1
|
Russell LG, Kolatsi‐Joannou M, Wilson L, Chandler JC, Tejedor NP, Stagg G, Price KL, Rowan CJ, Crompton T, Rosenblum ND, Winyard PJD, Long DA. Reduction of elevated Gli3 does not alter the progression of autosomal recessive polycystic kidney disease. Physiol Rep 2025; 13:e70191. [PMID: 39823139 PMCID: PMC11738646 DOI: 10.14814/phy2.70191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025] Open
Abstract
Polycystic kidney diseases (PKD) are genetic disorders which disrupt kidney architecture and function. Autosomal recessive PKD (ARPKD) is a rare form of PKD, caused by mutations in PKHD1, and clinically more severe than the more common autosomal dominant PKD (ADPKD). Prior studies have implicated Hedgehog (Hh) signaling in ADPKD, with increased levels of Hh components in experimental ADPKD and reduced cystogenesis following pharmacological Hh inhibition. In contrast, the role of the Hh pathway in ARPKD is poorly understood. We hypothesized that Hh pathway activity would be elevated during ARPKD pathogenesis, and its modulation may slow disease progression. We utilized Cpk mice which phenocopy ARPKD and generated a PKHD1-mutant spheroid model in human collecting ducts. Significantly elevated levels of the Hh transcriptional effector Gli3 were found in Cpk mice, a finding replicated in PKHD1-mutant spheroids. In Cpk mice, total GLI3 and GLI3 repressor protein levels were also increased. Reduction of increased Gli3 levels via heterozygous genetic deletion in Cpk mice did not affect cyst formation. Additionally, lowering GLI3 transcripts to wildtype levels did not influence PKHD1-mutant spheroid size. Collectively, these data suggest attenuation of elevated Gli3 does not modulate murine and human models of ARPKD.
Collapse
Affiliation(s)
- Lauren G. Russell
- Developmental Biology and Cancer Research and Teaching DepartmentUniversity College London, Great Ormond Street Institute of Child HealthLondonUK
- UCL Centre for Kidney and Bladder HealthUniversity College LondonLondonUK
| | - Maria Kolatsi‐Joannou
- Developmental Biology and Cancer Research and Teaching DepartmentUniversity College London, Great Ormond Street Institute of Child HealthLondonUK
- UCL Centre for Kidney and Bladder HealthUniversity College LondonLondonUK
| | - Laura Wilson
- Developmental Biology and Cancer Research and Teaching DepartmentUniversity College London, Great Ormond Street Institute of Child HealthLondonUK
- UCL Centre for Kidney and Bladder HealthUniversity College LondonLondonUK
| | - Jennifer C. Chandler
- Developmental Biology and Cancer Research and Teaching DepartmentUniversity College London, Great Ormond Street Institute of Child HealthLondonUK
- UCL Centre for Kidney and Bladder HealthUniversity College LondonLondonUK
| | - Nuria Perretta Tejedor
- Developmental Biology and Cancer Research and Teaching DepartmentUniversity College London, Great Ormond Street Institute of Child HealthLondonUK
- UCL Centre for Kidney and Bladder HealthUniversity College LondonLondonUK
| | - Georgie Stagg
- Developmental Biology and Cancer Research and Teaching DepartmentUniversity College London, Great Ormond Street Institute of Child HealthLondonUK
- UCL Centre for Kidney and Bladder HealthUniversity College LondonLondonUK
| | - Karen L. Price
- Developmental Biology and Cancer Research and Teaching DepartmentUniversity College London, Great Ormond Street Institute of Child HealthLondonUK
- UCL Centre for Kidney and Bladder HealthUniversity College LondonLondonUK
| | - Christopher J. Rowan
- Department of Paediatrics, Program in Developmental and Stem Cell Biology, Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
| | - Tessa Crompton
- Infection, Immunity and Inflammation Research and Teaching DepartmentUniversity College London, Great Ormond Street Institute of Child HealthLondonUK
| | - Norman D. Rosenblum
- Department of Paediatrics, Program in Developmental and Stem Cell Biology, Hospital for Sick ChildrenUniversity of TorontoTorontoOntarioCanada
| | - Paul J. D. Winyard
- Developmental Biology and Cancer Research and Teaching DepartmentUniversity College London, Great Ormond Street Institute of Child HealthLondonUK
