1
|
Montanaro FAM, Alfieri P, Caciolo C, Brunetti A, Airoldi A, de Florio A, Tinella L, Bosco A, Vicari S. Fragile X Syndrome and FMR1 premutation: results from a survey on associated conditions and treatment priorities in Italy. Orphanet J Rare Dis 2024; 19:264. [PMID: 38997701 PMCID: PMC11241840 DOI: 10.1186/s13023-024-03272-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 07/01/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Fragile X Syndrome (FXS) is the most common cause of inherited intellectual disability, caused by CGG-repeat expansions (> 200) in the FMR1 gene leading to lack of expression. Espansion between 55 and 200 triplets fall within the premutation range (PM) and can lead to different clinical conditions, including fragile X- primary ovarian insufficiency (FXPOI), fragile X-associated neuropsychiatric disorders (FXAND) and fragile X-associated tremor/ataxia syndrome (FXTAS). Although there is not a current cure for FXS and for the Fragile X-PM associated conditions (FXPAC), timely diagnosis as well as the implementation of treatment strategies, psychoeducation and behavioral intervention may improve the quality of life (QoL) of people with FXS or FXPAC. With the aim to investigate the main areas of concerns and the priorities of treatment in these populations, the Italian National Fragile X Association in collaboration with Bambino Gesù Children's Hospital, conducted a survey among Italian participants. METHOD Here, we present a survey based on the previous study that Weber and colleagues conducted in 2019 and that aimed to investigate the main symptoms and challenges in American individuals with FXS. The survey has been translated into Italian language to explore FXS needs of treatment also among Italian individuals affected by FXS, family members, caretakers, and professionals. Furthermore, we added a section designated only to people with PM, to investigate the main symptoms, daily living challenges and treatment priorities. RESULTS Anxiety, challenging behaviors, language difficulties and learning disabilities were considered the major areas of concern in FXS, while PM was reported as strongly associated to cognitive problems, social anxiety, and overthinking. Anxiety was reported as a treatment priority in both FXS and PM. CONCLUSION FXS and PM can be associated with a range of cognitive, affective, and physical health complications. Taking a patient-first perspective may help clinicians to better characterize the cognitive-behavioral phenotype associated to these conditions, and eventually to implement tailored therapeutic approaches.
Collapse
Affiliation(s)
- Federica Alice Maria Montanaro
- Child & Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, 70122, Italy
| | - Paolo Alfieri
- Child & Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy.
| | - Cristina Caciolo
- Child & Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy
| | - Alessia Brunetti
- Associazione Italiana Sindrome X Fragile, Piazza Lima 1, Milan, 20124, Italy
| | - Alessandra Airoldi
- Associazione Italiana Sindrome X Fragile, Piazza Lima 1, Milan, 20124, Italy
| | - Anna de Florio
- Associazione Italiana Sindrome X Fragile, Piazza Lima 1, Milan, 20124, Italy
| | - Luigi Tinella
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, 70122, Italy
| | - Andrea Bosco
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, 70122, Italy
| | - Stefano Vicari
- Child & Adolescent Neuropsychiatry Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, 00165, Italy
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, 00168, Italy
| |
Collapse
|
2
|
Sirois CL, Guo Y, Li M, Wolkoff NE, Korabelnikov T, Sandoval S, Lee J, Shen M, Contractor A, Sousa AMM, Bhattacharyya A, Zhao X. CGG repeats in the human FMR1 gene regulate mRNA localization and cellular stress in developing neurons. Cell Rep 2024; 43:114330. [PMID: 38865241 PMCID: PMC11240841 DOI: 10.1016/j.celrep.2024.114330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
The human genome has many short tandem repeats, yet the normal functions of these repeats are unclear. The 5' untranslated region (UTR) of the fragile X messenger ribonucleoprotein 1 (FMR1) gene contains polymorphic CGG repeats, the length of which has differing effects on FMR1 expression and human health, including the neurodevelopmental disorder fragile X syndrome. We deleted the CGG repeats in the FMR1 gene (0CGG) in human stem cells and examined the effects on differentiated neurons. 0CGG neurons have altered subcellular localization of FMR1 mRNA and protein, and differential expression of cellular stress proteins compared with neurons with normal repeats (31CGG). In addition, 0CGG neurons have altered responses to glucocorticoid receptor (GR) activation, including FMR1 mRNA localization, GR chaperone HSP90α expression, GR localization, and cellular stress protein levels. Therefore, the CGG repeats in the FMR1 gene are important for the homeostatic responses of neurons to stress signals.
