1
|
Chen Y, Xiao D, Li X. Lactylation and Central Nervous System Diseases. Brain Sci 2025; 15:294. [PMID: 40149815 PMCID: PMC11940311 DOI: 10.3390/brainsci15030294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
As the final product of glycolysis, lactate serves as an energy substrate, metabolite, and signaling molecule in various diseases and mediates lactylation, an epigenetic modification that occurs under both physiological and pathological conditions. Lactylation is a crucial mechanism by which lactate exerts its functions, participating in vital biological activities such as glycolysis-related cellular functions, macrophage polarization, and nervous system regulation. Lactylation links metabolic regulation to central nervous system (CNS) diseases, such as traumatic brain injury, Alzheimer's disease, acute ischemic stroke, and schizophrenia, revealing the diverse functions of lactylation in the CNS. In the future, further exploration of lactylation-associated enzymes and proteins is needed to develop specific lactylation inhibitors or activators, which could provide new tools and strategies for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Ye Chen
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (D.X.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| | - Dongqiong Xiao
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (D.X.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| | - Xihong Li
- Department of Emergency Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China; (Y.C.); (D.X.)
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu 610041, China
| |
Collapse
|
2
|
Hewitt T, Alural B, Becke N, Sheridan SD, Perlis RH, Lalonde J. Reply to: "Correspondence to bipolar disorder-iPSC derived neural progenitor cells exhibit dysregulation of store-operated Ca 2+ entry and accelerated differentiation" by Yde Ohki and colleagues. Mol Psychiatry 2025; 30:788-790. [PMID: 39085393 DOI: 10.1038/s41380-024-02673-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/30/2024] [Accepted: 07/09/2024] [Indexed: 08/02/2024]
Affiliation(s)
- Tristen Hewitt
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Begüm Alural
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Natalina Becke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Steven D Sheridan
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Roy H Perlis
- Center for Quantitative Health, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
3
|
Martini F, Spangaro M, Sapienza J, Cavallaro R. Cerebral asymmetries in schizophrenia. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:89-99. [PMID: 40074419 DOI: 10.1016/b978-0-443-15646-5.00018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Historically, the first observations of a lower prevalence of right-handed patients among subjects with schizophrenia led to the hypothesis that brain asymmetry could play a significant role in the etiopathogenesis of the disease. Over the last decades, a growing number of findings obtained through many different techniques such as EEG, MEG, MRI, and fMRI, consistently reported reduction/loss of brain asymmetries as a core feature of schizophrenia, further suggesting such alterations to play a cardinal role in the pathogenesis of the disease. Moreover, several cognitive and psychopathologic dimensions have shown significant correlations with the reduced degree of asymmetry. In particular, the absence or even reversal of structural asymmetries has been documented in language-related brain such as the Sylvian fissure and planum temporale. These findings have been reprocessed within an evolutionary and psychopathologic framework pointing at the loss of asymmetry and the consequent language impairment as primum moves in the pathogenesis of schizophrenia. Overall, despite growing evidence demonstrating a heterogeneous and multifaced etiopathogenesis in schizophrenia, the "old concept" of brain asymmetry still offers intriguing hints and thought-provoking elements for clinicians and researchers who deal with schizophrenia.
Collapse
Affiliation(s)
- Francesca Martini
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Spangaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jacopo Sapienza
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Humanities and Life Sciences, University School for Advanced Studies IUSS, Pavia, Italy.
| | - Roberto Cavallaro
- Department of Clinical Neurosciences, IRCCS San Raffaele Scientific Institute, Milan, Italy; School of Medicine, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
4
|
Mostafavi Abdolmaleky H, Alam R, Nohesara S, Deth RC, Zhou JR. iPSC-Derived Astrocytes and Neurons Replicate Brain Gene Expression, Epigenetic, Cell Morphology and Connectivity Alterations Found in Autism. Cells 2024; 13:1095. [PMID: 38994948 PMCID: PMC11240613 DOI: 10.3390/cells13131095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
Excessive inflammatory reactions and oxidative stress are well-recognized molecular findings in autism and these processes can affect or be affected by the epigenetic landscape. Nonetheless, adequate therapeutics are unavailable, as patient-specific brain molecular markers for individualized therapies remain challenging. METHODS We used iPSC-derived neurons and astrocytes of patients with autism vs. controls (5/group) to examine whether they replicate the postmortem brain expression/epigenetic alterations of autism. Additionally, DNA methylation of 10 postmortem brain samples (5/group) was analyzed for genes affected in PSC-derived cells. RESULTS We found hyperexpression of TGFB1, TGFB2, IL6 and IFI16 and decreased expression of HAP1, SIRT1, NURR1, RELN, GPX1, EN2, SLC1A2 and SLC1A3 in the astrocytes of patients with autism, along with DNA hypomethylation of TGFB2, IL6, TNFA and EN2 gene promoters and a decrease in HAP1 promoter 5-hydroxymethylation in the astrocytes of patients with autism. In neurons, HAP1 and IL6 expression trended alike. While HAP1 promoter was hypermethylated in neurons, IFI16 and SLC1A3 promoters were hypomethylated and TGFB2 exhibited increased promoter 5-hydroxymethlation. We also found a reduction in neuronal arborization, spine size, growth rate, and migration, but increased astrocyte size and a reduced growth rate in autism. In postmortem brain samples, we found DNA hypomethylation of TGFB2 and IFI16 promoter regions, but DNA hypermethylation of HAP1 and SLC1A2 promoters in autism. CONCLUSION Autism-associated expression/epigenetic alterations in iPSC-derived cells replicated those reported in the literature, making them appropriate surrogates to study disease pathogenesis or patient-specific therapeutics.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Reza Alam
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Richard C. Deth
- Department of Pharmaceutical Sciences, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| |
Collapse
|
5
|
Shi H, Chen M. The brain-bone axis: unraveling the complex interplay between the central nervous system and skeletal metabolism. Eur J Med Res 2024; 29:317. [PMID: 38849920 PMCID: PMC11161955 DOI: 10.1186/s40001-024-01918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
The brain-bone axis has emerged as a captivating field of research, unveiling the intricate bidirectional communication between the central nervous system (CNS) and skeletal metabolism. This comprehensive review delves into the current state of knowledge surrounding the brain-bone axis, exploring the complex mechanisms, key players, and potential clinical implications of this fascinating area of study. The review discusses the neural regulation of bone metabolism, highlighting the roles of the sympathetic nervous system, hypothalamic neuropeptides, and neurotransmitters in modulating bone remodeling. In addition, it examines the influence of bone-derived factors, such as osteocalcin and fibroblast growth factor 23, on brain function and behavior. The therapeutic potential of targeting the brain-bone axis in the context of skeletal and neurological disorders is also explored. By unraveling the complex interplay between the CNS and skeletal metabolism, this review aims to provide a comprehensive resource for researchers, clinicians, and students interested in the brain-bone axis and its implications for human health and disease.
Collapse
Affiliation(s)
- Haojun Shi
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China
| | - Min Chen
- Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, Macau SAR, China.
| |
Collapse
|
6
|
Abdolmaleky HM, Nohesara S, Thiagalingam S. Epigenome Defines Aberrant Brain Laterality in Major Mental Illnesses. Brain Sci 2024; 14:261. [PMID: 38539649 PMCID: PMC10968810 DOI: 10.3390/brainsci14030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 11/03/2024] Open
Abstract
Brain-hemisphere asymmetry/laterality is a well-conserved biological feature of normal brain development. Several lines of evidence, confirmed by the meta-analysis of different studies, support the disruption of brain laterality in mental illnesses such as schizophrenia (SCZ), bipolar disorder (BD), attention-deficit/hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), and autism. Furthermore, as abnormal brain lateralization in the planum temporale (a critical structure in auditory language processing) has been reported in patients with SCZ, it has been considered a major cause for the onset of auditory verbal hallucinations. Interestingly, the peripheral counterparts of abnormal brain laterality in mental illness, particularly in SCZ, have also been shown in several structures of the human body. For instance, the fingerprints of patients with SCZ exhibit aberrant asymmetry, and while their hair whorl rotation is random, 95% of the general population exhibit a clockwise rotation. In this work, we present a comprehensive literature review of brain laterality disturbances in mental illnesses such as SCZ, BD, ADHD, and OCD, followed by a systematic review of the epigenetic factors that may be involved in the disruption of brain lateralization in mental health disorders. We will conclude with a discussion on whether existing non-pharmacological therapies such as rTMS and ECT may be used to influence the altered functional asymmetry of the right and left hemispheres of the brain, along with their epigenetic and corresponding gene-expression patterns.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Surgery, Nutrition/Metabolism Laboratory, BIDMC, Harvard Medical School, Boston, MA 02215, USA
| | - Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
7
|
Nohesara S, Abdolmaleky HM, Thiagalingam S. Potential for New Therapeutic Approaches by Targeting Lactate and pH Mediated Epigenetic Dysregulation in Major Mental Diseases. Biomedicines 2024; 12:457. [PMID: 38398057 PMCID: PMC10887322 DOI: 10.3390/biomedicines12020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Multiple lines of evidence have shown that lactate-mediated pH alterations in the brains of patients with neuropsychiatric diseases such as schizophrenia (SCZ), Alzheimer's disease (AD) and autism may be attributed to mitochondrial dysfunction and changes in energy metabolism. While neuronal activity is associated with reduction in brain pH, astrocytes are responsible for rebalancing the pH to maintain the equilibrium. As lactate level is the main determinant of brain pH, neuronal activities are impacted by pH changes due to the binding of protons (H+) to various types of proteins, altering their structure and function in the neuronal and non-neuronal cells of the brain. Lactate and pH could affect diverse types of epigenetic modifications, including histone lactylation, which is linked to histone acetylation and DNA methylation. In this review, we discuss the importance of pH homeostasis in normal brain function, the role of lactate as an essential epigenetic regulatory molecule and its contributions to brain pH abnormalities in neuropsychiatric diseases, and shed light on lactate-based and pH-modulating therapies in neuropsychiatric diseases by targeting epigenetic modifications. In conclusion, we attempt to highlight the potentials and challenges of translating lactate-pH-modulating therapies to clinics for the treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
8
|
Jang T, Kaul M. Immune, RNA, and Neurocognitive Genetic Networks in Bipolar Disorder Subtypes: A Transcriptomic Meta-Analysis. RESEARCH SQUARE 2024:rs.3.rs-3508951. [PMID: 38313297 PMCID: PMC10836095 DOI: 10.21203/rs.3.rs-3508951/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Background Little is known about the pathogenesis of Bipolar Disorder, and even less is known about the genetic differences between its subtypes. Bipolar Disorder is classified into different subtypes, which present different symptoms and lifetime courses. While genetic studies have been conducted in Bipolar Disorder, most examined the gene expression of only Bipolar Disorder Type 1. Studies that include Bipolar Disorder Type 1 and Bipolar Disorder Type 2 often fail to differentiate them into separate conditions. Few large transcriptomic meta-analyses in Bipolar Disorder have been conducted to identify genetic pathways. Thus, using publicly available data sets we aim here to uncover significant differential gene expression that allows distinguishing Type 1 and Type 2 Bipolar Disorders, as well as find patterns in Bipolar Disorder as a whole. Methods We analyze 17 different gene expression data sets from different tissue in Bipolar Disorder using GEO2R and manual analysis, of which 15 contained significant differential gene expression results. We use STRING and Cytoscape to examine Gene Ontology to find significantly affected genetic pathways. We identify hub genes using cytoHubba, a plugin in Cytoscape. We find genes common to data sets of the same material or subtype. Results 12 out of 15 data sets are enriched for immune system and RNA related pathways. 9 out of 15 data sets are enriched for neurocognitive and metal ion related GO terms. Analysis of Bipolar Disorder Type 1 vs Bipolar Disorder Type 2 revealed most differentially expressed genes were related to immune function, especially cytokines. Terms related to synaptic signaling and neurotransmitter secretion were found in down-regulated GO terms while terms related to neuron apoptosis and death were up-regulated. We identify the gene SNCA as a potential biomarker for overall Bipolar Disorder diagnosis due to its prevalence in our data sets. Conclusions The immune system and RNA related pathways are significantly enriched across the Bipolar Disorder data sets. The role of these pathways is likely more critically important to the function of Bipolar Disorder than currently understood. Further studies should clearly label the subtype of Bipolar Disorder used in their research and more effort needs to be undertaken to collect samples from Cyclothymic Disorder and Bipolar Disorder Type 2.