- UCL Centre for Kidney and Bladder HealthUniversity College LondonLondonUK
| | - David A. Long
- Developmental Biology and Cancer Research and Teaching DepartmentUniversity College London, Great Ormond Street Institute of Child HealthLondonUK
- UCL Centre for Kidney and Bladder HealthUniversity College LondonLondonUK
| |
Collapse
|
2
|
Gazeu A, Collardeau-Frachon S. Practical Approach to Congenital Anomalies of the Kidneys: Focus on Anomalies With Insufficient or Abnormal Nephron Development: Renal Dysplasia, Renal Hypoplasia, and Renal Tubular Dysgenesis. Pediatr Dev Pathol 2024; 27:459-493. [PMID: 39270126 DOI: 10.1177/10935266241239241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) accounts for up to 30% of antenatal congenital anomalies and is the main cause of kidney failure in children worldwide. This review focuses on practical approaches to CAKUT, particularly those with insufficient or abnormal nephron development, such as renal dysplasia, renal hypoplasia, and renal tubular dysgenesis. The review provides insights into the histological features, pathogenesis, mechanisms, etiologies, antenatal and postnatal presentation, management, and prognosis of these anomalies. Differential diagnoses are discussed as several syndromes may include CAKUT as a phenotypic component and renal dysplasia may occur in some ciliopathies, tumor predisposition syndromes, and inborn errors of metabolism. Diagnosis and genetic counseling for CAKUT are challenging, due to the extensive variability in presentation, genetic and phenotypic heterogeneity, and difficulties to assess postnatal lung and renal function on prenatal imaging. The review highlights the importance of perinatal autopsy and pathological findings in surgical specimens to establish the diagnosis and prognosis of CAKUT. The indications and the type of genetic testing are discussed. The aim is to provide essential insights into the practical approaches, diagnostic processes, and genetic considerations offering valuable guidance for pediatric and perinatal pathologists.
Collapse
Affiliation(s)
- Alexia Gazeu
- Department of pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, University Hospital of Lyon, Lyon Bron, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
| | - Sophie Collardeau-Frachon
- Department of pathology, Hôpital Femme-Mère-Enfant, Hospices Civils de Lyon, University Hospital of Lyon, Lyon Bron, France
- Université Claude Bernard Lyon 1, Faculté de Médecine Lyon Est, Lyon, France
- Société française de Fœtopathologie, Soffoet, Paris, France
| |
Collapse
|
3
|
Greenberg D, Rosenblum ND, Tonelli M. The multifaceted links between hearing loss and chronic kidney disease. Nat Rev Nephrol 2024; 20:295-312. [PMID: 38287134 DOI: 10.1038/s41581-024-00808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
Abstract
Hearing loss affects nearly 1.6 billion people and is the third-leading cause of disability worldwide. Chronic kidney disease (CKD) is also a common condition that is associated with adverse clinical outcomes and high health-care costs. From a developmental perspective, the structures responsible for hearing have a common morphogenetic origin with the kidney, and genetic abnormalities that cause familial forms of hearing loss can also lead to kidney disease. On a cellular level, normal kidney and cochlea function both depend on cilial activities at the apical surface, and kidney tubular cells and sensory epithelial cells of the inner ear use similar transport mechanisms to modify luminal fluid. The two organs also share the same collagen IV basement membrane network. Thus, strong developmental and physiological links exist between hearing and kidney function. These theoretical considerations are supported by epidemiological data demonstrating that CKD is associated with a graded and independent excess risk of sensorineural hearing loss. In addition to developmental and physiological links between kidney and cochlear function, hearing loss in patients with CKD may be driven by specific medications or treatments, including haemodialysis. The associations between these two common conditions are not commonly appreciated, yet have important implications for research and clinical practice.