Collapse
Affiliation(s)
- Carissa L Sirois
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Guo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Meng Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natalie E Wolkoff
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tomer Korabelnikov
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Soraya Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jiyoun Lee
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Amaya Contractor
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Andre M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
3
|
Tassone F, Protic D, Allen EG, Archibald AD, Baud A, Brown TW, Budimirovic DB, Cohen J, Dufour B, Eiges R, Elvassore N, Gabis LV, Grudzien SJ, Hall DA, Hessl D, Hogan A, Hunter JE, Jin P, Jiraanont P, Klusek J, Kooy RF, Kraan CM, Laterza C, Lee A, Lipworth K, Losh M, Loesch D, Lozano R, Mailick MR, Manolopoulos A, Martinez-Cerdeno V, McLennan Y, Miller RM, Montanaro FAM, Mosconi MW, Potter SN, Raspa M, Rivera SM, Shelly K, Todd PK, Tutak K, Wang JY, Wheeler A, Winarni TI, Zafarullah M, Hagerman RJ. Insight and Recommendations for Fragile X-Premutation-Associated Conditions from the Fifth International Conference on FMR1 Premutation. Cells 2023; 12:2330. [PMID: 37759552 PMCID: PMC10529056 DOI: 10.3390/cells12182330] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.
Collapse
Affiliation(s)
- Flora Tassone
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
| | - Dragana Protic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, 11129 Belgrade, Serbia;
- Fragile X Clinic, Special Hospital for Cerebral Palsy and Developmental Neurology, 11040 Belgrade, Serbia
| | - Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Alison D. Archibald
- Victorian Clinical Genetics Services, Royal Children’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Genomics in Society Group, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia
| | - Anna Baud
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Ted W. Brown
- Central Clinical School, University of Sydney, Sydney, NSW 2006, Australia;
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
- NYS Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | - Dejan B. Budimirovic
- Department of Psychiatry, Fragile X Clinic, Kennedy Krieger Institute, Baltimore, MD 21205, USA;
- Department of Psychiatry & Behavioral Sciences-Child Psychiatry, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jonathan Cohen
- Fragile X Alliance Clinic, Melbourne, VIC 3161, Australia;
| | - Brett Dufour
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center Affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel;
| | - Nicola Elvassore
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Lidia V. Gabis
- Keshet Autism Center Maccabi Wolfson, Holon 5822012, Israel;
- Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel
| | - Samantha J. Grudzien
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Deborah A. Hall
- Department of Neurological Sciences, Rush University, Chicago, IL 60612, USA;
| | - David Hessl
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Abigail Hogan
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - Jessica Ezzell Hunter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Poonnada Jiraanont
- Faculty of Medicine, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (A.H.); (J.K.)
| | - R. Frank Kooy
- Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium;
| | - Claudine M. Kraan
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Diagnosis and Development, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
| | - Cecilia Laterza
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy; (N.E.); (C.L.)
- Department of Industrial Engineering, University of Padova, 35131 Padova, Italy
| | - Andrea Lee
- Fragile X New Zealand, Nelson 7040, New Zealand;
| | - Karen Lipworth
- Fragile X Association of Australia, Brookvale, NSW 2100, Australia;
| | - Molly Losh
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60201, USA;
| | - Danuta Loesch
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Reymundo Lozano
- Departments of Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA;
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD 21224, USA;
| | - Veronica Martinez-Cerdeno
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Yingratana McLennan
- Department of Pathology and Laboratory Medicine, Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children of Northern California, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | | | - Federica Alice Maria Montanaro
- Child and Adolescent Neuropsychiatry Unit, Department of Neuroscience, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Matthew W. Mosconi
- Schiefelbusch Institute for Life Span Studies, University of Kansas, Lawrence, KS 66045, USA;
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS 66045, USA
- Kansas Center for Autism Research and Training (K-CART), University of Kansas, Lawrence, KS 66045, USA
| | - Sarah Nelson Potter
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Melissa Raspa
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Susan M. Rivera
- Department of Psychology, University of Maryland, College Park, MD 20742, USA;
| | - Katharine Shelly
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA; (E.G.A.); (P.J.); (K.S.)
| | - Peter K. Todd
- Department of Neurology, University of Michigan, 4148 BSRB, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA; (S.J.G.); (P.K.T.)
