229984 and cancer have been extensively studied yet evidence is inconsistent. This population-based case-control study primarily aimed to clarify any association between SNP rs1229984 in both overall and specific cancer risk in a Japanese population. The functional non-synonymous SNP rs1229984 (Arg48His) was genotyped using DNA samples from 1,359 consecutive autopsy cases registered in The Japanese Single Nucleotide Polymorphisms for Geriatric Research database. Medical and pathological record data from this database were used to categorise cases and controls. Results included 1,359 participants, 816 cases and 543 controls. Multinomial logistic regression analyses showed no significant association between rs1229984 presence and overall cancer risk in both dominant and recessive genetic inheritance models [Arg/Arg+Arg/His vs. His/His: Adjusted odds ratio (OR)=0.66 (95% CI=0.39-1.13; P=0.129), Arg/Arg vs. Arg/His+His/His: OR=0.95 (95% CI=0.75-1.20; P=0.657)]. However, results showed those homozygous for rs1229984 (genotype His/His) were at significantly decreased odds of lung cancer than other genotypes [recessive model: OR=0.64 (95% CI=0.44-0.93; P=0.020]. In conclusion, there was no significant association between rs1229984 and odds of overall or specific cancers except in lung cancer where His/His genotype decreased odds. To the best of our knowledge, the association between His/His and decreased odds of lung cancer is a novel finding. These findings require further validation in larger studies.
Collapse
Affiliation(s)
- Pallavi Govind
- Faculty of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Shilpa Pavethynath
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Motoji Sawabe
- Department of Molecular Pathology, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tomio Arai
- Department of Pathology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo 173-0015, Japan
| | - Masaaki Muramatsu
- Department of Molecular Epidemiology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| |
Collapse
|
48
|
Huang YH, Chang KH, Lee YS, Chen CM, Chen YC. Association of alcohol dehydrogenase and aldehyde dehydrogenase Polymorphism with Spontaneous Deep Intracerebral Haemorrhage in the Taiwan population. Sci Rep 2020; 10:3641. [PMID: 32107439 PMCID: PMC7046678 DOI: 10.1038/s41598-020-60567-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/10/2020] [Indexed: 12/30/2022] Open
Abstract
Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) encode essential alcohol-metabolizing enzymes. While alcohol use is associated with spontaneously deep intracerebral haemorrhage (SDICH), particularly in males, the activities and genetic variants of ADH and ALDH may affect SDICH development. This case-control study was conducted to identify the interaction of alcohol use and SDICH with five single-nucleotide polymorphisms (SNPs): ADH1B rs1229984, ADH1C rs2241894, ALDH2 rs671, ALDH2 rs886205, and ALDH2 rs4648328. We enrolled 208 patients with SDICH and 244 healthy controls in a Taiwanese population. ALDH2 rs671 was significantly associated with SDICH in the dominant (P < 0.001) and additive models (P = 0.007). ALDH2 rs4648328 was borderline significantly associated with SDICH in the recessive (P = 0.024) or additive models (P = 0.030). In alcohol-using patients, the ALDH2 rs671 GG genotype was associated with SDICH risk compared to the GA+AA genotype (P = 0.010). ADH1B rs1229984, ADH1C rs2241894, and ALDH2 rs886205 did not demonstrate association with SDICH. Thus, the ALDH2 rs671 GG genotype is a risk factor for SDICH. Because the genetic distributions of ALDH2 rs671 exhibited strong ethnic heterogeneity, further studies in different populations are needed to validate these findings.
Collapse
Affiliation(s)
- Yu-Hua Huang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Taoyuan, 333, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Taoyuan, 333, Taiwan
| | - Yun-Shien Lee
- Department of Biotechnology, Ming Chuan University, Taoyuan, 333, Taiwan
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Taoyuan, 333, Taiwan
| | - Yi-Chun Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center and College of Medicine, Chang-Gung University, Taoyuan, 333, Taiwan.
| |
Collapse
|
49
|
Schlicker L, Szebenyi DME, Ortiz SR, Heinz A, Hiller K, Field MS. Unexpected roles for ADH1 and SORD in catalyzing the final step of erythritol biosynthesis. J Biol Chem 2019; 294:16095-16108. [PMID: 31511322 PMCID: PMC6827307 DOI: 10.1074/jbc.ra119.009049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/03/2019] [Indexed: 11/06/2022] Open
Abstract
The low-calorie sweetener erythritol is endogenously produced from glucose through the pentose phosphate pathway in humans. Erythritol is of medical interest because elevated plasma levels of this polyol are predictive for visceral adiposity gain and development of type 2 diabetes. However, the mechanisms behind these associations remain unknown because the erythritol biosynthesis pathway, particularly the enzyme catalyzing the final step of erythritol synthesis (reduction of erythrose to erythritol), is not characterized. In this study, we purified two enzymes from rabbit liver capable of catalyzing the conversion of erythrose to erythritol: alcohol dehydrogenase 1 (ADH1) and sorbitol dehydrogenase (SORD). Both recombinant human ADH1 and SORD reduce erythrose to erythritol, using NADPH as a co-factor, and cell culture studies indicate that this activity is primarily NADPH-dependent. We found that ADH1 variants vary markedly in both their affinity for erythrose and their catalytic capacity (turnover number). Interestingly, the recombinant protein produced from the ADH1B2 variant, common in Asian populations, is not active when NADPH is used as a co-factor in vitro We also confirmed SORD contributes to intracellular erythritol production in human A549 lung cancer cells, where ADH1 is minimally expressed. In summary, human ADH1 and SORD catalyze the conversion of erythrose to erythritol, pointing to novel roles for two dehydrogenase proteins in human glucose metabolism that may contribute to individual responses to diet. Proteomics data are available via ProteomeXchange with identifier PXD015178.