Collapse
Affiliation(s)
- Dina Greenberg
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, Toronto, Ontario, Canada
- Department of Paediatrics, Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Marcello Tonelli
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
4
|
Kirschen GW, Blakemore K, Al-Kouatly HB, Fridkis G, Baschat A, Gearhart J, Jelin AC. The genetic etiologies of bilateral renal agenesis. Prenat Diagn 2024; 44:205-221. [PMID: 38180355 PMCID: PMC10932914 DOI: 10.1002/pd.6516] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE The goal of this study was to review and analyze the medical literature for cases of prenatal and/or postnatally diagnosed bilateral renal agenesis (BRA) and create a comprehensive summary of the genetic etiologies known to be associated with this condition. METHODS A literature search was conducted as a scoping review employing Online Mendeliain Inheritance in Man, PubMed, and Cochrane to identify cases of BRA with known underlying genetic (chromosomal vs. single gene) etiologies and those described in syndromes without any known genetic etiology. The cases were further categorized as isolated versus non-isolated, describing additional findings reported prenatally, postnatally, and postmortem. Inheritance pattern was also documented when appropriate in addition to the reported timing of diagnosis and sex. RESULTS We identified six cytogenetic abnormalities and 21 genes responsible for 20 single gene disorders associated with BRA. Five genes have been reported to associate with BRA without other renal anomalies; sixteen others associate with both BRA as well as unilateral renal agenesis. Six clinically recognized syndromes/associations were identified with an unknown underlying genetic etiology. Genetic etiologies of BRA are often phenotypically expressed as other urogenital anomalies as well as complex multi-system syndromes. CONCLUSION Multiple genetic etiologies of BRA have been described, including cytogenetic abnormalities and monogenic syndromes. The current era of the utilization of exome and genome-wide sequencing is likely to significantly expand our understanding of the underlying genetic architecture of BRA.
Collapse
Affiliation(s)
- Gregory W Kirschen
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Karin Blakemore
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Huda B Al-Kouatly
- Division of Maternal-Fetal Medicine, Jefferson Health, Philadelphia, New York, USA
| | - Gila Fridkis
- Physician Affiliate Group of New York, P.C. (PAGNY), Department of Pediatrics, Metropolitan Hospital Center, New York, New York, USA
| | - Ahmet Baschat
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - John Gearhart
- Department of Urology, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| | - Angie C Jelin
- Division of Maternal-Fetal Medicine, Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Sewerin S, Aurnhammer C, Skubic C, Blagotinšek Cokan K, Jeruc J, Rozman D, Pfister F, Dittrich K, Mayer B, Schönauer R, Petzold F, Halbritter J. Mechanisms of pathogenicity and the quest for genetic modifiers of kidney disease in branchiootorenal syndrome. Clin Kidney J 2024; 17:sfad260. [PMID: 38213489 PMCID: PMC10783239 DOI: 10.1093/ckj/sfad260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Indexed: 01/13/2024] Open
Abstract
Backgound Branchiootorenal (BOR) syndrome is an autosomal dominant disorder caused by pathogenic EYA1 variants and clinically characterized by auricular malformations with hearing loss, branchial arch anomalies, and congenital anomalies of the kidney and urinary tract. BOR phenotypes are highly variable and heterogenous. While random monoallelic expression is assumed to explain this phenotypic heterogeneity, the potential role of modifier genes has not yet been explored. Methods Through thorough phenotyping and exome sequencing, we studied one family with disease presentation in at least four generations in both clinical and genetic terms. Functional investigation of the single associated EYA1 variant c.1698+1G>A included splice site analysis and assessment of EYA1 distribution in patient-derived fibroblasts. The candidate modifier gene CYP51A1 was evaluated by histopathological analysis of murine Cyp51+/- and Cyp51-/- kidneys. As the gene encodes the enzyme lanosterol 14α-demethylase, we assessed sterol intermediates in patient blood samples as well. Results The EYA1 variant c.1698+1G>A resulted in functional deletion of the EYA domain by exon skipping. The EYA domain mediates protein-protein interactions between EYA1 and co-regulators of transcription. EYA1 abundance was reduced in the nuclear compartment of patient-derived fibroblasts, suggesting impaired nuclear translocation of these protein complexes. Within the affected family, renal phenotypes spanned from normal kidney function in adulthood to chronic kidney failure in infancy. By analyzing exome sequencing data for variants that potentially play roles as genetic modifiers, we identified a canonical splice site alteration in CYP51A1 as the strongest candidate variant. Conclusion In this study, we demonstrate pathogenicity of EYA1 c.1698+1G>A, propose a mechanism for dysfunction of mutant EYA1, and conjecture CYP51A1 as a potential genetic modifier of renal involvement in BOR syndrome.