Collapse
Affiliation(s)
- Tyler Jang
- University of California, Riverside, Graduate Program of Genetics, Genomics, and Bioinformatics, Riverside, 92507, USA
| | - Marcus Kaul
- University of California, Riverside, Graduate Program of Genetics, Genomics, and Bioinformatics, Riverside, 92507, USA
- University of California, Riverside, Department of Biomedical Sciences, Riverside, 92507, USA
| |
Collapse
|
9
|
Abdolmaleky HM, Martin M, Zhou JR, Thiagalingam S. Epigenetic Alterations of Brain Non-Neuronal Cells in Major Mental Diseases. Genes (Basel) 2023; 14:896. [PMID: 37107654 PMCID: PMC10137903 DOI: 10.3390/genes14040896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The tissue-specific expression and epigenetic dysregulation of many genes in cells derived from the postmortem brains of patients have been reported to provide a fundamental biological framework for major mental diseases such as autism, schizophrenia, bipolar disorder, and major depression. However, until recently, the impact of non-neuronal brain cells, which arises due to cell-type-specific alterations, has not been adequately scrutinized; this is because of the absence of techniques that directly evaluate their functionality. With the emergence of single-cell technologies, such as RNA sequencing (RNA-seq) and other novel techniques, various studies have now started to uncover the cell-type-specific expression and DNA methylation regulation of many genes (e.g., TREM2, MECP2, SLC1A2, TGFB2, NTRK2, S100B, KCNJ10, and HMGB1, and several complement genes such as C1q, C3, C3R, and C4) in the non-neuronal brain cells involved in the pathogenesis of mental diseases. Additionally, several lines of experimental evidence indicate that inflammation and inflammation-induced oxidative stress, as well as many insidious/latent infectious elements including the gut microbiome, alter the expression status and the epigenetic landscapes of brain non-neuronal cells. Here, we present supporting evidence highlighting the importance of the contribution of the brain's non-neuronal cells (in particular, microglia and different types of astrocytes) in the pathogenesis of mental diseases. Furthermore, we also address the potential impacts of the gut microbiome in the dysfunction of enteric and brain glia, as well as astrocytes, which, in turn, may affect neuronal functions in mental disorders. Finally, we present evidence that supports that microbiota transplantations from the affected individuals or mice provoke the corresponding disease-like behavior in the recipient mice, while specific bacterial species may have beneficial effects.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Marian Martin
- Department of Neurology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jin-Rong Zhou
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
10
|
Ai YW, Du Y, Chen L, Liu SH, Liu QS, Cheng Y. Brain Inflammatory Marker Abnormalities in Major Psychiatric Diseases: a Systematic Review of Postmortem Brain Studies. Mol Neurobiol 2023; 60:2116-2134. [PMID: 36600081 DOI: 10.1007/s12035-022-03199-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
Schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD) are common neuropsychiatric disorders that lead to neuroinflammation in the pathogenesis. It is possible to further explore the connection between inflammation in the brain and SCZ, BD, and MDD. Therefore, we systematically reviewed PubMed and Web of Science on brain inflammatory markers measured in SCZ, BD, and MDD postmortem brains. Out of 2166 studies yielded by the search, 46 studies met the inclusion criteria in SCZ, BD, and MDD postmortem brains. The results were variable across inflammatory markers. For example, 26 studies were included to measure the differential expression between SCZ and control subjects. Similarly, seven of the included studies measured the differential expression of inflammatory markers in patients with BD. The heterogeneity from the included studies is not clear at present, which may be caused by several factors, including the measured brain region, disease stage, brain source, medication, and other factors.
Collapse
Affiliation(s)
- Yang-Wen Ai
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China
| | - Yang Du
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China
| | - Lei Chen
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China
| | - Shu-Han Liu
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China
| | - Qing-Shan Liu
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China.
| | - Yong Cheng
- School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China. .,Institute of National Security, Minzu University of China, Haidian District, 27 Zhongguancun South St, 100081, Beijing, China.
| |
Collapse
|
11
|
Wolf A, Yitzhaky A, Hertzberg L. SMAD genes are up-regulated in brain and blood samples of individuals with schizophrenia. J Neurosci Res 2023. [PMID: 36977612 DOI: 10.1002/jnr.25188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023]
Abstract
Schizophrenia is a severe psychiatric disorder, with heritability around 80%, but a not fully understood pathophysiology. Signal transduction through the mothers against decapentaplegic (SMADs) are eight different proteins involved in the regulation of inflammatory processes, cell cycle, and tissue patterning. The literature is not consistent regarding the differential expression of SMAD genes among subjects with schizophrenia. In this article, we performed a systematic meta-analysis of the expression of SMAD genes in 423 brain samples (211 schizophrenia vs. 212 healthy controls), integrating 10 datasets from two public repositories, following the PRISMA guidelines. We found a statistically significant up-regulation of SMAD1, SMAD4, SMAD5, and SMAD7, and a tendency for up-regulation of SMAD3 and SMAD9 in brain samples of patients with schizophrenia. Overall, six of the eight genes showed a tendency for up-regulation, and none of them was found to have a tendency for down-regulation. SMAD1 and SMAD4 were up-regulated also in blood samples of 13 individuals with schizophrenia versus eight healthy controls, suggesting the SMAD genes' potential role as biomarkers of schizophrenia. Furthermore, SMAD genes' expression levels were significantly correlated with those of Sphingosine-1-phosphate receptor-1 (S1PR1), which is known to regulate inflammatory processes. Our meta-analysis supports the involvement of SMAD genes in the pathophysiology of schizophrenia through their role in inflammatory processes, as well as demonstrates the importance of gene expression meta-analysis for improving our understanding of psychiatric diseases.
Collapse
Affiliation(s)
- Ammie Wolf
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Assif Yitzhaky
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Libi Hertzberg
- The Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
- Shalvata Mental Health Center, 13 Aliat Hanoar St., Hod Hasharon, 45100, Israel
| |
Collapse
|
12
|
Nishanth MJ, Jha S. Genome-wide landscape of RNA-binding protein (RBP) networks as potential molecular regulators of psychiatric co-morbidities: a computational analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2023. [DOI: 10.1186/s43042-022-00382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Abstract
Background
Psychiatric disorders are a major burden on global health. These illnesses manifest as co-morbid conditions, further complicating the treatment. There is a limited understanding of the molecular and regulatory basis of psychiatric co-morbidities. The existing research in this regard has largely focused on epigenetic modulators, non-coding RNAs, and transcription factors. RNA-binding proteins (RBPs) functioning as multi-protein complexes are now known to be predominant controllers of multiple gene regulatory processes. However, their involvement in gene expression dysregulation in psychiatric co-morbidities is yet to be understood.
Results
Ten RBPs (QKI, ELAVL2, EIF2S1, SRSF3, IGF2BP2, EIF4B, SNRNP70, FMR1, DAZAP1, and MBNL1) were identified to be associated with psychiatric disorders such as schizophrenia, major depression, and bipolar disorders. Analysis of transcriptomic changes in response to individual depletion of these RBPs showed the potential influence of a large number of RBPs driving differential gene expression, suggesting functional cross-talk giving rise to multi-protein networks. Subsequent transcriptome analysis of post-mortem human brain samples from diseased and control individuals also suggested the involvement of ~ 100 RBPs influencing gene expression changes. These RBPs were found to regulate various processes including transcript splicing, mRNA transport, localization, stability, and translation. They were also found to form an extensive interactive network. Further, hnRNP, SRSF, and PCBP family RBPs, Matrin3, U2AF2, KHDRBS1, PTBP1, and also PABPN1 were found to be the hub proteins of the RBP network.
