1
|
Shet MN, Ramana CV. Total Synthesis of (-) and (+)-Zingibergingerols A. J Org Chem 2024; 89:16923-16928. [PMID: 39475557 DOI: 10.1021/acs.joc.4c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The first total synthesis of both of the enantiomers of Zingibergingerol A has been accomplished. The distinctive 3,7,9-trioxabicyclo[4.2.1]nonane skeleton is crafted through gold-catalyzed alkynol cycloisomerization. The synthesis comprises sequential C-C bond formations at both ends of epichlorohydrin: first opening the epoxide with eugenol-derived alkyne, followed by subsequent epoxide installation, and again opening with a Grignard reagent. The resulting alkynol with a fixed C5 stereochemistry was subjected to O-allylation, followed by dihydroxylation and alkynol cycloisomerization.
Collapse
Affiliation(s)
- Manoj N Shet
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chepuri V Ramana
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Masiuk US, Faletrov YV, Kananovich DG, Mineyeva IV. Stereodivergent Assembly of 2,6- cis- and - trans-Tetrahydropyrans via Base-Mediated Oxa-Michael Cyclization: The Key Role of the TMEDA Additive. J Org Chem 2023; 88:355-370. [PMID: 36495268 DOI: 10.1021/acs.joc.2c02382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The stereodivergent synthesis of cis- and trans-2,6-disubstituted tetrahydropyrans (THPs) via sodium hexamethyldisilazide-promoted oxa-Michael cyclization of (E)-ζ-hydroxy α,β-unsaturated esters is presented. The cyclization affords the kinetically favored trans-THPs with high stereoselectivity (dr up to 93:7) at a low temperature (-78 °C), while the room-temperature reaction does not produce the thermodynamically preferred cis-THPs as major products and occurs with poor stereocontrol. The addition of tetramethylethylenediamine (TMEDA) significantly improves the stereochemical outcome of the room-temperature cyclization and allows attaining high cis-selectivity (dr up to 99:1). The remarkable effect of TMEDA indicates that the sodium cation plays an important role in controlling the stereoselectivity of the thermodynamically driven process, that is, complexation of the cation with the cyclization products results in diminished selectivity. DFT calculations support this conclusion, indicating a greater difference in Gibbs energies of sodium-free cis- and trans-enolates compared to the respective sodium chelate complexes. The synthetic utility of the method has been demonstrated by the formal syntheses of (+)-Neopeltolide and (-)-Diospongin B and the total synthesis of (-)-Diospongin A.
Collapse
Affiliation(s)
- Uladzimir S Masiuk
- Department of Chemistry, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus.,School of Science, Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Yaroslav V Faletrov
- Department of Chemistry, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus.,Research Institute for Physical Chemical Problems, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus
| | - Dzmitry G Kananovich
- School of Science, Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Iryna V Mineyeva
- Department of Chemistry, Belarusian State University, Leningradskaya 14, 220006 Minsk, Belarus
| |
Collapse
|
3
|
Gregori BJ, Schmotz MWS, Jacobi von Wangelin A. Stereoselective Semi-Hydrogenations of Alkynes by First-Row (3d) Transition Metal Catalysts. ChemCatChem 2022; 14:e202200886. [PMID: 36632425 PMCID: PMC9825939 DOI: 10.1002/cctc.202200886] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/25/2022] [Indexed: 01/14/2023]
Abstract
The chemo- and stereoselective semi-hydrogenation of alkynes to alkenes is a fundamental transformation in synthetic chemistry, for which the use of precious 4d or 5d metal catalysts is well-established. In mankind's unwavering quest for sustainability, research focus has considerably veered towards the 3d metals. Given their high abundancy and availability as well as lower toxicity and noxiousness, they are undoubtedly attractive from both an economic and an environmental perspective. Herein, we wish to present noteworthy and groundbreaking examples for the use of 3d metal catalysts for diastereoselective alkyne semi-hydrogenation as we embark on a journey through the first-row transition metals.
Collapse
Affiliation(s)
- Bernhard J. Gregori
- Dept. of ChemistryUniversity of HamburgMartin Luther King Pl 620146HamburgGermany
| | | | | |
Collapse
|
4
|
Mitsui K, Lie MEK, Saito N, Fujiwara K, Watanabe M, Wellendorph P, Shuto S. Synthesis of γ-Aminobutyric Acid (GABA) Analogues Conformationally Restricted by Bicyclo[3.1.0]hexane/hexene or [4.1.0]Heptane/heptene Backbones as Potent Betaine/GABA Transporter Inhibitors. Org Lett 2022; 24:4151-4154. [PMID: 35674784 DOI: 10.1021/acs.orglett.2c01346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel γ-aminobutyric acid (GABA) analogues 3-5, having a bicyclo[3.1.0]hexene, [4.1.0]heptane, or [4.1.0]heptene backbone, respectively, were designed from the bioactive form analysis of the previous inhibitor 2 with a bicyclo[3.1.0]hexane backbone. Compounds 3-5 and 2 were synthesized from a common 1,7-diene intermediate 6 using ring-closing metathesis (RCM) to construct the key bicyclo backbones. Compounds 3-5 strongly inhibit betaine/GABA transporter 1 (BGT1) uptake, but compound 4 stands out with its selective low micromolar potency.