- Ann Arbor Veterans Administration Healthcare, Ann Arbor, MI 48105, USA
| | - Katarzyna Tutak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznan, Poland; (A.B.); (K.T.)
| | - Jun Yi Wang
- Center for Mind and Brain, University of California Davis, Davis, CA 95618, USA;
| | - Anne Wheeler
- RTI International, Research Triangle Park, NC 27709, USA; (J.E.H.); (S.N.P.); (M.R.); (A.W.)
| | - Tri Indah Winarni
- Center for Biomedical Research (CEBIOR), Faculty of Medicine, Universitas Diponegoro, Semarang 502754, Central Java, Indonesia;
| | - Marwa Zafarullah
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California Davis, Sacramento, CA 95817, USA;
| | - Randi J. Hagerman
- MIND Institute, University of California Davis, Davis, CA 95817, USA; (B.D.); (D.H.); (V.M.-C.)
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Hong J, Dembo RS, DaWalt LS, Baker MW, Berry-Kravis E, Mailick MR. Mortality in Women across the FMR1 CGG Repeat Range: The Neuroprotective Effect of Higher Education. Cells 2023; 12:2137. [PMID: 37681869 PMCID: PMC10486613 DOI: 10.3390/cells12172137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
Higher education has been shown to have neuroprotective effects, reducing the risk of Alzheimer's and Parkinson's diseases, slowing the rate of age-related cognitive decline, and is associated with lower rates of early mortality. In the present study, the association between higher education, fragile X messenger ribonucleoprotein 1 (FMR1) cytosine-guanine-guanine (CGG) repeat number, and mortality before life expectancy was investigated in a population cohort of women born in 1939. The findings revealed a significant interaction between years of higher education and CGG repeat number. Counter to the study's hypothesis, the effects of higher education became more pronounced as the number of CGG repeats increased. There was no effect of years of higher education on early mortality for women who had 25 repeats, while each year of higher education decreased the hazard of early mortality by 8% for women who had 30 repeats. For women with 41 repeats, the hazard was decreased by 14% for each additional year of higher education. The interaction remained significant after controlling for IQ and family socioeconomic status (SES) measured during high school, as well as factors measured during adulthood (family, psychosocial, health, and financial factors). The results are interpreted in the context of differential sensitivity to the environment, a conceptualization that posits that some people are more reactive to both negative and positive environmental conditions. Expansions in CGG repeats have been shown in previous FMR1 research to manifest such a differential sensitivity pattern.
Collapse
Affiliation(s)
- Jinkuk Hong
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (R.S.D.); (L.S.D.); (M.R.M.)
| | - Robert S. Dembo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (R.S.D.); (L.S.D.); (M.R.M.)
- NORC at the University of Chicago, Chicago, IL 60603, USA
| | - Leann Smith DaWalt
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (R.S.D.); (L.S.D.); (M.R.M.)
| | - Mei Wang Baker
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA;
- Wisconsin State Laboratory of Hygiene, Madison, WI 53706, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA;
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (R.S.D.); (L.S.D.); (M.R.M.)
| |
Collapse
|
5
|
Fielding-Gebhardt H, Brady N, Bredin-Oja SL, Warren SF. Transactional relationships between maternal requesting and responsivity, adolescent compliance, and task demands in fragile X syndrome. RESEARCH IN DEVELOPMENTAL DISABILITIES 2023; 134:104417. [PMID: 36708631 PMCID: PMC10074548 DOI: 10.1016/j.ridd.2022.104417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/13/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Males with fragile X syndrome (FXS) may have difficulty with social communication and language in addition to behavioral concerns such as noncompliance to maternal requests. Mothers vary in how they pose requests to their children, and contextual demands may also be a factor in compliance. This study examined the relationships between maternal requesting behaviors, maternal responsivity, child compliance, and task demands in adolescent males with FXS. METHODS 35 mother-son dyads completed three interactive tasks during in-home visits (puzzle, iPad games, snack). The adolescents also completed assessments of language and autism symptoms. The three interactive tasks were video-recorded, and behavior-by-behavior coding and transcription was completed. RESULTS Comparing between tasks, mothers requested a behavior most often during the snack task and used a higher proportion of indirect requests during the iPad task. Adolescents were largely compliant across tasks, with average compliance equal to 70%. Adolescent compliance was predicted by maternal request frequency such that mothers who used more requests had adolescent sons who were less compliant. Maternal responsivity was higher for mothers of adolescents with FXS-only compared to those with FXS and high autism symptoms. CONCLUSIONS AND IMPLICATIONS Task demands may have influenced maternal requesting, which in turn may have impacted adolescent compliance. Compliance with requests is important for both social and educational aspects of life, and further study of requesting and compliance in FXS is needed to identify effective teaching and behavioral intervention methods.