Conclusions
Extensive RBP networks involving a few hub proteins could result in transcriptome-wide dysregulation of post-transcriptional modifications, potentially driving multiple psychiatric disorders. Understanding the functional involvement of RBP networks in psychiatric disorders would provide insights into the molecular basis of psychiatric co-morbidities.
Collapse
|
13
|
Mallet J, Godin O, Le Strat Y, Mazer N, Berna F, Boyer L, Capdevielle D, Clauss J, Chéreau I, D'Amato T, Dubreucq J, Leigner S, Llorca PM, Misdrahi D, Passerieux C, Rey R, Pignon B, Urbach M, Schürhoff F, Fond G, Dubertret C. Handedness as a neurodevelopmental marker in schizophrenia: Results from the FACE-SZ cohort. World J Biol Psychiatry 2022; 23:525-536. [PMID: 34918618 DOI: 10.1080/15622975.2021.2013094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES High rates of non-right-handedness (NRH) including mixed-handedness have been reported in neurodevelopmental disorders. In schizophrenia (SZ), atypical handedness has been inconsistently related to impaired features. We aimed to determine whether SZ subjects with NRH and mixed-handedness had poorer clinical and cognitive outcomes compared to their counterparts. METHODS 667 participants were tested with a battery of neuropsychological tests, and assessed for laterality using the Edinburg Handedness Inventory. Clinical symptomatology was assessed. Learning disorders and obstetrical complications were recorded. Biological parameters were explored. RESULTS The prevalence of NRH and mixed-handedness was high (respectively, 42.4% and 34.1%). In the multivariable analyses, NRH was associated with cannabis use disorder (p = 0.045). Mixed-handedness was associated with positive symptoms (p = 0.041), current depressive disorder (p = 0.005)), current cannabis use (p = 0.024) and less akathisia (p = 0.019). A history of learning disorder was associated with NRH. No association was found with cognition, trauma history, obstetrical complications, psychotic symptoms, peripheral inflammation. CONCLUSIONS Non-right and mixed-handedness are very high in patients with SZ, possibly reflecting a neurodevelopmental origin. NRH is associated with learning disorders and cannabis use. Mixed-handedness is associated with positive symptoms, current depressive disorder, cannabis use and less akathisia. However, this study did not confirm greater cognitive impairment in these patients.
Collapse
Affiliation(s)
- Jasmina Mallet
- Institute of Psychiatry and Neuroscience of Paris, Université de Paris INSERM UMR1266, Paris, France.,AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, Service de Psychiatrie et Addictologie, Hôpital Louis Mourier, Colombes, France.,Fondation Fondamental F94010, Créteil, France
| | - Ophélia Godin
- Fondation Fondamental F94010, Créteil, France.,UPEC, Créteil, France Inserm, U955, Equipe 15 Psychiatrie Génétique, Créteil, France AP-HP, Hôpital H. Mondor-A. Chenevier, Pôle de Psychiatrie, Créteil, France Fondation FondaMental, Fondation de Cooperation Scientifique, Université Paris-Est, UMR_S955, Créteil, France
| | - Yann Le Strat
- Institute of Psychiatry and Neuroscience of Paris, Université de Paris INSERM UMR1266, Paris, France.,AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, Service de Psychiatrie et Addictologie, Hôpital Louis Mourier, Colombes, France.,Fondation Fondamental F94010, Créteil, France
| | - Nicolas Mazer
- Institute of Psychiatry and Neuroscience of Paris, Université de Paris INSERM UMR1266, Paris, France.,AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, Service de Psychiatrie et Addictologie, Hôpital Louis Mourier, Colombes, France.,Fondation Fondamental F94010, Créteil, France
| | - Fabrice Berna
- Fondation Fondamental F94010, Créteil, France.,Fédération de Médecine Translationnelle de Strasbourg, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, INSERM U1114, Strasbourg, France
| | - Laurent Boyer
- School of medicine - La Timone Medical Campus, EA 3279: CEReSS - Health Service Research and Quality of Life Center, AP-HM, Aix-Marseille University, Marseille, France
| | - Delphine Capdevielle
- Fondation Fondamental F94010, Créteil, France.,Service Universitaire de Psychiatrie Adulte, Hôpital la Colombière, CHRU Montpellier, Université Montpellier 1, Montpellier, France
| | - Julie Clauss
- Fondation Fondamental F94010, Créteil, France.,Fédération de Médecine Translationnelle de Strasbourg, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, INSERM U1114, Strasbourg, France
| | - Isabelle Chéreau
- Fondation Fondamental F94010, Créteil, France.,CHU Clermont-Ferrand, Department of Psychiatry, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Thierry D'Amato
- Fondation Fondamental F94010, Créteil, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon 1, Equipe PSYR2, Centre Hospitalier Le Vinatier, Lyon, France
| | - Julien Dubreucq
- Fondation Fondamental F94010, Créteil, France.,Centre Référent de Réhabilitation Psychosociale et de Remédiation Cognitive (C3R), CH Alpes Isère, Saint-Egrève, France
| | - Sylvain Leigner
- Fondation Fondamental F94010, Créteil, France.,Centre Référent de Réhabilitation Psychosociale et de Remédiation Cognitive (C3R), CH Alpes Isère, Saint-Egrève, France
| | - Pierre-Michel Llorca
- Fondation Fondamental F94010, Créteil, France.,CHU Clermont-Ferrand, Department of Psychiatry, University of Clermont Auvergne, Clermont-Ferrand, France
| | - David Misdrahi
- Fondation Fondamental F94010, Créteil, France.,Department of Adult Psychiatry, Charles Perrens Hospital, Bordeaux, France, University of Bordeaux, Laboratory of Nutrition and Integrative Neurobiology (UMR INRA 1286), France
| | - Christine Passerieux
- Fondation Fondamental F94010, Créteil, France.,Service Universitaire de Psychiatrie d'Adultes, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Romain Rey
- Fondation Fondamental F94010, Créteil, France.,INSERM U1028, CNRS UMR5292, Centre de Recherche en Neurosciences de Lyon, Université Claude Bernard Lyon 1, Equipe PSYR2, Centre Hospitalier Le Vinatier, Lyon, France
| | - Baptiste Pignon
- Fondation Fondamental F94010, Créteil, France.,UPEC, Créteil, France Inserm, U955, Equipe 15 Psychiatrie Génétique, Créteil, France AP-HP, Hôpital H. Mondor-A. Chenevier, Pôle de Psychiatrie, Créteil, France Fondation FondaMental, Fondation de Cooperation Scientifique, Université Paris-Est, UMR_S955, Créteil, France
| | - Mathieu Urbach
- Fondation Fondamental F94010, Créteil, France.,Service Universitaire de Psychiatrie d'Adultes, Centre Hospitalier de Versailles, Le Chesnay, France.,Laboratoire HandiRESP, EA4047, UFR des Sciences de la Santé Simone Veil, Université de Versailles Saint-Quentin-En-Yvelines, Montigny-le-Bretonneux, France
| | - Franck Schürhoff
- Fondation Fondamental F94010, Créteil, France.,UPEC, Créteil, France Inserm, U955, Equipe 15 Psychiatrie Génétique, Créteil, France AP-HP, Hôpital H. Mondor-A. Chenevier, Pôle de Psychiatrie, Créteil, France Fondation FondaMental, Fondation de Cooperation Scientifique, Université Paris-Est, UMR_S955, Créteil, France
| | - Guillaume Fond
- Fondation Fondamental F94010, Créteil, France.,School of medicine - La Timone Medical Campus, EA 3279: CEReSS - Health Service Research and Quality of Life Center, AP-HM, Aix-Marseille University, Marseille, France
| | - Caroline Dubertret
- Institute of Psychiatry and Neuroscience of Paris, Université de Paris INSERM UMR1266, Paris, France.,AP-HP, Groupe Hospitalo-Universitaire AP-HP Nord, Service de Psychiatrie et Addictologie, Hôpital Louis Mourier, Colombes, France.,Fondation Fondamental F94010, Créteil, France
| | | |
Collapse
|
14
|
Mallet J, Godin O, Mazer N, Le Strat Y, Bellivier F, Belzeaux R, Etain B, Fond G, Gard S, Henry C, Leboyer M, Llorca PM, Loftus J, Olié E, Passerieux C, Polosan M, Schwan R, Roux P, Dubertret C. Handedness in bipolar disorders is associated with specific neurodevelopmental features: results of the BD-FACE cohort. Eur Arch Psychiatry Clin Neurosci 2022; 272:827-838. [PMID: 34374842 DOI: 10.1007/s00406-021-01314-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES High rates of non-right-handedness (NRH) and mixed-handedness exist in neurodevelopmental disorders. Dysfunctional neurodevelopmental pathways may be implicated in the underlying pathophysiology of bipolar disorders (BD), at least in some subgroups. Yet little is known about correlates of NRH and mixed-handedness in BD. The objectives of this national study are to determine (i) the prevalence of NRH and mixed-handedness in a well-stabilized sample of BD individuals; (ii) if NRH/mixed-handedness in BD is associated with a different clinical, biological and neurocognitive profile. METHODS We included 2174 stabilized individuals. Participants were tested with a comprehensive battery of neuropsychological tests. Handedness was assessed using a single oral question. Learning and/or language disorders and obstetrical complications were recorded using childhood records. Common environmental, clinical and biological parameters were assessed. RESULTS The prevalence of NRH and mixed-handedness were, respectively, 11.6 and 2.4%. Learning/language disorders were found in 9.7% out of the total sample and were associated with atypical handedness (only dyslexia for mixed-handedness (p < 0.01), and dyslexia and dysphasia for NRH (p = 0.01 and p = 0.04, respectively). In multivariate analyses, NRH was associated with a younger age of BD onset (aOR 0.98 (95% CI 0.96-0.99) and lifetime substance use disorder (aOR 1.40 (95% CI 1.03-1.82) but not with any of the cognitive subtasks. Mixed-handedness was associated in univariate analyses with lifetime substance use disorder, lifetime cannabis use disorder (all p < 0.01) and less mood stabilizer prescription (p = 0.028). No association was found between NRH or mixed-handedness and the following parameters: trauma history, obstetrical complications, prior psychotic symptoms, bipolar subtype, attention deficit/hyperactivity disorder, peripheral inflammation or body mass index. CONCLUSIONS Handedness may be associated with specific features in BD, possibly reflecting a specific subgroup with a neurodevelopmental load.
