1
|
Mushtaq A, Irfan M, Haq AU, Mansha A, Khan SG, Zahoor AF, Parveen B, Irfan A, Kotwica-Mojzych K, Glowacka M, Mojzych M. Novel transition metal-free synthetic protocols toward the construction of 2,3-dihydrobenzofurans: a recent update. Front Chem 2024; 12:1470861. [PMID: 39734577 PMCID: PMC11672212 DOI: 10.3389/fchem.2024.1470861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/31/2024] [Indexed: 12/31/2024] Open
Abstract
2,3-Dihydrobenzofurans are noteworthy scaffolds in organic and medicinal chemistry, constituting the structural framework of many of the varied medicinally active organic compounds. Moreover, a diverse variety of biologically potent natural products also contain this heterocyclic nucleus. Reflecting on the wide biological substantiality of dihydrobenzofurans, several innovative and facile synthetic developments are evolving to achieve these heterocycles. This review summarizes the transition-metal-free, efficient, and novel synthetic pathways toward constructing the dihydrobenzofuran nucleus established after 2020.
Collapse
Affiliation(s)
- Aqsa Mushtaq
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Irfan
- Department of Pharmaceutics, Government College University, Faisalabad, Pakistan
| | - Atta ul Haq
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Samreen Gul Khan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bushra Parveen
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Katarzyna Kotwica-Mojzych
- Department of Basic Sciences, Department of Histology, Embriology and Cytophysiology, Medical University of Lublin, Lublin, Poland
| | - Mariola Glowacka
- Faculty of Health Sciences Collegium Medicum, The Mazovian Academy in Plock, Płock, Poland
| | - Mariusz Mojzych
- Faculty of Health Sciences Collegium Medicum, The Mazovian Academy in Plock, Płock, Poland
| |
Collapse
|
2
|
Sun Z, He F, Xu Y, Lu M, Xiong H, Jiang Z, Wu C. Intramolecular Palladium(II)-Catalyzed Regioselective 6- endo or 6- exo C-H Benzannulation: An Approach for the Diversity-Oriented Synthesis of Quinolinone Derivatives from Pyridones. J Org Chem 2024; 89:7058-7064. [PMID: 38682741 DOI: 10.1021/acs.joc.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Herein, a new intramolecular palladium(II)-catalyzed regioselective 6-endo-trig or 6-exo-trig annulation through direct C-H activation is presented as a method for the diversity-oriented synthesis of highly substituted quinolinones from pyridones. The reaction occurs under mild conditions and exhibits excellent regioselectivity, good functional group tolerance, and broad applications. This innovative approach has been successfully utilized in the synthesis of Glycopentanolone A and an intermediate of (R)-(+)-Tipifarnib.
Collapse
Affiliation(s)
- Ziyi Sun
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P. R. China
| | - Fengya He
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P. R. China
| | - Yiwei Xu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P. R. China
| | - Mingxiang Lu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P. R. China
| | - Hujie Xiong
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P. R. China
| | - Zibin Jiang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P. R. China
| | - Chenggui Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P. R. China
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| |
Collapse
|
3
|
Meier A, Badalov SV, Biktagirov T, Schmidt WG, Wilhelm R. Diquat Based Dyes: A New Class of Photoredox Catalysts and Their Use in Aerobic Thiocyanation. Chemistry 2023; 29:e202203541. [PMID: 36700523 DOI: 10.1002/chem.202203541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
A series of new organic donor-π-acceptor dyes incorporating a diquat moiety as a novel electron-acceptor unit have been synthesized and characterized. The analytical data were supported by DFT calculations. These dyes were explored in the aerobic thiocyanation of indoles and pyrroles. Here they showed a high photocatalytic activity under visible light, giving isolated yields of up to 97 %. In addition, the photocatalytic activity of standalone diquat and methyl viologen through formation of an electron donor acceptor complex is presented.