Collapse
Affiliation(s)
- Heather Fielding-Gebhardt
- Schiefelbusch Institute for Life Span Studies, University of Kansas, 1000 Sunnyside Ave, DHDC 1050, Lawrence, KS 66045, USA.
| | - Nancy Brady
- Schiefelbusch Institute for Life Span Studies, University of Kansas, 1000 Sunnyside Ave, DHDC 1050, Lawrence, KS 66045, USA; Department of Speech, Language, Hearing: Sciences and Disorders, University of Kansas, 1000 Sunnyside Ave, DHDC 3001, Lawrence, KS 66045, USA
| | - Shelley L Bredin-Oja
- Department of Communication Sciences and Disorders, Minot State University, 500 University Ave W, Minot, ND 58707, USA
| | - Steven F Warren
- Schiefelbusch Institute for Life Span Studies, University of Kansas, 1000 Sunnyside Ave, DHDC 1050, Lawrence, KS 66045, USA; Department of Speech, Language, Hearing: Sciences and Disorders, University of Kansas, 1000 Sunnyside Ave, DHDC 3001, Lawrence, KS 66045, USA
| |
Collapse
|
6
|
Maltman N, DaWalt LS, Hong J, Baker MW, Berry-Kravis EM, Brilliant MH, Mailick M. FMR1 CGG Repeats and Stress Influence Self-Reported Cognitive Functioning in Mothers. AMERICAN JOURNAL ON INTELLECTUAL AND DEVELOPMENTAL DISABILITIES 2023; 128:1-20. [PMID: 36548377 PMCID: PMC10445796 DOI: 10.1352/1944-7558-128.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/25/2022] [Indexed: 06/17/2023]
Abstract
Variation in the FMR1 gene may affect aspects of cognition, such as executive function and memory. Environmental factors, such as stress, may also negatively impact cognitive functioning. Participants included 1,053 mothers of children with and without developmental disabilities. Participants completed self-report measures of executive function, memory, and stress (i.e., life events, parenting status), and provided DNA to determine CGG repeat length (ranging from 7 to 192 CGGs). Stress exposure significantly predicted greater self-reported difficulties in executive function and the likelihood of memory problems. Cubic CGG effects independently predicted executive function and memory difficulties, suggesting effects of both genetic variation and environmental stress exposure on cognitive functioning.
Collapse
Affiliation(s)
- Nell Maltman
- Nell Maltman, Leann Smith DaWalt, and Jinkuk Hong, University of Wisconsin-Madison
| | - Leann Smith DaWalt
- Nell Maltman, Leann Smith DaWalt, and Jinkuk Hong, University of Wisconsin-Madison
| | - Jinkuk Hong
- Nell Maltman, Leann Smith DaWalt, and Jinkuk Hong, University of Wisconsin-Madison
| | | | | | | | - Marsha Mailick
- Murray H. Brilliant and Marsha Mailick, University of Wisconsin-Madison
| |
Collapse
|
7
|
Klusek J, Newman-Norlund R, Fairchild AJ, Newman-Norlund S, Sayers S, Stewart JC, Berry-Kravis E, Fridriksson J. Low normal FMR1 genotype in older adult women: Psychological well-being and motor function. Arch Gerontol Geriatr 2022; 103:104789. [PMID: 35981426 PMCID: PMC9464716 DOI: 10.1016/j.archger.2022.104789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/28/2022]
Abstract
The FMR1 gene plays a key role in adult neurogenesis and neuroplasticity, and thus may contribute to age-related health in the population. The current study focused on the "low normal" FMR1 genotype, defined by lower-than-typical numbers of FMR1 CGG repeats (<26), as a potential genetic determinant of age-related health. We characterized the effect of the low normal FMR1 genotype on psychological well-being and motor function in a racially diverse non-clinical sample of older adult women. Women with low CGG repeats were distinguished from those with CGGs falling within the mid-high end of the normal range by reduced performance on multimodal assessments of motor function and psychological well-being, with large effect sizes. Robust continuous associations were also detected between lower CGG repeat length and reduced psychological well-being, balance, and dexterity. Findings suggest that FMR1 may represent an important mediator of individual differences in age-related health; larger epidemiological studies are needed. Given that approximately 23-35% of females carry the low normal genotype, efforts to understand its clinical effects have relevance a broad swath of the aging population.