Collapse
Affiliation(s)
- Jasmina Mallet
- Fondation Fondamental, Créteil, France.
- Faculté de médecine, AP-HP, Department of Psychiatry, Université de Paris, Louis Mourier Hospital, CHU Louis Mourier, 178 rue des Renouillers, 92700, Colombes, France.
- INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, University Paris Descartes, Paris, France.
| | - Ophélia Godin
- Fondation Fondamental, Créteil, France
- UMR_S955, UPEC, Créteil, France Inserm, Université Paris-Est, U955, Equipe 15 Psychiatrie génétique, Créteil, France
- AP-HP, Hôpital H. Mondor-A. Chenevier, Pôle de psychiatrie, Créteil, France
| | - Nicolas Mazer
- Fondation Fondamental, Créteil, France
- Faculté de médecine, AP-HP, Department of Psychiatry, Université de Paris, Louis Mourier Hospital, CHU Louis Mourier, 178 rue des Renouillers, 92700, Colombes, France
- INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, University Paris Descartes, Paris, France
| | - Yann Le Strat
- Fondation Fondamental, Créteil, France
- Faculté de médecine, AP-HP, Department of Psychiatry, Université de Paris, Louis Mourier Hospital, CHU Louis Mourier, 178 rue des Renouillers, 92700, Colombes, France
- INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, University Paris Descartes, Paris, France
| | - Frank Bellivier
- Fondation Fondamental, Créteil, France
- AP-HP, GH Saint-Louis-Lariboisière-Fernand Widal, Pôle Neurosciences Tête et Cou, INSERM UMRS 1144, University Paris Diderot, Paris, France
| | - Raoul Belzeaux
- Fondation Fondamental, Créteil, France
- AP-HM, Department of Psychiatry, Marseille, France
- INT-UMR7289, CNRS Aix Marseille University, Marseille, France
| | - Bruno Etain
- Fondation Fondamental, Créteil, France
- AP-HP, GH Saint-Louis-Lariboisière-Fernand Widal, Pôle Neurosciences Tête et Cou, INSERM UMRS 1144, University Paris Diderot, Paris, France
| | - Guillaume Fond
- Fondation Fondamental, Créteil, France
- AP-HM, Aix-Marseille University, School of Medicine-La Timone Medical Campus, EA 3279: CEReSS-Health Service Research and Quality of Life Center, 27 Boulevard Jean Moulin, 13005, Marseille, France
| | - Sébastien Gard
- Fondation Fondamental, Créteil, France
- Centre Expert Troubles Bipolaires, Service de Psychiatrie Adulte, Hôpital Charles-Perrens, Bordeaux, France
| | - Chantal Henry
- Fondation Fondamental, Créteil, France
- Department of Psychiatry, Service Hospitalo-Universitaire, GHU Paris Psychiatrie and Neurosciences, 75014, Paris, France
| | - Marion Leboyer
- Fondation Fondamental, Créteil, France
- UMR_S955, UPEC, Créteil, France Inserm, Université Paris-Est, U955, Equipe 15 Psychiatrie génétique, Créteil, France
- AP-HP, Hôpital H. Mondor-A. Chenevier, Pôle de psychiatrie, Créteil, France
- Fondation de Cooperation Scientifique, Fondation FondaMental, Créteil, France
| | - Pierre-Michel Llorca
- Fondation Fondamental, Créteil, France
- CHU Clermont-Ferrand, Department of Psychiatry, University of Clermont Auvergne, EA 7280, Clermont-Ferrand, France
| | - Joséphine Loftus
- Fondation Fondamental, Créteil, France
- Pôle de Psychiatrie, Centre Hospitalier Princesse Grace, Monaco, France
| | - Emilie Olié
- Fondation Fondamental, Créteil, France
- Department of Emergency Psychiatry and Acute Care, CHU Montpellier, INSERM U1061, Montpellier University, Montpellier, France
| | - Christine Passerieux
- Fondation Fondamental, Créteil, France
- Service Universitaire de Psychiatrie d'Adultes et d'Addictologie, Centre Hospitalier de Versailles, 177 rue de Versailles, 78157, Le Chesnay, France
- CESP, INSERM, Université Paris Saclay, Université de Versailles Saint-Quentin-En-Yvelines, 2 Avenue de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France
| | - Mircea Polosan
- Fondation Fondamental, Créteil, France
- Université Grenoble Alpes, Inserm, U1216, Grenoble Institut des Neurosciences, CHU Grenoble Alpes, 38000, Grenoble, France
| | - Raymund Schwan
- Faculté de médecine, AP-HP, Department of Psychiatry, Université de Paris, Louis Mourier Hospital, CHU Louis Mourier, 178 rue des Renouillers, 92700, Colombes, France
- CHRU de Nancy et Pôle de Psychiatrie et Psychologie Clinique, Université de Lorraine, Centre Psychothérapique de Nancy, Nancy, France
| | - Paul Roux
- Fondation Fondamental, Créteil, France
- Service Universitaire de Psychiatrie d'Adultes et d'Addictologie, Centre Hospitalier de Versailles, 177 rue de Versailles, 78157, Le Chesnay, France
- CESP, INSERM, Université Paris Saclay, Université de Versailles Saint-Quentin-En-Yvelines, 2 Avenue de la Source de la Bièvre, 78180, Montigny-le-Bretonneux, France
| | - Caroline Dubertret
- Fondation Fondamental, Créteil, France
- Faculté de médecine, AP-HP, Department of Psychiatry, Université de Paris, Louis Mourier Hospital, CHU Louis Mourier, 178 rue des Renouillers, 92700, Colombes, France
- INSERM UMR1266, Institute of Psychiatry and Neuroscience of Paris, University Paris Descartes, Paris, France
| |
Collapse
|
15
|
Li Z, Li X, Jin M, Liu Y, He Y, Jia N, Cui X, Liu Y, Hu G, Yu Q. Identification of potential biomarkers and their correlation with immune infiltration cells in schizophrenia using combinative bioinformatics strategy. Psychiatry Res 2022; 314:114658. [PMID: 35660966 DOI: 10.1016/j.psychres.2022.114658] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
Many studies have identified changes in gene expression in brains of schizophrenia patients and their altered molecular processes, but the findings in different datasets were inconsistent and diverse. Here we performed the most comprehensive analysis of gene expression patterns to explore the underlying mechanisms and the potential biomarkers for early diagnosis in schizophrenia. We focused on 10 gene expression datasets in post-mortem human brain samples of schizophrenia downloaded from gene expression omnibus (GEO) database using the integrated bioinformatics analyses including robust rank aggregation (RRA) algorithm, Weighted gene co-expression network analysis (WGCNA) and CIBERSORT. Machine learning algorithm was used to construct the risk prediction model for early diagnosis of schizophrenia. We identified 15 key genes (SLC1A3, AQP4, GJA1, ALDH1L1, SOX9, SLC4A4, EGR1, NOTCH2, PVALB, ID4, ABCG2, METTL7A, ARC, F3 and EMX2) in schizophrenia by performing multiple bioinformatics analysis algorithms. Moreover, the interesting part of the study is that there is a correlation between the expression of hub genes and the immune infiltrating cells estimated by CIBERSORT. Besides, the risk prediction model was constructed by using both these genes and the immune cells with a high accuracy of 0.83 in the training set, and achieved a high AUC of 0.77 for the test set. Our study identified several potential biomarkers for diagnosis of SCZ based on multiple bioinformatics algorithms, and the constructed risk prediction model using these biomarkers achieved high accuracy. The results provide evidence for an improved understanding of the molecular mechanism of schizophrenia.
Collapse
Affiliation(s)
- Zhijun Li
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China
| | - Xinwei Li
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China
| | - Mengdi Jin
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China
| | - Yang Liu
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China
| | - Yang He
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China
| | - Ningning Jia
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China
| | - Xingyao Cui
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China
| | - Yane Liu
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China
| | - Guoyan Hu
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, School of public health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
16
|
Mokhtari A, Porte B, Belzeaux R, Etain B, Ibrahim EC, Marie-Claire C, Lutz PE, Delahaye-Duriez A. The molecular pathophysiology of mood disorders: From the analysis of single molecular layers to multi-omic integration. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110520. [PMID: 35104608 DOI: 10.1016/j.pnpbp.2022.110520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/22/2022] [Accepted: 01/22/2022] [Indexed: 12/14/2022]
Abstract
Next-generation sequencing now enables the rapid and affordable production of reliable biological data at multiple molecular levels, collectively referred to as "omics". To maximize the potential for discovery, computational biologists have created and adapted integrative multi-omic analytical methods. When applied to diseases with traceable pathophysiology such as cancer, these new algorithms and statistical approaches have enabled the discovery of clinically relevant molecular mechanisms and biomarkers. In contrast, these methods have been much less applied to the field of molecular psychiatry, although diagnostic and prognostic biomarkers are similarly needed. In the present review, we first briefly summarize main findings from two decades of studies that investigated single molecular processes in relation to mood disorders. Then, we conduct a systematic review of multi-omic strategies that have been proposed and used more recently. We also list databases and types of data available to researchers for future work. Finally, we present the newest methodologies that have been employed for multi-omics integration in other medical fields, and discuss their potential for molecular psychiatry studies.