Collapse
Affiliation(s)
- Sebastian Sewerin
- Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
- Current affiliation: Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Cene Skubic
- Institute of Biochemistry, Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Kaja Blagotinšek Cokan
- Institute of Biochemistry, Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jera Jeruc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Institute of Biochemistry, Centre for Functional Genomics and Bio-Chips, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Frederick Pfister
- Institute of Pathology, University of Erlangen Medical Center, Erlangen, Germany
- Current affiliation: Humanpathologie Dr. med. Manfred Weiß MVZ GmbH, Erlangen-Tennenlohe, Germany
| | - Katalin Dittrich
- Division of Pediatric Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Brigitte Mayer
- Division of Pediatric Nephrology, University of Dresden Medical Center, Dresden, Germany
| | - Ria Schönauer
- Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
- Current affiliation: Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Friederike Petzold
- Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
| | - Jan Halbritter
- Division of Nephrology, University of Leipzig Medical Center, Leipzig, Germany
- Current affiliation: Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Bare Y, Matusek T, Vriz S, Deffieu MS, Thérond PP, Gaudin R. TMED10 mediates the loading of neosynthesised Sonic Hedgehog in COPII vesicles for efficient secretion and signalling. Cell Mol Life Sci 2023; 80:266. [PMID: 37624561 PMCID: PMC11072717 DOI: 10.1007/s00018-023-04918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
The morphogen Sonic Hedgehog (SHH) plays an important role in coordinating embryonic development. Short- and long-range SHH signalling occurs through a variety of membrane-associated and membrane-free forms. However, the molecular mechanisms that govern the early events of the trafficking of neosynthesised SHH in mammalian cells are still poorly understood. Here, we employed the retention using selective hooks (RUSH) system to show that newly-synthesised SHH is trafficked through the classical biosynthetic secretory pathway, using TMED10 as an endoplasmic reticulum (ER) cargo receptor for efficient ER-to-Golgi transport and Rab6 vesicles for Golgi-to-cell surface trafficking. TMED10 and SHH colocalized at ER exit sites (ERES), and TMED10 depletion significantly delays SHH loading onto ERES and subsequent exit leading to significant SHH release defects. Finally, we utilised the Drosophila wing imaginal disc model to demonstrate that the homologue of TMED10, Baiser (Bai), participates in Hedgehog (Hh) secretion and signalling in vivo. In conclusion, our work highlights the role of TMED10 in cargo-specific egress from the ER and sheds light on novel important partners of neosynthesised SHH secretion with potential impact on embryonic development.
Collapse
Affiliation(s)
- Yonis Bare
- Institut de Recherche en Infectiologie de Montpellier (IRIM) CNRS, 1919 Route de Mende, 34293, Montpellier, France
- Université de Montpellier, 34090, Montpellier, France
| | - Tamás Matusek
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, Nice, France
| | - Sophie Vriz
- Laboratoire des Biomolécules (LBM), Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005, Paris, France
- Faculty of Science, Université de Paris, Paris, France
| | - Maika S Deffieu
- Institut de Recherche en Infectiologie de Montpellier (IRIM) CNRS, 1919 Route de Mende, 34293, Montpellier, France
- Université de Montpellier, 34090, Montpellier, France
| | - Pascal P Thérond
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, Nice, France
| | - Raphael Gaudin
- Institut de Recherche en Infectiologie de Montpellier (IRIM) CNRS, 1919 Route de Mende, 34293, Montpellier, France.
- Université de Montpellier, 34090, Montpellier, France.
| |
Collapse
|
7
|
Greenberg D, D’Cruz R, Lacanlale JL, Rowan CJ, Rosenblum ND. Hedgehog-GLI mediated control of renal formation and malformation. FRONTIERS IN NEPHROLOGY 2023; 3:1176347. [PMID: 37675356 PMCID: PMC10479618 DOI: 10.3389/fneph.2023.1176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/31/2023] [Indexed: 09/08/2023]
Abstract
CAKUT is the leading cause of end-stage kidney disease in children and comprises a broad spectrum of phenotypic abnormalities in kidney and ureter development. Molecular mechanisms underlying the pathogenesis of CAKUT have been elucidated in genetic models, predominantly in the mouse, a paradigm for human renal development. Hedgehog (Hh) signaling is critical to normal embryogenesis, including kidney development. Hh signaling mediates the physiological development of the ureter and stroma and has adverse pathophysiological effects on the metanephric mesenchyme, ureteric, and nephrogenic lineages. Further, disruption of Hh signaling is causative of numerous human developmental disorders associated with renal malformation; Pallister-Hall Syndrome (PHS) is characterized by a diverse spectrum of malformations including CAKUT and caused by truncating variants in the middle-third of the Hh signaling effector GLI3. Here, we outline the roles of Hh signaling in regulating murine kidney development, and review human variants in Hh signaling genes in patients with renal malformation.
Collapse
Affiliation(s)
- Dina Greenberg
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Robert D’Cruz
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jon L. Lacanlale
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Christopher J. Rowan
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Norman D. Rosenblum
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Division of Nephrology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|