Collapse
Affiliation(s)
- Jessica Klusek
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Close-Hipp Building, 1705 College Street, Columbia, SC 29208, USA.
| | - Roger Newman-Norlund
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Close-Hipp Building, 1705 College Street, Columbia, SC 29208, USA; Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC 29208, USA
| | - Amanda J Fairchild
- Department of Psychology, University of South Carolina, 1512 Pendleton Street, Columbia, SC 29208, USA
| | - Sarah Newman-Norlund
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Close-Hipp Building, 1705 College Street, Columbia, SC 29208, USA
| | - Sara Sayers
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Close-Hipp Building, 1705 College Street, Columbia, SC 29208, USA
| | - Jill C Stewart
- Physical Therapy Program, Department of Exercise Science, Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Columbia, SC 29208, USA
| | - Elizabeth Berry-Kravis
- Department of Pediatrics, Neurological Sciences and Anatomy and Cell Biology, Rush University Medical Center, 1725 West Harrison Street, Suite 718, Chicago, IL 60612, USA
| | - Julius Fridriksson
- Department of Communication Sciences and Disorders, Arnold School of Public Health, University of South Carolina, Close-Hipp Building, 1705 College Street, Columbia, SC 29208, USA
| |
Collapse
|
8
|
Hong J, DaWalt L, Baker MW, Berry-Kravis EM, Mailick MR. Is FMR1 CGG Repeat Number Polymorphism Associated With Phenotypic Variation in the General Population? Report From a Cohort of 5,499 Adults. Front Psychiatry 2021; 12:727085. [PMID: 34456771 PMCID: PMC8385267 DOI: 10.3389/fpsyt.2021.727085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
FMR1 CGG repeat length was assayed in 5499 research participants (2637 men and 2862 women) in the Wisconsin Longitudinal Study (WLS), a population-based cohort. Most past research has focused on clinically-ascertained individuals with expansions in CGG repeats, either those with fragile X syndrome (> 200 CGG repeats), the FMR1 premutation (55-200 repeats), or in the gray zone (variously defined as 45-54 or 41-54 repeats). In contrast, the WLS is a unique source of data that was obtained from an unselected cohort of individuals from the general population for whom FMR1 CGG repeat length was assayed. The WLS is a random sample of one-third of all high school seniors in the state of Wisconsin in 1957. The most recent round of data collection was in 2011; thus, the study spanned over 50 years. Saliva samples were obtained from 69% of surviving members of the cohort in 2008 and 2011, from which CGG repeats were assayed. With one exception, the CGG repeat length of all members of this cohort was below 100 (ranging from 7 to 84). The present study evaluated the genotype-phenotype associations of CGG repeat number and IQ, college graduation, age at menopause, number of biological children, having a child with intellectual or developmental disabilities, and the likelihood of experiencing an episode of depression during adulthood. Linear and curvilinear effects were probed. Although effect sizes were small, significant associations were found between CGG repeat length and high school IQ score, college graduation, number of biological children, age at menopause, and the likelihood of having an episode of depression. However, there was no significant association between repeat length and having a child diagnosed with an IDD condition. This study demonstrates a continuum of phenotype effects with FMR1 repeat lengths and illustrates how research inspired by a rare genetic condition (such as fragile X syndrome) can be used to probe genotype-phenotype associations in the general population.