Collapse
Affiliation(s)
- Amazigh Mokhtari
- NeuroDiderot, Inserm U1141, Université de Paris, F-75019 Paris, France
| | - Baptiste Porte
- NeuroDiderot, Inserm U1141, Université de Paris, F-75019 Paris, France
| | - Raoul Belzeaux
- Aix Marseille Université CNRS, Institut de Neurosciences de la Timone, F-13005 Marseille, France; Fondation FondaMental, F-94000 Créteil, France; Assistance Publique Hôpitaux de Marseille, Pôle de psychiatrie, pédopsychiatrie et addictologie, F-13005 Marseille, France
| | - Bruno Etain
- Assistance Publique des Hôpitaux de Paris, GHU Lariboisière-Saint Louis-Fernand Widal, DMU Neurosciences, Département de psychiatrie et de Médecine Addictologique, F-75010 Paris, France; Université de Paris, INSERM UMR-S 1144, Optimisation thérapeutique en neuropsychopharmacologie, OTeN, F-75006 Paris, France
| | - El Cherif Ibrahim
- Aix Marseille Université CNRS, Institut de Neurosciences de la Timone, F-13005 Marseille, France
| | - Cynthia Marie-Claire
- Université de Paris, INSERM UMR-S 1144, Optimisation thérapeutique en neuropsychopharmacologie, OTeN, F-75006 Paris, France
| | - Pierre-Eric Lutz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives UPR3212, F-67000 Strasbourg, France; Douglas Mental Health University Institute, McGill University, QC H4H 1R3 Montréal, Canada.
| | - Andrée Delahaye-Duriez
- NeuroDiderot, Inserm U1141, Université de Paris, F-75019 Paris, France; Assistance Publique des Hôpitaux de Paris, Unité de médecine génomique, Département BioPhaReS, Hôpital Jean Verdier, Hôpitaux Universitaires de Paris Seine Saint Denis, F-93140 Bondy, France; Université Sorbonne Paris Nord, F-93000 Bobigny, France.
| |
Collapse
|
17
|
Abstract
Brain asymmetry is a hallmark of the human brain. Recent studies report a certain degree of abnormal asymmetry of brain lateralization between left and right brain hemispheres can be associated with many neuropsychiatric conditions. In this regard, some questions need answers. First, the accelerated brain asymmetry is programmed during the pre-natal period that can be called “accelerated brain decline clock”. Second, can we find the right biomarkers to predict these changes? Moreover, can we establish the dynamics of these changes in order to identify the right time window for proper interventions that can reverse or limit the neurological decline? To find answers to these questions, we performed a systematic online search for the last 10 years in databases using keywords. Conclusion: we need to establish the right in vitro model that meets human conditions as much as possible. New biomarkers are necessary to establish the “good” or the “bad” borders of brain asymmetry at the epigenetic and functional level as early as possible.
Collapse
|
18
|
Gutman BA, van Erp TG, Alpert K, Ching CRK, Isaev D, Ragothaman A, Jahanshad N, Saremi A, Zavaliangos‐Petropulu A, Glahn DC, Shen L, Cong S, Alnæs D, Andreassen OA, Doan NT, Westlye LT, Kochunov P, Satterthwaite TD, Wolf DH, Huang AJ, Kessler C, Weideman A, Nguyen D, Mueller BA, Faziola L, Potkin SG, Preda A, Mathalon DH, Bustillo J, Calhoun V, Ford JM, Walton E, Ehrlich S, Ducci G, Banaj N, Piras F, Piras F, Spalletta G, Canales‐Rodríguez EJ, Fuentes‐Claramonte P, Pomarol‐Clotet E, Radua J, Salvador R, Sarró S, Dickie EW, Voineskos A, Tordesillas‐Gutiérrez D, Crespo‐Facorro B, Setién‐Suero E, van Son JM, Borgwardt S, Schönborn‐Harrisberger F, Morris D, Donohoe G, Holleran L, Cannon D, McDonald C, Corvin A, Gill M, Filho GB, Rosa PGP, Serpa MH, Zanetti MV, Lebedeva I, Kaleda V, Tomyshev A, Crow T, James A, Cervenka S, Sellgren CM, Fatouros‐Bergman H, Agartz I, Howells F, Stein DJ, Temmingh H, Uhlmann A, de Zubicaray GI, McMahon KL, Wright M, Cobia D, Csernansky JG, Thompson PM, Turner JA, Wang L. A meta-analysis of deep brain structural shape and asymmetry abnormalities in 2,833 individuals with schizophrenia compared with 3,929 healthy volunteers via the ENIGMA Consortium. Hum Brain Mapp 2022; 43:352-372. [PMID: 34498337 PMCID: PMC8675416 DOI: 10.1002/hbm.25625] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.
Collapse
Affiliation(s)
- Boris A. Gutman
- Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
- Institute for Information Transmission Problems (Kharkevich Institute)MoscowRussia
| | - Theo G.M. van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
- Center for the Neurobiology of Learning and MemoryUniversity of California IrvineIrvineCaliforniaUSA
| | - Kathryn Alpert
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Christopher R. K. Ching
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Dmitry Isaev
- Department of Biomedical EngineeringDuke UniversityDurhamNorth CarolinaUSA
| | - Anjani Ragothaman
- Department of biomedical engineeringOregon Health and Science universityPortlandOregonUSA
| | - Neda Jahanshad
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Arvin Saremi
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Artemis Zavaliangos‐Petropulu
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - David C. Glahn
- Department of PsychiatryBoston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Li Shen
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Shan Cong
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dag Alnæs
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Ole Andreas Andreassen
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Nhat Trung Doan
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Lars T. Westlye
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
- Department of PsychologyUniversity of OsloOsloNorway
| | - Peter Kochunov
- Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Theodore D. Satterthwaite
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Daniel H. Wolf
- Department of PsychiatryUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Alexander J. Huang
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Charles Kessler
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Andrea Weideman
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Dana Nguyen
- Department of PediatricsUniversity of California IrvineIrvineCaliforniaUSA
| | - Bryon A. Mueller
- Department of Psychiatry and Behavioral SciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Lawrence Faziola
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Steven G. Potkin
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Adrian Preda
- Department of Psychiatry and Human BehaviorUniversity of California IrvineIrvineCaliforniaUSA
| | - Daniel H. Mathalon
- Department of Psychiatry and Weill Institute for NeurosciencesUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Judith Ford Mental HealthVA San Francisco Healthcare SystemSan FranciscoCaliforniaUSA
| | - Juan Bustillo
- Departments of Psychiatry & NeuroscienceUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Vince Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) [Georgia State University, Georgia Institute of Technology]Emory UniversityAtlantaGeorgiaUSA
- Department of Electrical and Computer EngineeringThe University of New MexicoAlbuquerqueNew MexicoUSA
| | - Judith M. Ford
- Judith Ford Mental HealthVA San Francisco Healthcare SystemSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | | | - Stefan Ehrlich
- Division of Psychological & Social Medicine and Developmental NeurosciencesFaculty of Medicine, TU‐DresdenDresdenGermany
| | | | - Nerisa Banaj
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Fabrizio Piras
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Federica Piras
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
| | - Gianfranco Spalletta
- Laboratory of NeuropsychiatryIRCCS Santa Lucia FoundationRomeItaly
- Menninger Department of Psychiatry and Behavioral SciencesBaylor College of MedicineHoustonTexasUSA
| | | | | | | | - Joaquim Radua
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
- Institut d'Investigacions Biomdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
| | - Salvador Sarró
- FIDMAG Germanes Hospitalàries Research FoundationCIBERSAMBarcelonaSpain
| | - Erin W. Dickie
- Centre for Addiction and Mental Health (CAMH)TorontoCanada
| | | | | | | | | | | | - Stefan Borgwardt
- Department of PsychiatryUniversity of BaselBaselSwitzerland
- Department of Psychiatry and PsychotherapyUniversity of LübeckLübeckGermany
| | | | - Derek Morris
- Centre for Neuroimaging and Cognitive Genomics, Discipline of BiochemistryNational University of Ireland GalwayGalwayIreland
| | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics, School of PsychologyNational University of Ireland GalwayGalwayIreland
| | - Laurena Holleran
- Centre for Neuroimaging and Cognitive Genomics, School of PsychologyNational University of Ireland GalwayGalwayIreland
| | - Dara Cannon
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive GenomicsNational University of Ireland GalwayGalwayIreland
| | - Colm McDonald
- Clinical Neuroimaging Laboratory, Centre for Neuroimaging and Cognitive GenomicsNational University of Ireland GalwayGalwayIreland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of PsychiatryTrinity College DublinDublinIreland
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Michael Gill
- Neuropsychiatric Genetics Research Group, Department of PsychiatryTrinity College DublinDublinIreland
- Trinity College Institute of NeuroscienceTrinity College DublinDublinIreland
| | - Geraldo Busatto Filho
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Pedro G. P. Rosa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Mauricio H. Serpa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
| | - Marcus V. Zanetti
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de PsiquiatriaHospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao PauloSao PauloSPBrazil
- Hospital Sirio‐LibanesSao PauloSPBrazil
| | - Irina Lebedeva
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Vasily Kaleda
- Department of Endogenous Mental DisordersMental Health Research CenterMoscowRussia
| | - Alexander Tomyshev
- Laboratory of Neuroimaging and Multimodal AnalysisMental Health Research CenterMoscowRussia
| | - Tim Crow
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Anthony James
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Simon Cervenka
- Centre for Psychiatry Reserach, Department of Clinical NeuroscienceKarolinska Institutet, & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - Carl M Sellgren
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Helena Fatouros‐Bergman
- Centre for Psychiatry Reserach, Department of Clinical NeuroscienceKarolinska Institutet, & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - Ingrid Agartz
- NORMENT, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
| | - Fleur Howells
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Neuroscience InstituteUniversity of Cape Town, Cape TownWCSouth Africa
| | - Dan J. Stein
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Neuroscience InstituteUniversity of Cape Town, Cape TownWCSouth Africa
- SA MRC Unit on Risk & Resilience in Mental DisordersUniversity of Cape TownCape TownWCSouth Africa
| | - Henk Temmingh
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
| | - Anne Uhlmann
- Department of Psychiatry and Mental Health, Faculty of Health SciencesUniversity of Cape TownCape TownWCSouth Africa
- Department of Child and Adolescent PsychiatryTU DresdenGermany
| | - Greig I. de Zubicaray
- School of Psychology, Faculty of HealthQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Katie L. McMahon
- School of Clinical SciencesQueensland University of Technology (QUT)BrisbaneQLDAustralia
| | - Margie Wright
- Queensland Brain InstituteUniversity of QueenslandBrisbaneQLDAustralia
| | - Derin Cobia
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Psychology and Neuroscience CenterBrigham Young UniversityProvoUtahUSA
| | - John G. Csernansky
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Neuroimaging & Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | - Lei Wang
- Department of Psychiatry and Behavioral SciencesNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
- Department of Psychiatry and Behavioral HealthOhio State University Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
19
|
