1
|
Zhong J, Pan R, Lin X. Enantioselective synthesis of α-tetrasubstituted (1-indolizinyl) (diaryl)-methanamines via chiral phosphoric acid catalysis. RSC Adv 2024; 14:1106-1113. [PMID: 38174273 PMCID: PMC10759308 DOI: 10.1039/d3ra07636a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
An enantioselective Friedel-Crafts reaction of cyclic α-diaryl N-acyl imines with indolizines catalyzed by a chiral spirocyclic phosphoric acid has been developed. The asymmetric transformation proceeds smoothly to afford α-tetrasubstituted (1-indolizinyl) (diaryl)methanamines in good yields with up to 98% ee under mild conditions.
Collapse
Affiliation(s)
- Jialing Zhong
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| | - Rihuang Pan
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| | - Xufeng Lin
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
2
|
Subba P, Sadhu MM, Singh VK. Chiral Phosphoric Acid-Catalyzed Asymmetric Friedel-Crafts Addition of Indolizine to Cyclic N-Sulfonyl Imine. J Org Chem 2023; 88:14676-14687. [PMID: 37787981 DOI: 10.1021/acs.joc.3c01686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
A highly efficient chiral phosphoric acid-catalyzed enantioselective Friedel-Crafts addition of indolizine to cyclic N-sulfonyl imine has been established. The newly developed protocol, which probably proceeds via a monoactivation reaction pathway, allows the access of enantioenriched sulfonamide functionalized indolizines with excellent yields (up to 99%) and enantioselectivities (up to 99%). Moreover, the synthetic utility of this protocol has been explored with some chemical transformations.
Collapse
Affiliation(s)
- Parbat Subba
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Milon M Sadhu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vinod K Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
3
|
Zhu BK, Xu H, Xiao L, Chang X, Wei L, Teng H, Dang Y, Dong XQ, Wang CJ. Enantio- and diastereodivergent synthesis of fused indolizines enabled by synergistic Cu/Ir catalysis. Chem Sci 2023; 14:4134-4142. [PMID: 37063803 PMCID: PMC10094240 DOI: 10.1039/d3sc00118k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/13/2023] [Indexed: 03/15/2023] Open
Abstract
Highly diastereo-/enantioselective assembly of 2,3-fused indolizine derivatives could be easily available through a cascade allylation/Friedel-Crafts type reaction enabled by a synergistic Cu/Ir catalysis. This designed protocol provides an unprecedented and facile route to enantioenriched indolizines bearing three stereogenic centers in moderate to high yields with excellent stereoselective control, which also featured broad substrate generality. Remarkably, four stereoisomers of the 2,3-fused indolizine products could be efficiently constructed in a predictable manner through the pairwise combination of copper and iridium catalysts. The synthetic utility of this method was readily elaborated by a gram-scale reaction, and synthetic transformations to other important chiral indolizine derivatives. Quantum mechanical explorations constructed a plausible synergetic catalytic cycle, revealed the origins of stereodivergence, and rationalized the protonation-stimulated stereoselective Friedel-Crafts type cyclization to form the indolizine products.
Collapse
Affiliation(s)
- Bing-Ke Zhu
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Lu Xiao
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Xin Chang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Liang Wei
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Huailong Teng
- College of Science, Huazhong Agricultural University Wuhan 430070 P. R. China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University Tianjin 300072 China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Chun-Jiang Wang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University Wuhan Hubei 430072 P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|
4
|
Priyanka, Rani P, Kiran, Sindhu J. Indolizine: A Promising Framework for Developing a Diverse Array of C−H Functionalized Hybrids. ChemistrySelect 2023. [DOI: 10.1002/slct.202203531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Priyanka
- Department of Chemistry, COBS&H CCSHAU Hisar 125004 India
| | - Payal Rani
- Department of Chemistry, COBS&H CCSHAU Hisar 125004 India
| | - Kiran
- Department of Chemistry, COBS&H CCSHAU Hisar 125004 India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H CCSHAU Hisar 125004 India
| |
Collapse
|
5
|
Zhong J, Pan R, Lin X. Enantioselective synthesis of α-tetrasubstituted (3-indolizinyl) (diaryl)methanamines via chiral phosphoric acid catalysis. RSC Adv 2022; 12:20499-20506. [PMID: 35919132 PMCID: PMC9284663 DOI: 10.1039/d2ra03750e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
An enantioselective Friedel-Crafts reaction of cyclic α-diaryl N-acyl imines with indolizines catalyzed by a chiral spirocyclic phosphoric acid has been developed. The asymmetric transformation proceeds smoothly to afford α-tetrasubstituted (3-indolizinyl) (diaryl)methanamines in good yields with up to 98% ee under mild conditions.