Collapse
Affiliation(s)
- Jinkuk Hong
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Leann DaWalt
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Mei Wang Baker
- Wisconsin State Laboratory of Hygiene, Madison, WI, United States
| | - Elizabeth M Berry-Kravis
- Departments of Pediatrics, Neurological Sciences, Biochemistry, Rush University Medical Center, Chicago, IL, United States
| | - Marsha R Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
9
|
Mailick MR, Hong J, DaWalt LS, Greenberg JS, Movaghar A, Baker MW, Rathouz PJ, Brilliant MH. FMR1 Low Zone CGG Repeats: Phenotypic Associations in the Context of Parenting Stress. Front Pediatr 2020; 8:223. [PMID: 32478017 PMCID: PMC7240007 DOI: 10.3389/fped.2020.00223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/14/2020] [Indexed: 11/28/2022] Open
Abstract
The FMR1 gene on the X chromosome has varying numbers of CGG repeats. The modal number is 30, and expansion to >200 results in fragile X syndrome, but the copy number extends down to 6. Past research suggests that individuals whose CGGs are in the "low zone" (LZ; defined here as ≤ 25 CGGs) may be more environmentally-reactive than those with normal range repeats (26-40 CGGs)-a gene x environment interaction. Using a population-based DNA biobank, in our primary analysis we compared 96 mothers with LZ CGG repeats on both alleles to 280 mothers who had CGG repeats in the normal range. Secondarily, we conducted parallel analyses on fathers. We investigated how parents in these two CGG repeat categories differentially responded to stress, defined as parenting a child with disabilities. Significant gene x environment interactions indicated that LZ mothers who had children with disabilities had greater limitations (in executive functioning, depression, anxiety, daily health symptoms, and balance) than LZ mothers whose children did not have disabilities. In contrast, mothers with normal-range CGG repeats did not differ based on stress exposure. For fathers, a similar pattern was evident for one phenotype only (hand tremors). Although on average LZ CGGs are not associated with compromised functioning, the average masks differential response to the environment.
Collapse
Affiliation(s)
- Marsha R Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Jinkuk Hong
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Leann Smith DaWalt
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Jan S Greenberg
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Arezoo Movaghar
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Mei Wang Baker
- Wisconsin State Laboratory of Hygiene, Madison, WI, United States
| | - Paul J Rathouz
- Dell Medical School at the University of Texas at Austin, Austin, TX, United States
| | - Murray H Brilliant
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States.,Marshfield Clinic Research Institute, Marshfield, WI, United States
| |
Collapse
|
10
|
Klusek J, Fairchild AJ, Roberts JE. Vagal Tone as a Putative Mechanism for Pragmatic Competence: An Investigation of Carriers of the FMR1 Premutation. J Autism Dev Disord 2019; 49:197-208. [PMID: 30097759 DOI: 10.1007/s10803-018-3714-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Pragmatic language skills exist across a continuum in typical and clinical populations, and are impaired in many neurodevelopmental disorders, most notably autism. The mechanisms underlying pragmatic impairment are poorly understood, although theory suggests dampened vagal tone plays a role. This study investigated the FMR1 premutation as a genetic model that may lend insight into the relationship between vagal function and pragmatic ability. Participants included 38 women with the FMR1 premutation and 23 controls. Vagal tone accounted for significant variance in pragmatics across both groups and statistically mediated the effect of FMR1 premutation status on pragmatic ability. Results support vagal tone as a biophysiological correlate of pragmatic ability, which informs potential mechanistic underpinnings and could have implications for targeted treatment.
Collapse
Affiliation(s)
- Jessica Klusek
- Department of Communication Sciences and Disorders, University of South Carolina, Keenan Building, 1229 Marion Street, Columbia, SC, 29201, USA.
| | - Amanda J Fairchild
- Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| | - Jane E Roberts
- Department of Psychology, Barnwell College, University of South Carolina, 1512 Pendleton Street, Columbia, SC, 29208, USA
| |
Collapse
|
11
|
Hagerman RJ, Protic D, Rajaratnam A, Salcedo-Arellano MJ, Aydin EY, Schneider A. Fragile X-Associated Neuropsychiatric Disorders (FXAND). Front Psychiatry 2018; 9:564. [PMID: 30483160 PMCID: PMC6243096 DOI: 10.3389/fpsyt.2018.00564] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS) is caused by the full mutation (>200 CGG repeats) in the Fragile X Mental Retardation 1 (FMR1) gene. It is the most common inherited cause of intellectual disability (ID) and autism. This review focuses on neuropsychiatric disorders frequently experienced by premutation carriers with 55 to 200 CGG repeats and the pathophysiology involves elevated FMR1 mRNA levels, which is different from the absence or deficiency of fragile X mental retardation protein (FMRP) seen in FXS. Neuropsychiatric disorders are the most common problems associated with the premutation, and they affect approximately 50% of individuals with 55 to 200 CGG repeats in the FMR1 gene. Neuropsychiatric disorders in children with the premutation include anxiety, ADHD, social deficits, or autism spectrum disorders (ASD). In adults with the premutation, anxiety and depression are the most common problems, although obsessive compulsive disorder, ADHD, and substance abuse are also common. These problems are often exacerbated by chronic fatigue, chronic pain, fibromyalgia, autoimmune disorders and sleep problems, which are also associated with the premutation. Here we review the clinical studies, neuropathology and molecular underpinnings of RNA toxicity associated with the premutation. We also propose the name Fragile X-associated Neuropsychiatric Disorders (FXAND) in an effort to promote research and the use of fragile X DNA testing to enhance recognition and treatment for these disorders.