Sabaie H, Gholipour M, Asadi MR, Abed S, Sharifi-Bonab M, Taheri M, Hussen BM, Brand S, Neishabouri SM, Rezazadeh M. Identification of key long non-coding RNA-associated competing endogenous RNA axes in Brodmann Area 10 brain region of schizophrenia patients. Front Psychiatry 2022; 13:1010977. [PMID: 36405929 PMCID: PMC9671706 DOI: 10.3389/fpsyt.2022.1010977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental condition with an unknown cause. According to the reports, Brodmann Area 10 (BA10) is linked to the pathology and cortical dysfunction of SCZ, which demonstrates a number of replicated findings related to research on SCZ and the dysfunction in tasks requiring cognitive control in particular. Genetics' role in the pathophysiology of SCZ is still unclear. Therefore, it may be helpful to understand the effects of these changes on the onset and progression of SCZ to find novel mechanisms involved in the regulation of gene transcription. In order to determine the molecular regulatory mechanisms affecting the SCZ, the long non-coding RNA (lncRNA)-associated competing endogenous RNAs (ceRNAs) axes in the BA10 area were determined using a bioinformatics approach in the present work. A microarray dataset (GSE17612) consisted of brain post-mortem tissues of the BA10 area from SCZ patients and matched healthy subjects was downloaded from the Gene Expression Omnibus (GEO) database. This dataset included probes for both lncRNAs and mRNAs. Using the R software's limma package, the differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were found. The RNA interactions were also discovered using the DIANA-LncBase and miRTarBase databases. In the ceRNA network, positive correlations between DEmRNAs and DElncRNAs were evaluated using the Pearson correlation coefficient. Finally, lncRNA-associated ceRNA axes were built by using the co-expression and DElncRNA-miRNA-DEmRNA connections. We identified the DElncRNA-miRNA-DEmRNA axes, which included two key lncRNAs (PEG3-AS1, MIR570HG), seven key miRNAs (hsa-miR-124-3p, hsa-miR-17-5p, hsa-miR-181a-5p, hsa-miR-191-5p, hsa-miR-26a-5p, hsa-miR-29a-3p, hsa-miR-29b-3p), and eight key mRNAs (EGR1, ETV1, DUSP6, PLOD2, CD93, SERPINB9, ANGPTL4, TGFB2). Furthermore, DEmRNAs were found to be enriched in the "AGE-RAGE signaling pathway in diabetic complications", "Amoebiasis", "Transcriptional misregulation in cancer", "Human T-cell leukemia virus 1 infection", and "MAPK signaling pathway". This study offers research targets for examining significant molecular pathways connected to the pathogenesis of SCZ, even though the function of these ceRNA axes still needs to be investigated.
Collapse
Affiliation(s)
- Hani Sabaie
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Asadi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samin Abed
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Serge Brand
- Center for Affective, Stress and Sleep Disorders, Psychiatric Clinics of the University of Basel, Basel, Switzerland
| | | | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Westhoff MLS, Ladwig J, Heck J, Schülke R, Groh A, Deest M, Bleich S, Frieling H, Jahn K. Early Detection and Prevention of Schizophrenic Psychosis-A Review. Brain Sci 2021; 12:11. [PMID: 35053755 PMCID: PMC8774083 DOI: 10.3390/brainsci12010011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 01/04/2023] Open
Abstract
Psychotic disorders often run a chronic course and are associated with a considerable emotional and social impact for patients and their relatives. Therefore, early recognition, combined with the possibility of preventive intervention, is urgently warranted since the duration of untreated psychosis (DUP) significantly determines the further course of the disease. In addition to established diagnostic tools, neurobiological factors in the development of schizophrenic psychoses are increasingly being investigated. It is shown that numerous molecular alterations already exist before the clinical onset of the disease. As schizophrenic psychoses are not elicited by a single mutation in the deoxyribonucleic acid (DNA) sequence, epigenetics likely constitute the missing link between environmental influences and disease development and could potentially serve as a biomarker. The results from transcriptomic and proteomic studies point to a dysregulated immune system, likely evoked by epigenetic alterations. Despite the increasing knowledge of the neurobiological mechanisms involved in the development of psychotic disorders, further research efforts with large population-based study designs are needed to identify suitable biomarkers. In conclusion, a combination of blood examinations, functional imaging techniques, electroencephalography (EEG) investigations and polygenic risk scores should be considered as the basis for predicting how subjects will transition into manifest psychosis.
Collapse
Affiliation(s)
- Martin Lennart Schulze Westhoff
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Johannes Ladwig
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Johannes Heck
- Institute for Clinical Pharmacology, Hannover Medical School, D-30625 Hannover, Germany;
| | - Rasmus Schülke
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Adrian Groh
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Maximilian Deest
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Stefan Bleich
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Helge Frieling
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| | - Kirsten Jahn
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, D-30625 Hannover, Germany; (J.L.); (R.S.); (A.G.); (M.D.); (S.B.); (H.F.); (K.J.)
| |
Collapse
|
21
|
Abdolmaleky HM, Zhou JR, Thiagalingam S. Cataloging recent advances in epigenetic alterations in major mental disorders and autism. Epigenomics 2021; 13:1231-1245. [PMID: 34318684 PMCID: PMC8738978 DOI: 10.2217/epi-2021-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/12/2021] [Indexed: 11/21/2022] Open
Abstract
During the last two decades, diverse epigenetic modifications including DNA methylation, histone modifications, RNA editing and miRNA dysregulation have been associated with psychiatric disorders. A few years ago, in a review we outlined the most common epigenetic alterations in major psychiatric disorders (e.g., aberrant DNA methylation of DTNBP1, HTR2A, RELN, MB-COMT and PPP3CC, and increased expression of miR-34a and miR-181b). Recent follow-up studies have uncovered other DNA methylation aberrations affecting several genes in mental disorders, in addition to dysregulation of many miRNAs. Here, we provide an update on new epigenetic findings and highlight potential origin of the diversity and inconsistencies, focusing on drug effects, tissue/cell specificity of epigenetic landscape and discuss shortcomings of the current diagnostic criteria in mental disorders.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, 02118 MA, USA
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215 MA, USA
| | - Jin-Rong Zhou
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, 02215 MA, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, 02118 MA, USA
- Genetics & Genomics Graduate Program, Boston University School of Medicine, Boston, 02118 MA, USA
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, 02218 MA, USA
| |
Collapse
|
22
|
Bakalkin G, Kahle A, Sarkisyan D, Watanabe H, Lukoyanov N, Carvalho LS, Galatenko V, Hallberg M, Nosova O. Coordinated expression of the renin-angiotensin genes in the lumbar spinal cord: Lateralization and effects of unilateral brain injury. Eur J Neurosci 2021; 54:5560-5573. [PMID: 34145943 DOI: 10.1111/ejn.15360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/29/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022]
Abstract
In spite of its apparent symmetry, the spinal cord is asymmetric in its reflexes and gene expression patterns including leftward expression bias of the opioid and glutamate genes. To examine whether this is a general phenomenon for neurotransmitter and neurohormonal genes, we here characterized expression and co-expression (transcriptionally coordinated) patterns of genes of the renin-angiotensin system (RAS) that is involved in neuroprotection and pathological neuroplasticity in the left and right lumbar spinal cord. We also tested whether the RAS expression patterns were affected by unilateral brain injury (UBI) that rewired lumbar spinal neurocircuits. The left and right halves of the lumbar spinal cord were analysed in intact rats, and rats with left- or right-sided unilateral cortical injury, and left- or right-sided sham surgery. The findings were (i) lateralized expression of the RAS genes Ace, Agtr2 and Ren with higher levels on the left side; (ii) the asymmetry in coordination of the RAS gene expression that was stronger on the right side; (iii) the decay in coordination of co-expression of the RAS and neuroplasticity-related genes induced by the right-side but not left-side sham surgery and UBI; and (iv) the UBI-induced shift to negative regulatory interactions between RAS and neuroplasticity-related genes on the contralesional spinal side. Thus, the RAS genes may be a part of lateralized gene co-expression networks and have a role in a side-specific regulation of spinal neurocircuits.
Collapse
Affiliation(s)
- Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Anika Kahle
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Daniil Sarkisyan
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Hiroyuki Watanabe
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Nikolay Lukoyanov
- Departamento de Biomedicina, Faculdade de Medicina; Instituto de Investigação e Inovação em Saúde; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Liliana S Carvalho
- Departamento de Biomedicina, Faculdade de Medicina; Instituto de Investigação e Inovação em Saúde; Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Vladimir Galatenko
- Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Moscow, Russia.,Evotec International GmbH, Göttingen, Germany
| | - Mathias Hallberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Olga Nosova
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
23
|
Bundo M, Ueda J, Nakachi Y, Kasai K, Kato T, Iwamoto K. Decreased DNA methylation at promoters and gene-specific neuronal hypermethylation in the prefrontal cortex of patients with bipolar disorder. Mol Psychiatry 2021; 26:3407-3418. [PMID: 33875800 PMCID: PMC8505249 DOI: 10.1038/s41380-021-01079-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/06/2021] [Accepted: 03/24/2021] [Indexed: 12/18/2022]
Abstract
Bipolar disorder (BD) is a severe mental disorder characterized by repeated mood swings. Although genetic factors are collectively associated with the etiology of BD, the underlying molecular mechanisms, particularly how environmental factors affect the brain, remain largely unknown. We performed promoter-wide DNA methylation analysis of neuronal and nonneuronal nuclei in the prefrontal cortex of patients with BD (N = 34) and controls (N = 35). We found decreased DNA methylation at promoters in both cell types in the BD patients. Gene Ontology (GO) analysis of differentially methylated region (DMR)-associated genes revealed enrichment of molecular motor-related genes in neurons, chemokines in both cell types, and ion channel- and transporter-related genes in nonneurons. Detailed GO analysis further revealed that growth cone- and dendrite-related genes, including NTRK2 and GRIN1, were hypermethylated in neurons of BD patients. To assess the effect of medication, neuroblastoma cells were cultured under therapeutic concentrations of three mood stabilizers. We observed that up to 37.9% of DMRs detected in BD overlapped with mood stabilizer-induced DMRs. Interestingly, mood stabilizer-induced DMRs showed the opposite direction of changes in DMRs, suggesting the therapeutic effects of mood stabilizers. Among the DMRs, 12 overlapped with loci identified in a genome-wide association study (GWAS) of BD. We also found significant enrichment of neuronal DMRs in the loci reported in another GWAS of BD. Finally, we performed qPCR of DNA methylation-related genes and found that DNMT3B was overexpressed in BD. The cell-type-specific DMRs identified in this study will be useful for understanding the pathophysiology of BD.