Collapse
Affiliation(s)
- Lisa Schlicker
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | | | - Semira R Ortiz
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| | - Alexander Heinz
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, BRICS, Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Helmholtz Zentrum für Infektionsforschung, 38124 Braunschweig, Germany
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853
| |
Collapse
|
50
|
Gelernter J, Sun N, Polimanti R, Pietrzak RH, Levey DF, Lu Q, Hu Y, Li B, Radhakrishnan K, Aslan M, Cheung KH, Li Y, Rajeevan N, Sayward F, Harrington K, Chen Q, Cho K, Honerlaw J, Pyarajan S, Lencz T, Quaden R, Shi Y, Hunter-Zinck H, Gaziano JM, Kranzler HR, Concato J, Zhao H, Stein MB. Genome-wide Association Study of Maximum Habitual Alcohol Intake in >140,000 U.S. European and African American Veterans Yields Novel Risk Loci. Biol Psychiatry 2019; 86:365-376. [PMID: 31151762 PMCID: PMC6919570 DOI: 10.1016/j.biopsych.2019.03.984] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Habitual alcohol use can be an indicator of alcohol dependence, which is associated with a wide range of serious health problems. METHODS We completed a genome-wide association study in 126,936 European American and 17,029 African American subjects in the Veterans Affairs Million Veteran Program for a quantitative phenotype based on maximum habitual alcohol consumption. RESULTS ADH1B, on chromosome 4, was the lead locus for both populations: for the European American sample, rs1229984 (p = 4.9 × 10-47); for African American, rs2066702 (p = 2.3 × 10-12). In the European American sample, we identified three additional genome-wide-significant maximum habitual alcohol consumption loci: on chromosome 17, rs77804065 (p = 1.5 × 10-12), at CRHR1 (corticotropin-releasing hormone receptor 1); the protein product of this gene is involved in stress and immune responses; and on chromosomes 8 and 10. European American and African American samples were then meta-analyzed; the associated region at CRHR1 increased in significance to 1.02 × 10-13, and we identified two additional genome-wide significant loci, FGF14 (p = 9.86 × 10-9) (chromosome 13) and a locus on chromosome 11. Besides ADH1B, none of the five loci have prior genome-wide significant support. Post-genome-wide association study analysis identified genetic correlation to other alcohol-related traits, smoking-related traits, and many others. Replications were observed in UK Biobank data. Genetic correlation between maximum habitual alcohol consumption and alcohol dependence was 0.87 (p = 4.78 × 10-9). Enrichment for cell types included dopaminergic and gamma-aminobutyric acidergic neurons in midbrain, and pancreatic delta cells. CONCLUSIONS The present study supports five novel alcohol-use risk loci, with particularly strong statistical support for CRHR1. Additionally, we provide novel insight regarding the biology of harmful alcohol use.
Collapse
Affiliation(s)
- Joel Gelernter
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Ning Sun
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut
| | - Renato Polimanti
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Robert H Pietrzak
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Daniel F Levey
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Qiongshi Lu
- Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut
| | - Yiming Hu
- Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut
| | - Boyang Li
- Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut
| | - Krishnan Radhakrishnan
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut
| | - Mihaela Aslan
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Kei-Hoi Cheung
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Department of Emergency Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Yuli Li
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, Connecticut
| | - Nallakkandi Rajeevan
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, Connecticut
| | - Fred Sayward
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, Connecticut
| | - Kelly Harrington
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts; Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Quan Chen
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut
| | - Kelly Cho
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jacqueline Honerlaw
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts
| | - Saiju Pyarajan
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Todd Lencz
- Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, New York; Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, New York; Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of Northwell Health, Glen Oaks, New York; Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Rachel Quaden
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts
| | - Yunling Shi
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts
| | - Haley Hunter-Zinck
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, Massachusetts; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Henry R Kranzler
- Veterans Integrated Services Networks (VISN) 4 Mental Illness Research, Education and Clinical Center, Crescenz VA Medical Center, Philadelphia, Pennsylvania; Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - John Concato
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Hongyu Zhao
- Veterans Affairs (VA) Clinical Epidemiology Research Center (CERC), VA Connecticut Healthcare System, West Haven, Connecticut; Department of Biostatistics, Yale University School of Medicine, New Haven, Connecticut
| | - Murray B Stein
- Psychiatry Service, VA San Diego Healthcare System, San Diego, California; Department of Psychiatry, University of California San Diego, La Jolla, California.
| |
Collapse
|