Collapse
Affiliation(s)
- Randi J. Hagerman
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Dragana Protic
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pharmacology, Clinical Pharmacology and Toxicology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Akash Rajaratnam
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Maria J. Salcedo-Arellano
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| | - Elber Yuksel Aydin
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Andrea Schneider
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Sacramento, CA, United States
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
12
|
Klusek J, Porter A, Abbeduto L, Adayev T, Tassone F, Mailick MR, Glicksman A, Tonnsen BL, Roberts JE. Curvilinear Association Between Language Disfluency and FMR1 CGG Repeat Size Across the Normal, Intermediate, and Premutation Range. Front Genet 2018; 9:344. [PMID: 30197656 PMCID: PMC6118037 DOI: 10.3389/fgene.2018.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 08/09/2018] [Indexed: 12/18/2022] Open
Abstract
Historically, investigations of FMR1 have focused almost exclusively on the clinical effects of CGG expansion within the categories of the premutation (55-200 CGG repeats) and fragile X syndrome (>200 CGG repeats). However, emerging evidence suggests that CGG-dependent phenotypes may occur across allele sizes traditionally considered within the "normal" range. This study adopted an individual-differences approach to determine the association between language production ability and CGG repeat length across the full range of normal, intermediate, and premutation alleles. Participants included 61 adult women with CGG repeats within the premutation (n = 37), intermediate (i.e., 41-54 repeats; n = 2), or normal (i.e., 6-40 repeats; n = 22) ranges. All participants were the biological mothers of a child with a developmental disorder, to control for the potential effects of parenting stress. Language samples were collected and the frequency of language disfluencies (i.e., interruptions in the flow of speech) served as an index of language production skills. Verbal inhibition skills, measured with the Hayling Sentence Completion Test, were also measured and examined as a correlate of language disfluency, consistent with theoretical work linking language disfluency with inhibitory deficits (i.e., the Inhibition Deficit Hypothesis). Blood samples were collected to determine FMR1 CGG repeat size. A general linear model tested CGG repeat size of the larger allele (allele-2) as the primary predictor of language disfluency, covarying for education level, IQ, age, and CGG repeats on the other allele. A robust curvilinear association between CGG length and language disfluency was detected, where low-normal (∼ <25 repeats) and mid-premutation alleles (∼90-110 repeats) were linked with higher rates of disfluency. Disfluency was not associated with inhibition deficits, which challenges prior theoretical work and suggests that a primary language deficit could account for elevated language disfluency in FMR1-associated conditions. Findings suggest CGG-dependent variation in language production ability, which was evident across individuals with and without CGG expansions on FMR1.
Collapse
Affiliation(s)
- Jessica Klusek
- Department of Communication Sciences and Disorders, University of South Carolina, Columbia, SC, United States
| | - Anna Porter
- Department of Psychology, University of South Carolina, Columbia, SC, United States
| | - Leonard Abbeduto
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, Sacramento, CA, United States
- MIND Institute, University of California, Davis, Sacramento, CA, United States
| | - Tatyana Adayev
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Flora Tassone
- MIND Institute, University of California, Davis, Sacramento, CA, United States
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Sacramento, CA, United States
| | - Marsha R. Mailick
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Anne Glicksman
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Bridgette L. Tonnsen
- Department of Psychological Sciences, Purdue University, Lafayette, IN, United States
| | - Jane E. Roberts
- Department of Psychology, University of South Carolina, Columbia, SC, United States
| |
Collapse
|