Collapse
Affiliation(s)
- Armin Meier
- Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, 38678, Clausthal-Zellerfeld, Germany
| | - Sabuhi V Badalov
- Lehrtuhl für Theoretische Materialphysik, Universität Paderborn, 33095, Paderborn, Germany
| | - Timur Biktagirov
- Lehrtuhl für Theoretische Materialphysik, Universität Paderborn, 33095, Paderborn, Germany
| | - Wolf Gero Schmidt
- Lehrtuhl für Theoretische Materialphysik, Universität Paderborn, 33095, Paderborn, Germany
| | - René Wilhelm
- Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, 38678, Clausthal-Zellerfeld, Germany
| |
Collapse
|
4
|
Kim M, Hong S, Jeong J, Hong S. Visible-Light-Active Coumarin- and Quinolinone-Based Photocatalysts and Their Applications in Chemical Transformations. CHEM REC 2023:e202200267. [PMID: 36627191 DOI: 10.1002/tcr.202200267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Indexed: 01/12/2023]
Abstract
Organic dyes have been actively studied as useful photocatalysts because they allow access to versatile structural flexibility and green synthetic applications. The identification of a new class of robust organic chromophores is, therefore, in high demand to increase structural diversity and variability. Although coumarins and quinolinones have long been acknowledged as organic chromophores, their ability to participate in photoinduced transformations is somewhat less familiar. Fascinated by their chromophoric features and adaptable platform, our group is interested in the identification of fluorescent bioactive molecules and in the development of new photoinduced synthetic methods using coumarins and quinolinones as photocatalysts. This account provides an overview of our recent progress in the discovery and application of light-absorbing coumarin and quinolinone derivatives in photochemistry and medicinal chemistry.
Collapse
Affiliation(s)
- Myojeong Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seonghyeok Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jinwook Jeong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
5
|
Ka CH, Lee DS, Cho EJ. Solvent‐dependent Photochemistry for Diverse and Selective C‐H Functionalization of 2‐tert‐Butyl‐1,4‐Benzoquinones. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cheol Hyeon Ka
- Chung-Ang University - Seoul Campus: Chung-Ang University Chemistry KOREA, REPUBLIC OF
| | - Da Seul Lee
- Chung-Ang University - Seoul Campus: Chung-Ang University Chemistry KOREA, REPUBLIC OF
| | - Eun Jin Cho
- Chung-Ang University Department of Chemistry 84 Heukseok-Ro, Dongjak-Gu 156-756 Seoul KOREA, REPUBLIC OF
| |
Collapse
|
6
|
Manikandan R, Phatake RS, Lemcoff NG. Metal‐Free Photochemical Olefin Isomerization of Unsaturated Ketones via 1,5‐Hydrogen Atom Transfer. Chemistry 2022; 28:e202200634. [PMID: 35325491 PMCID: PMC9321148 DOI: 10.1002/chem.202200634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Indexed: 11/22/2022]
Abstract
The photochemical isomerization of α,β‐ to β,γ‐unsaturated ketones through a 1,5‐hydrogen atom transfer mechanism under mild conditions with high efficiency and selectivity is reported. The reaction is carried out in the absence of metal catalysts or other additives, and its stereoselectivity can be tuned by selecting appropriate solvent mixtures. The reaction‘s scope and tolerance towards functional groups, including light‐sensitive halogens, free acids and alcohols, were studied, providing reliable access to a wide variety of β,γ‐unsaturated ketones. This methodology details the deconjugation of a wide range of unsaturated ketones and, when combined with olefin metathesis, provides an efficient process for either dehomologation or one‐carbon double‐bond migration of terminal alkenes.
Collapse
Affiliation(s)
- Rajendran Manikandan
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - Ravindra S. Phatake
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| | - N. Gabriel Lemcoff
- Department of Chemistry Ben-Gurion University of the Negev Beer-Sheva 8410501 Israel
| |
Collapse
|
7
|
Tan LP, Liang D, Cheng Y, Xiao WJ, Chen JR. Visible-light-induced tandem radical addition/cyclization of 2-alkenylphenols and CBr 4 for the synthesis of 4-arylcoumarins. Org Chem Front 2021. [DOI: 10.1039/d1qo00831e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A visible-light-induced photoredox-catalyzed tandem radical addition/cyclization of 2-alkenylphenols and CBr4 is developed, providing efficient and practical access to various 4-arylcoumarins in a one-pot fashion.
Collapse
Affiliation(s)
- Li-Ping Tan
- CCNU-uOttawa Joint Research Center, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Dong Liang
- CCNU-uOttawa Joint Research Center, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Ying Cheng
- CCNU-uOttawa Joint Research Center, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Center, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Center, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|