1
|
Zhou P, Wang C, Wan G, Zheng W, Wei Z, Liang T, Jiang J, Zhang Z. Regiodivergent Metal-Catalyzed Oxidative Alkynylation of 2-Arylthiazoles with Terminal Alkynes under Air Conditions. J Org Chem 2024; 89:10953-10964. [PMID: 39016014 DOI: 10.1021/acs.joc.4c01381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Regiodivergent transition-metal-catalyzed oxidative C5- and ortho-alkynylation of 2-arylthiazoles have been demonstrated. Namely, Pd(II)-catalysis selectively generated C5-alkynylated products from the reaction of 2-arylthiazoles and terminal alkynes. In contrast, Ru(II)-catalysis exclusively provided ortho-alkynylated products from the same substrates. This protocol features a wide substrate scope, good functional group tolerance, high atom-economy, and exclusive regioselectivity. The alkynylated products can be readily converted into highly valuable synthons, which hold potential for applications in the fields of medicinal chemistry and materials science.
Collapse
Affiliation(s)
- Pengfei Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Cheng Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Guibin Wan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Weining Zheng
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zongwu Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
2
|
Wang Y, Dana S, Long H, Xu Y, Li Y, Kaplaneris N, Ackermann L. Electrochemical Late-Stage Functionalization. Chem Rev 2023; 123:11269-11335. [PMID: 37751573 PMCID: PMC10571048 DOI: 10.1021/acs.chemrev.3c00158] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Late-stage functionalization (LSF) constitutes a powerful strategy for the assembly or diversification of novel molecular entities with improved physicochemical or biological activities. LSF can thus greatly accelerate the development of medicinally relevant compounds, crop protecting agents, and functional materials. Electrochemical molecular synthesis has emerged as an environmentally friendly platform for the transformation of organic compounds. Over the past decade, electrochemical late-stage functionalization (eLSF) has gained major momentum, which is summarized herein up to February 2023.
Collapse
Affiliation(s)
| | | | | | - Yang Xu
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Yanjun Li
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Nikolaos Kaplaneris
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| | - Lutz Ackermann
- Institut für Organische
und Biomolekulare Chemie and Wöhler Research Institute for
Sustainable Chemistry (WISCh), Georg-August-Universität, Göttingen 37077, Germany
| |
Collapse
|
3
|
The C-H Bond Activation Triggered by Subsurface Mo Dopant on MgO Catalyst in Oxidative Coupling of Methane. Catalysts 2022. [DOI: 10.3390/catal12101083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this work, density functional theory calculations are performed to explore the unique role of Mo dopant on MgO in oxidative coupling of methane. It is revealed that subsurface Mo dopant significantly enhanced the adsorption and activation of oxygen molecules. The combination of adsorbed oxygen and surface Mg exhibited a balanced activity for C-H bond activation and release of methyl radical which paves the way to activate methane with a promising yield.
Collapse
|
4
|
Reddy GS, Shukla S, Bhuktar H, Hossain KA, Edwin RK, Giliyaru VB, Misra P, Pal M. Pd/Cu-catalyzed access to novel 3-(benzofuran-2-ylmethyl) substituted (pyrazolo/benzo)triazinone derivatives: their in silico/ in vitro evaluation as inhibitors of chorismate mutase (CM). RSC Adv 2022; 12:26686-26695. [PMID: 36275143 PMCID: PMC9490447 DOI: 10.1039/d2ra05255e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
In view of the reported chorismate mutase (CM or MtbCM) inhibitory activities of 3-indolylmethyl substituted (pyrazolo/benzo)triazinone derivatives the structurally similar 3-(benzofuran-2-ylmethyl) substituted (pyrazolo/benzo)triazinones were designed and evaluated in silico against CM. The docking of target molecules was performed at the interface site of MtbCM (PDB: 2FP2). All the best ranked molecules participated in a strong H-bonding with the ILE67 of the B chain at the backbone position in addition to several hydrophobic/van der Waals interactions with the hydrophobic residues. Based on encouraging docking results, the one-pot synthesis of newly designed benzofuran derivatives was carried out using tandem Pd/Cu-catalyzed Sonogashira cross-coupling followed by intramolecular cyclization of 2-iodophenols with appropriate terminal alkynes. A range of novel 3-(benzofuran-2-ylmethyl) substituted (pyrazolo/benzo)triazinone derivatives were prepared in high (>80%) yields. Three molecules i.e.3h, 3i and 3m that participated in good interaction with CM in silico showed encouraging (64–65%) inhibition at 30 μM in vitro. An SAR within this class of molecules suggested that the benzotriazinone series in general was better than the pyrazolotriazinone series. Based on molecular docking in silico, CM inhibition in vitro and computational ADME prediction the benzofuran derivatives 3i and 3m seemed to be of further medicinal interest in the context of discovery and development of new anti-tubercular agents. We report the Pd/Cu-catalyzed synthesis, in silico molecular docking, in vitro CM inhibition and computational ADME prediction of novel 3-(benzofuran-2-ylmethyl) substituted (pyrazolo/benzo)triazinone derivatives.![]()
Collapse
Affiliation(s)