Collapse
Affiliation(s)
- Miki Bundo
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junko Ueda
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Yutaka Nakachi
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan.
- Department of Psychiatry and Behavioral Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
| | - Kazuya Iwamoto
- Department of Molecular Brain Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
24
|
Garcia-Ruiz B, de Moura MC, Muntané G, Martorell L, Bosch E, Esteller M, J Canales-Rodríguez E, Pomarol-Clotet E, Jiménez E, Vieta E, Vilella E. DDR1 methylation is associated with bipolar disorder and the isoform expression and methylation of myelin genes. Epigenomics 2021; 13:845-858. [PMID: 33942629 DOI: 10.2217/epi-2021-0006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate DDR1 methylation in the brains of bipolar disorder (BD) patients and its association with DDR1 mRNA levels and comethylation with myelin genes. Materials & methods: Genome-wide profiling of DNA methylation (Infinium MethylationEPIC BeadChip) corrected for glial composition and DDR1 gene expression analysis in the occipital cortices of individuals with BD (n = 15) and healthy controls (n = 15) were conducted. Results: DDR1 5-methylcytosine levels were increased and directly associated with DDR1b mRNA expression in the brains of BD patients. We also observed that DDR1 was comethylated with a group of myelin genes. Conclusion: DDR1 is hypermethylated in BD brain tissue and is associated with isoform expression. Additionally, DDR1 comethylation with myelin genes supports the role of this receptor in myelination.
Collapse
Affiliation(s)
- Beatriz Garcia-Ruiz
- Hospital Universitari Institut Pere Mata, Ctra. de l'Institut Pere Mata, s/n. 43206, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Visgili (IISPV), C/ Dr. Mallafrè Guasch, 4 Edifici modular Hospital Universitari de Tarragona Joan XXIII. 43007, Tarragona, Catalonia, Spain.,Universitat Rovira i Virgili (URV), Facultat de Medicina i Ciències de la Salut, Departament de Psiquiatria, C/Sant Llorenç, 21. 43201, Reus, Catalonia, Spain
| | - Manuel Castro de Moura
- Josep Carreras Leukaemia Research Institute (IJC), Josep Carreras Building, Ctra de Can Ruti, Camí de les Escoles, 08916, Badalona, Barcelona, Catalonia, Spain
| | - Gerard Muntané
- Hospital Universitari Institut Pere Mata, Ctra. de l'Institut Pere Mata, s/n. 43206, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Visgili (IISPV), C/ Dr. Mallafrè Guasch, 4 Edifici modular Hospital Universitari de Tarragona Joan XXIII. 43007, Tarragona, Catalonia, Spain.,Universitat Rovira i Virgili (URV), Facultat de Medicina i Ciències de la Salut, Departament de Psiquiatria, C/Sant Llorenç, 21. 43201, Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain.,Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), C/Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain
| | - Lourdes Martorell
- Hospital Universitari Institut Pere Mata, Ctra. de l'Institut Pere Mata, s/n. 43206, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Visgili (IISPV), C/ Dr. Mallafrè Guasch, 4 Edifici modular Hospital Universitari de Tarragona Joan XXIII. 43007, Tarragona, Catalonia, Spain.,Universitat Rovira i Virgili (URV), Facultat de Medicina i Ciències de la Salut, Departament de Psiquiatria, C/Sant Llorenç, 21. 43201, Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain
| | - Elena Bosch
- Departament de Ciències Experimentals i de la Salut, Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona (PRBB), C/Dr. Aiguader, 88, 08003, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Josep Carreras Leukaemia Research Institute (IJC), Josep Carreras Building, Ctra de Can Ruti, Camí de les Escoles, 08916, Badalona, Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23. 08010, Barcelona, Catalonia, Spain.,Physiological Sciences Department, School of Medicine & Health Sciences, University of Barcelona (UB), Feixa Llarga, 08907, l'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
| | - Erick J Canales-Rodríguez
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain.,FIDMAG Research Foundation, Germanes Hospitalàries, Av. Jordà, 8. 08035, Barcelona, Catalonia, Spain.,Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Station 11. CH-1015, Lausanne, Switzerland
| | - Edith Pomarol-Clotet
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain.,FIDMAG Research Foundation, Germanes Hospitalàries, Av. Jordà, 8. 08035, Barcelona, Catalonia, Spain
| | - Esther Jiménez
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain.,Bipolar & Depressive Disorders Unit, Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, Villarroel, 170, 12-0. 08036, Barcelona, Catalonia, Spain
| | - Eduard Vieta
- Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain.,Bipolar & Depressive Disorders Unit, Hospital Clinic, Institute of Neuroscience, University of Barcelona, IDIBAPS, Villarroel, 170, 12-0. 08036, Barcelona, Catalonia, Spain
| | - Elisabet Vilella
- Hospital Universitari Institut Pere Mata, Ctra. de l'Institut Pere Mata, s/n. 43206, Reus, Catalonia, Spain.,Institut d'Investigació Sanitària Pere Visgili (IISPV), C/ Dr. Mallafrè Guasch, 4 Edifici modular Hospital Universitari de Tarragona Joan XXIII. 43007, Tarragona, Catalonia, Spain.,Universitat Rovira i Virgili (URV), Facultat de Medicina i Ciències de la Salut, Departament de Psiquiatria, C/Sant Llorenç, 21. 43201, Reus, Catalonia, Spain.,Centro de Investigación Biomédica en Red en Salud Mental (CIBERSAM), C/Melchor Fernández Almagro, 3. 28029, Madrid, Spain
| |
Collapse
|
25
|
Corsi-Zuelli F, Deakin B. Impaired regulatory T cell control of astroglial overdrive and microglial pruning in schizophrenia. Neurosci Biobehav Rev 2021; 125:637-653. [PMID: 33713699 DOI: 10.1016/j.neubiorev.2021.03.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/16/2021] [Accepted: 03/06/2021] [Indexed: 02/07/2023]
Abstract
It is widely held that schizophrenia involves an active process of peripheral inflammation that induces or reflects brain inflammation with activation of microglia, the brain's resident immune cells. However, recent in vivo radioligand binding studies and large-scale transcriptomics in post-mortem brain report reduced markers of microglial inflammation. The findings suggest a contrary hypothesis; that microglia are diverted into their non-inflammatory synaptic remodelling phenotype that interferes with neurodevelopment and perhaps contributes to the relapsing nature of schizophrenia. Recent discoveries on the regulatory interactions between micro- and astroglial cells and immune regulatory T cells (Tregs) cohere with clinical omics data to suggest that: i) disinhibited astrocytes mediate the shift in microglial phenotype via the production of transforming growth factor-beta, which also contributes to the disturbances of dopamine and GABA function in schizophrenia, and ii) systemically impaired functioning of Treg cells contributes to the dysregulation of glial function, the low-grade peripheral inflammation, and the hitherto unexplained predisposition to auto-immunity and reduced life-expectancy in schizophrenia, including greater COVID-19 mortality.
Collapse
Affiliation(s)
- Fabiana Corsi-Zuelli
- Department of Neuroscience and Behaviour, Division of Psychiatry, Ribeirão Preto Medical School, University of São Paulo, 14048-900, Ribeirão Preto, São Paulo, Brazil
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK.
| |
Collapse
|
26
|
Forero DA, González-Giraldo Y. Integrative In Silico Analysis of Genome-Wide DNA Methylation Profiles in Schizophrenia. J Mol Neurosci 2020; 70:1887-1893. [PMID: 32451840 DOI: 10.1007/s12031-020-01585-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/13/2020] [Indexed: 12/14/2022]
Abstract
Schizophrenia (SZ) is a complex and severe psychiatric disorder, which has a global lifetime prevalence of 0.4% and a heritability of around 0.81. A number of epigenome-wide association studies (EWAS) have been carried out for SZ, with discordant results. The main aim of this study was to carry out an integrative in silico analysis of available genome-wide DNA methylation profiles in schizophrenia. In this work, an integration of multiple lines of evidence (top candidate genes from several EWAS and genome-wide expression and association data) was carried out, in order to identify top differentially methylated (DM) genes for SZ. In addition, functional enrichment and protein-protein interaction analyses were carried out. Several top differentially methylated genes, such as APC, CACNB2, and PRKN, were found, and an enrichment of binding sites for brain-expressed transcription factors, such as FOXO1, MYB, and ZIC3, was also observed. Moreover, a protein-protein interaction network showed a central role for DISC1 and ZNF688 genes, and experimentally validated targets of MIR-137, such as and KCNB2, NRXN1, and SYN2, were identified among DM genes. This is the first integrative in silico analysis of available genome-wide DNA methylation profiles in schizophrenia. This work identified novel candidate genes and pathways for SZ and provides the basis to explore their role in the pathogenesis of SZ in future studies.