Collapse
Affiliation(s)
- Keisuke Mitsui
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Maria E K Lie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, DK-2100 Copenhagen, Denmark
| | - Naoki Saito
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Koichi Fujiwara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2 Universitetsparken, DK-2100 Copenhagen, Denmark
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
5
|
Ohkubo Y, Masuda Y, Ogura Y, Takikawa H, Watanabe H. Concise enantioselective synthesis of wine lactone via intramolecular Diels-Alder reaction. Biosci Biotechnol Biochem 2021; 85:1390-1394. [PMID: 33720279 DOI: 10.1093/bbb/zbab045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 11/14/2022]
Abstract
An enantioselective synthesis of (3S,3aS,7aR)-wine lactone, a major aroma component of white wine and citrus juices, was achieved starting from (S)-2-methyl-3-butenoic acid. An intramolecular Diels-Alder reaction was employed as a key step.
Collapse
Affiliation(s)
- Yasutaka Ohkubo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Technical Research Institute, R&D Center, T. Hasegawa Co., Ltd., Kawasaki, Kanagawa, Japan
| | - Yui Masuda
- Technical Research Institute, R&D Center, T. Hasegawa Co., Ltd., Kawasaki, Kanagawa, Japan
| | - Yusuke Ogura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hirosato Takikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidenori Watanabe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Hollmann T, Berkhan G, Wagner L, Sung KH, Kolb S, Geise H, Hahn F. Biocatalysts from Biosynthetic Pathways: Enabling Stereoselective, Enzymatic Cycloether Formation on a Gram Scale. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tim Hollmann
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Gesche Berkhan
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Centre for Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Lisa Wagner
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Kwang Hoon Sung
- Helmholtz-Zentrum für Infektionsforschung GmbH, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Protein Facility, ILAb Co., Ltd. NP513, The Catholic University of Korea, 420-743 Bucheon, Republic of Korea
| | - Simon Kolb
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Hendrik Geise
- Centre for Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Frank Hahn
- Professur für Organische Chemie (Lebensmittelchemie), Fakultät für Biologie, Chemie und Geowissenschaften, Department of Chemistry, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Centre for Biomolecular Drug Research, Leibniz Universität Hannover, Schneiderberg 38, 30167 Hannover, Germany
| |
Collapse
|
7
|
Csókás D, Ho AXY, Ramabhadran RO, Bates RW. How an early or late transition state impacts the stereoselectivity of tetrahydropyran formation by intramolecular oxa-Michael addition. Org Biomol Chem 2019; 17:6293-6304. [PMID: 31204752 DOI: 10.1039/c9ob00750d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The intramolecular oxa-Michael addition giving tetrahydropyrans has been examined experimentally using both acidic and basic catalysis. With acidic catalysis, the diequatorial product is exclusively obtained in a kinetically controlled reaction in all cases. Under basic conditions at low temperature, the reaction is again under kinetic control, but formation of the axial-equatorial isomer is generally favoured with an (E)-Michael acceptor, although isomerisation to the diequatorial isomer is observed at higher temperatures. Computationally, it is found that the acid catalysed reaction has a late transition state and the kinetic favouring of the diequatorial isomer has a steric explanation. In contrast, under strongly basic conditions, an early transition state is found. Electrostatic effects are likely to be the main contributor to the stereoselectivity for the (E)-isomer and steric interactions for the (Z)-isomer.
Collapse
Affiliation(s)
- Dániel Csókás
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
| | | | | | | |
Collapse
|
8
|
Lindner F, Friedrich S, Hahn F. Total Synthesis of Complex Biosynthetic Late-Stage Intermediates and Bioconversion by a Tailoring Enzyme from Jerangolid Biosynthesis. J Org Chem 2018; 83:14091-14101. [DOI: 10.1021/acs.joc.8b02047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Frederick Lindner
- Professur für Organische Chemie (Lebensmittelchemie), Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Steffen Friedrich
- Professur für Organische Chemie (Lebensmittelchemie), Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Frank Hahn
- Professur für Organische Chemie (Lebensmittelchemie), Department of Chemistry, Fakultät für Biologie, Chemie und Geowissenschaften, Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| |
Collapse
|
9
|
Affiliation(s)
- Claude Bauder
- Laboratoire de Synthèse Organométallique et Catalyse (SOCAT); Institut de Chimie; UMR 7177 CNRS; Université de Strasbourg; 4 rue Blaise Pascal 67070 Strasbourg France
| |
Collapse
|
10
|
The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2014. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
|