- Gangireddy Sujeevan Reddy
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Sharda Shukla
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Harshavardhan Bhuktar
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Kazi Amirul Hossain
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Rebecca Kristina Edwin
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Varadaraj Bhat Giliyaru
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Parimal Misra
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Manojit Pal
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| |
Collapse
|
5
|
Belen’kii LI, Gazieva GA, Evdokimenkova YB, Soboleva NO. The literature of heterocyclic chemistry, Part XX, 2020. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
6
|
Yamazaki K, Mahato SK, Ano Y, Chatani N. Double 1,2-Migration of Bromine and Silicon in Directed C–H Alkynylation Reactions with Silyl-Substituted Alkynyl Bromides through an Iridium Vinylidene Intermediate. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ken Yamazaki
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Sanjit K. Mahato
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Ibni Hashim I, Scattolin T, Tzouras NV, Bourda L, Van Hecke K, Ritacco I, Caporaso L, Cavallo L, Nolan SP, Cazin CSJ. Straightforward synthesis of [Cu(NHC)(alkynyl)] and [Cu(NHC)(thiolato)] complexes (NHC = N-heterocyclic carbene). Dalton Trans 2021; 51:231-240. [PMID: 34881762 DOI: 10.1039/d1dt03710b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthetic access to monomeric copper-alkynyl and copper-thiolato complexes of the type [(NHC)Cu(R)] (R = alkynyl or thiolato) using a weak base approach is reported. All reported reactions proceed under mild conditions in air and in environmentally acceptable solvents. The novel complexes are fully characterized and single crystal X-ray analyses unambiguously establish the atom connectivity in these mononuclear complexes. The importance of the supporting NHC ligand's steric properties in stabilizing mononuclear complexes is discussed.
Collapse
Affiliation(s)
- Ishfaq Ibni Hashim
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Thomas Scattolin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Nikolaos V Tzouras
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Laurens Bourda
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Kristof Van Hecke
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Ida Ritacco
- Dipartimento di Chimica e Biologia, University of Salerno, Fisciano, 84048, Italy
| | - Lucia Caporaso
- Dipartimento di Chimica e Biologia, University of Salerno, Fisciano, 84048, Italy
| | - Luigi Cavallo
- KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 96500, Saudi Arabia
| | - Steven P Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| | - Catherine S J Cazin
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281 (S-3), 9000, Ghent, Belgium.
| |
Collapse
|
8
|
Chen S, Tseng Y, Lu C, Chuang C, Cheng Y. Palladium‐Catalyzed Direct Cross‐Dehydrogenative Alkynylation of Selenophenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shi‐Yen Chen
- Department of Applied Chemistry and Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan, ROC
| | - Yan‐Hsiang Tseng
- Department of Applied Chemistry and Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan, ROC
| | - Chia‐Fang Lu
- Department of Applied Chemistry and Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan, ROC
| | - Chun‐Yao Chuang
- Department of Applied Chemistry and Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan, ROC
| | - Yen‐Ju Cheng
- Department of Applied Chemistry and Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan, ROC
| |
Collapse
|
9
|
Li Y, Zhou M, Park S, Dang L. Comparative DFT Study on Dehydrogenative C(sp)-H Elementation (E = Si, Ge, and Sn) of Terminal Alkynes Catalyzed by a Cationic Ruthenium(II) Thiolate Complex. Inorg Chem 2021; 60:6228-6238. [PMID: 33852282 DOI: 10.1021/acs.inorgchem.0c03695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Described herein is a comparative theoretical study of dehydrogenative C(sp)-H functionalizations of a terminal alkyne with group-14-based hydrides (HEEt3; E = Si, Ge, Sn) catalyzed by an Ohki-Tatsumi complex-a cationic Ru(II) complex with a tethered thiolate ligand ([Ru-S] = [(DmpS)Ru(PiPr3)][BAr4F]; Dmp = 2,6-(dimesityl)2C6H3; ArF = 3,5-(CF3)2C6H3). The calculations indicate that the energy barriers for heterolytic cleavage of the H-EEt3 bonds at the Ru-S sites of the Ohki-Tatsumi complex highly vary depending on the group 14 elements from 3.8 kcal/mol (E = Sn) to 10.5 kcal/mol (E = Ge) and 18.5 kcal/mol (E = Si), where Ru and S elements cooperatively serve as the Lewis acid and base, respectively. Likewise, the transfer of the group 14 cation (Et3E+) to the C-C triple bond to generate the β-element-stabilized vinyl cations-the rate-determining step (RDS) of the overall reaction-is predicted to be susceptible to the element's identity [Ea = 36.8 for Sn < 42.9 and Ge < 50.7 for Si (kcal/mol)]. The key transition states involved in the RDS are compared in terms of energy and structure within each system of the group 14 hydrides. The distortion/interaction-activation strain (DIAS) model analysis of the transition states responsible for dehydrogenative stannylation and hydrostannation of a terminal alkyne sheds light on the origin of the experimentally observed kinetic preference toward dehydrogenative C-H stannylation over hydrostannation.