Collapse
Affiliation(s)
- Diego A Forero
- School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá, Colombia.
| | - Yeimy González-Giraldo
- Center for Psychosocial Studies for Latin America and the Caribbean, School of Psychosocial Therapies, Universidad Antonio Nariño, Bogotá, Colombia
| |
Collapse
|
27
|
Gardea-Resendez M, Kucuker MU, Blacker CJ, Ho AMC, Croarkin PE, Frye MA, Veldic M. Dissecting the Epigenetic Changes Induced by Non-Antipsychotic Mood Stabilizers on Schizophrenia and Affective Disorders: A Systematic Review. Front Pharmacol 2020; 11:467. [PMID: 32390836 PMCID: PMC7189731 DOI: 10.3389/fphar.2020.00467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Epimutations secondary to gene-environment interactions have a key role in the pathophysiology of major psychiatric disorders. In vivo and in vitro evidence suggest that mood stabilizers can potentially reverse epigenetic deregulations found in patients with schizophrenia or mood disorders through mechanisms that are not yet fully understood. However, their activity on epigenetic processes has made them a research target for therapeutic approaches. METHODS We conducted a comprehensive literature search of PubMed and EMBASE for studies investigating the specific epigenetic changes induced by non-antipsychotic mood stabilizers (valproate, lithium, lamotrigine, and carbamazepine) in animal models, human cell lines, or patients with schizophrenia, bipolar disorder, or major depressive disorder. Each paper was reviewed for the nature of research, the species and tissue examined, sample size, mood stabilizer, targeted gene, epigenetic changes found, and associated psychiatric disorder. Every article was appraised for quality using a modified published process and those who met a quality score of moderate or high were included. RESULTS A total of 2,429 records were identified; 1,956 records remained after duplicates were removed and were screened via title, abstract and keywords; 129 records were selected for full-text screening and a remaining of 38 articles were included in the qualitative synthesis. Valproate and lithium were found to induce broader epigenetic changes through different mechanisms, mainly DNA demethylation and histones acetylation. There was less literature and hence smaller effects attributable to lamotrigine and carbamazepine could be associated overall with the small number of studies on these agents. Findings were congruent across sample types. CONCLUSIONS An advanced understanding of the specific epigenetic changes induced by classic mood stabilizers in patients with major psychiatric disorders will facilitate personalized interventions. Further related drug discovery should target the induction of selective chromatin remodeling and gene-specific expression effects.
Collapse
Affiliation(s)
| | - Mehmet Utku Kucuker
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| | - Caren J. Blacker
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| | - Ada M.-C. Ho
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| | - Mark A. Frye
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
28
|
Pershad Y, Guo M, Altman RB. Pathway and network embedding methods for prioritizing psychiatric drugs. PACIFIC SYMPOSIUM ON BIOCOMPUTING. PACIFIC SYMPOSIUM ON BIOCOMPUTING 2020; 25:671-682. [PMID: 31797637 PMCID: PMC6951442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
One in five Americans experience mental illness, and roughly 75% of psychiatric prescriptions do not successfully treat the patient's condition. Extensive evidence implicates genetic factors and signaling disruption in the pathophysiology of these diseases. Changes in transcription often underlie this molecular pathway dysregulation; individual patient transcriptional data can improve the efficacy of diagnosis and treatment. Recent large-scale genomic studies have uncovered shared genetic modules across multiple psychiatric disorders - providing an opportunity for an integrated multi-disease approach for diagnosis. Moreover, network-based models informed by gene expression can represent pathological biological mechanisms and suggest new genes for diagnosis and treatment. Here, we use patient gene expression data from multiple studies to classify psychiatric diseases, integrate knowledge from expert-curated databases and publicly available experimental data to create augmented disease-specific gene sets, and use these to recommend disease-relevant drugs. From Gene Expression Omnibus, we extract expression data from 145 cases of schizophrenia, 82 cases of bipolar disorder, 190 cases of major depressive disorder, and 307 shared controls. We use pathway-based approaches to predict psychiatric disease diagnosis with a random forest model (78% accuracy) and derive important features to augment available drug and disease signatures. Using protein-protein-interaction networks and embedding-based methods, we build a pipeline to prioritize treatments for psychiatric diseases that achieves a 3.4-fold improvement over a background model. Thus, we demonstrate that gene-expression-derived pathway features can diagnose psychiatric diseases and that molecular insights derived from this classification task can inform treatment prioritization for psychiatric diseases.
Collapse
Affiliation(s)
- Yash Pershad
- Biomedical Informatics Program, Departments of Bioengineering, Genetics, & Medicine, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
29
|
Postmortem evidence of brain inflammatory markers in bipolar disorder: a systematic review. Mol Psychiatry 2020; 25:94-113. [PMID: 31249382 DOI: 10.1038/s41380-019-0448-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
Bipolar disorder (BD) is a chronic affective disorder with extreme mood swings that include mania or hypomania and depression. Though the exact mechanism of BD is unknown, neuroinflammation is one of the numerous investigated etiopathophysiological causes of BD. This article presents a systematic review of the data regarding brain inflammation evaluating microglia, astrocytes, cytokines, chemokines, adhesion molecules, and other inflammatory markers in postmortem BD brain samples. This systematic review was performed according to PRISMA recommendations, and relevant studies were identified by searching the PubMed/MEDLINE, PsycINFO, EMBASE, LILACS, IBECS, and Web of Science databases for peer-reviewed journal articles published by March 2019. Quality of included studies appraised using the QUADAS-2 tool. Among the 1814 articles included in the primary screening, 51 articles measured inflammatory markers in postmortem BD brain samples. A number of studies have shown evidence of inflammation in BD postmortem brain samples. However, an absolute statement cannot be concluded whether neuroinflammation is present in BD due to the large number of studies did not evaluate the presence of infiltrating peripheral immune cells in the central nervous system (CNS) parenchyma, cytokines levels, and microglia activation in the same postmortem brain sample. For example, out of 15 studies that evaluated microglia cells markers, 8 studies found no effect of BD on these cells. Similarly, 17 out of 51 studies evaluating astrocytes markers, 9 studies did not find any effect of BD on astrocyte cells, whereas 8 studies found a decrease and 2 studies presented both increase and decrease in different brain regions. In addition, multiple factors account for the variability across the studies, including postmortem interval, brain area studied, age at diagnosis, undergoing treatment, and others. Future analyses should rectify these potential sources of heterogeneity and reach a consensus regarding the inflammatory markers in postmortem BD brain samples.
Collapse
|
30
|
Gaine ME, Seifuddin F, Sabunciyan S, Lee RS, Benke KS, Monson ET, Zandi PP, Potash JB, Willour VL. Differentially methylated regions in bipolar disorder and suicide. Am J Med Genet B Neuropsychiatr Genet 2019; 180:496-507. [PMID: 31350827 PMCID: PMC8375453 DOI: 10.1002/ajmg.b.32754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/24/2019] [Accepted: 07/15/2019] [Indexed: 12/29/2022]
Abstract
The addition of a methyl group to, typically, a cytosine-guanine dinucleotide (CpG) creates distinct DNA methylation patterns across the genome that can regulate gene expression. Aberrant DNA methylation of CpG sites has been associated with many psychiatric disorders including bipolar disorder (BD) and suicide. Using the SureSelectXT system, Methyl-Seq, we investigated the DNA methylation status of CpG sites throughout the genome in 50 BD individuals (23 subjects who died by suicide and 27 subjects who died from other causes) and 31 nonpsychiatric controls. We identified differentially methylated regions (DMRs) from three analyses: (a) BD subjects compared to nonpsychiatric controls (BD-NC), (b) BD subjects who died by suicide compared to nonpsychiatric controls (BDS-NC), and (c) BDS subjects compared to BD subjects who died from other causes (BDS-BDNS). One DMR from the BDS-NC analysis, located in ARHGEF38, was significantly hypomethylated (23.4%) in BDS subjects. This finding remained significant after multiple testing (PBootstrapped = 9.0 × 10-3 ), was validated using pyrosequencing, and was more significant in males. A secondary analysis utilized Ingenuity Pathway Analysis to identify enrichment in nominally significant DMRs. This identified an association with several pathways including axonal guidance signaling, calcium signaling, β-adrenergic signaling, and opioid signaling. Our comprehensive study provides further support that DNA methylation alterations influence the risk for BD and suicide. However, further investigation is required to confirm these associations and identify their functional consequences.
Collapse
Affiliation(s)
- Marie E. Gaine
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Fayaz Seifuddin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sarven Sabunciyan
- Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland,Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Richard S. Lee
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Kelly S. Benke
- Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Eric T. Monson
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Peter P. Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland,Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - James B. Potash
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Virginia L. Willour
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| |
Collapse
|
31
|
Twenty-Seven Tamoxifen-Inducible iCre-Driver Mouse Strains for Eye and Brain, Including Seventeen Carrying a New Inducible-First Constitutive-Ready Allele. Genetics 2019; 211:1155-1177. [PMID: 30765420 PMCID: PMC6456315 DOI: 10.1534/genetics.119.301984] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
To understand gene function, the cre/loxP conditional system is the most powerful available for temporal and spatial control of expression in mouse. However, the research community requires more cre recombinase expressing transgenic mouse strains (cre-drivers) that restrict expression to specific cell types. To address these problems, a high-throughput method for large-scale production that produces high-quality results is necessary. Further, endogenous promoters need to be chosen that drive cell type specific expression, or we need to further focus the expression by manipulating the promoter. Here we test the suitability of using knock-ins at the docking site 5′ of Hprt for rapid development of numerous cre-driver strains focused on expression in adulthood, using an improved cre tamoxifen inducible allele (icre/ERT2), and testing a novel inducible-first, constitutive-ready allele (icre/f3/ERT2/f3). In addition, we test two types of promoters either to capture an endogenous expression pattern (MaxiPromoters), or to restrict expression further using minimal promoter element(s) designed for expression in restricted cell types (MiniPromoters). We provide new cre-driver mouse strains with applicability for brain and eye research. In addition, we demonstrate the feasibility and applicability of using the locus 5′ of Hprt for the rapid generation of substantial numbers of cre-driver strains. We also provide a new inducible-first constitutive-ready allele to further speed cre-driver generation. Finally, all these strains are available to the research community through The Jackson Laboratory.
Collapse
|