Collapse
Affiliation(s)
- Jialing Zhong
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| | - Rihuang Pan
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| | - Xufeng Lin
- Department of Chemistry, Zhejiang University Hangzhou 310027 P. R. China
| |
Collapse
|
6
|
Song X, Fan Y, Zhu Z, Ni Q. Chiral Phosphoric Acid-Catalyzed Asymmetric Arylation of Indolizines: Atroposelective Access to Axially Chiral 3-Arylindolizines. Org Lett 2022; 24:2315-2320. [PMID: 35297627 DOI: 10.1021/acs.orglett.2c00461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report herein a highly straightforward strategy for the synthesis of a new axially chiral 3-arylindolizine scaffold via organocatalytic asymmetric arylation reactions of indolizines and p-quinone esters. Using the chiral phosphoric acid catalyst, a series of axially chiral 3-arylindolizines were accessed in good to excellent yields and atropo-enantioselectivities. This approach features a broad substrate scope, mild reaction conditions, good scalability, and facile derivatization. Moreover, preliminary investigations based on nonlinear effects and a thermal racemization study demonstrated the intrinsic pathway for the formation of axial chirality and its potential utility.
Collapse
Affiliation(s)
- Xiaoxiao Song
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Yanjun Fan
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Zhiming Zhu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Qijian Ni
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
7
|
Sawano T, Takeuchi R. Recent advances in iridium-catalyzed enantioselective allylic substitution using phosphoramidite-alkene ligands. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00316c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This minireview describes the recent progress of iridium-catalyzed enantioselective allylic substitution using phosphoramidite-alkene ligands realizing highly enantioselective carbon–carbon and carbon–heteroatom bond formation.
Collapse
Affiliation(s)
- Takahiro Sawano
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Ryo Takeuchi
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
8
|
Ni Q, Zhu Z, Fan Y, Chen X, Song X. Chiral Phosphoric Acid Catalyzed Desymmetrization of Cyclopentendiones via Friedel-Crafts Conjugate Addition of Indolizines. Org Lett 2021; 23:9548-9553. [PMID: 34855406 DOI: 10.1021/acs.orglett.1c03780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An organocatalytic highly diastero- and enantioselective Friedel-Crafts conjugate addition of indolizines to prochiral cyclopentenediones has been successfully developed. This desymmetric transformation provides a direct access to the desired indolizine-substituted cyclopentanediones in yields of 62-91% and excellent stereoselectivities. The utility of the approach was demonstrated by diverse late-stage functionalizations through reduction or oxidation. Importantly, the direct sp2 C-H functionalization with nitromethane in one-pot process resulted in the indolizine-linked axially chiral styrene bearing a remote chiral center.
Collapse
Affiliation(s)
- Qijian Ni
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| | - Zhiming Zhu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| | - Yanjun Fan
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| | - Xiaoyun Chen
- Jiangsu University of Science and Technology, School of Environmental and Chemical Engineering, No. 2 Mengxi Road, Zhenjiang, Jiangsu, 212003, P. R. China
| | - Xiaoxiao Song
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, Anhui, P. R. China
| |
Collapse
|
9
|
Yang P, Liu CX, Zhang WW, You SL. Ir-Catalyzed Enantioselective Friedel-Crafts Type Allylic Substitution of Indolizines. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21050198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|