Collapse
Affiliation(s)
- Yahui Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Miaomiao Zhou
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| | - Sehoon Park
- Department of Chemistry, Guangdong Technion Israel Institute of Technology, Shantou, Guangdong 515063, China.,Technion-Israel Institute of Technology, Technion City, 32000 Haifa, Israel
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, P. R. China
| |
Collapse
|
10
|
Bellina F, Biagetti M, Guariento S, Lessi M, Fausti M, Ronchi P, Rosadoni E. Ligand-free Pd/Ag-mediated dehydrogenative alkynylation of imidazole derivatives. RSC Adv 2021; 11:25504-25509. [PMID: 35478867 PMCID: PMC9036978 DOI: 10.1039/d1ra05303e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 01/12/2023] Open
Abstract
A variety of 2-alkynyl(benzo)imidazoles have been synthesized by dehydrogenative alkynylation of (benzo)imidazoles with terminal alkyne in NMP under air in the presence of Ag2CO3 as the oxidant and Pd(OAc)2 as the catalyst precursor. The data obtained in this study support a reaction mechanism involving a non-concerted metalation deprotonation (n-CMD) pathway. The regioselective synthesis of 2-alkynyl(benz)imidazoles was successfully achieved by Pd(ii)/Ag(i)-mediated dehydrogenative alkynylation of the corresponding (benz)imidazoles with terminal alkynes in an open vessel.![]()
Collapse
Affiliation(s)
- Fabio Bellina
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56124 Pisa
- Italy
| | - Matteo Biagetti
- Chemistry Research and Drug Design
- Chiesi Farmaceutici S.p.A
- Centro Ricerche
- 43122 Parma
- Italy
| | - Sara Guariento
- Chemistry Research and Drug Design
- Chiesi Farmaceutici S.p.A
- Centro Ricerche
- 43122 Parma
- Italy
| | - Marco Lessi
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56124 Pisa
- Italy
| | - Mattia Fausti
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56124 Pisa
- Italy
| | - Paolo Ronchi
- Chemistry Research and Drug Design
- Chiesi Farmaceutici S.p.A
- Centro Ricerche
- 43122 Parma
- Italy
| | - Elisabetta Rosadoni
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- 56124 Pisa
- Italy
| |
Collapse
|
11
|
Bal A, Maiti S, Mal P. Intermolecular C‐Arylation of 2‐Amidobiphenyls Overcoming Intramolecular N‐Arylation. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ankita Bal
- School of Chemical Sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda Odisha 752050 India
| | - Saikat Maiti
- School of Chemical Sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda Odisha 752050 India
| | - Prasenjit Mal
- School of Chemical Sciences National Institute of Science Education and Research (NISER), HBNI Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda Odisha 752050 India
| |
Collapse
|
12
|
Ye X, Wang C, Zhang S, Wei J, Shan C, Wojtas L, Xie Y, Shi X. Facilitating Ir-Catalyzed C-H Alkynylation with Electrochemistry: Anodic Oxidation-Induced Reductive Elimination. ACS Catal 2020; 10:11693-11699. [PMID: 38107025 PMCID: PMC10723742 DOI: 10.1021/acscatal.0c03207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An electrochemical approach in promoting directed C-H alkynylation with terminal alkyne via iridium catalysis is reported. This work employed anodic oxidation of Ir(III) intermediate (characterized by X-ray crystallography) to promote reductive elimination, giving the desired coupling products in good yields (up to 95%) without the addition of any other external oxidants. This transformation is suitable for various directing groups with H2 as the only by-product, which warrants a high atom economy and practical oxidative C-C bond formation under mild conditions.
Collapse
Affiliation(s)
- Xiaohan Ye
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Chenhuan Wang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Shuyao Zhang
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Jingwen Wei
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Chuan Shan
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Yan Xie
- College of Chemistry and Materials Engineering, Quzhou University, Quzhou 324000, P.R.China
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
13
|
Zhang JS, Liu L, Chen T, Han LB. Cross-Dehydrogenative Alkynylation: A Powerful Tool for the Synthesis of Internal Alkynes. CHEMSUSCHEM 2020; 13:4776-4794. [PMID: 32667732 DOI: 10.1002/cssc.202001165] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Alkynes are among the most fundamentally important organic compounds and are widely used in synthetic chemistry, biochemistry, and materials science. Thus, the development of an efficient and sustainable method for the preparation of alkynes has been a central concern in organic synthesis. Cross-dehydrogenative coupling utilizing E-H and Z-H bonds in two different molecules can avoid the need for prefunctionalization of starting materials and has become one of the most straightforward methods for the construction of E-Z chemical bonds. This Review summarizes recent progress in the preparation of internal alkynes by cross-dehydrogenative coupling with terminal alkynes.
Collapse
Affiliation(s)
- Ji-Shu Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Tieqiao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Li-Biao Han
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 3058571, Japan
| |
Collapse
|