1
|
Taylor AB, Holmes MA, Laird MF, Terhune CE. Jaw-Muscle Structure and Function in Primates: Insights Into Muscle Performance and Feeding-System Behaviors. Evol Anthropol 2025; 34:e22053. [PMID: 39964129 PMCID: PMC11834762 DOI: 10.1002/evan.22053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/02/2024] [Accepted: 12/09/2024] [Indexed: 02/21/2025]
Abstract
The jaw-adductor muscles drive the movements and forces associated with primate feeding behaviors such as biting and chewing as well as social signaling behaviors such as wide-mouth canine display. The past several decades have seen a rise in research aimed at the anatomy and physiology of primate chewing muscles to better understand the functional and evolutionary significance of the primate masticatory apparatus. This review summarizes variation in jaw-adductor fiber types and muscle architecture in primates, focusing on physiological, architectural, and behavioral performance variables such as specific tension, fatigue resistance, muscle and bite force, and muscle stretch and gape. Paranthropus and Australopithecus are used as one paleontological example to showcase the importance of these data for addressing paleobiological questions. The high degree of morphological variation related to sex, age, muscle, and species suggests future research should bracket ranges of performance variables rather than focus on single estimates of performance.
Collapse
Grants
- P51 OD011132 NIH HHS
- The study was supported by the Emory National Primate Research Center (grant no. ORIP/OD P51OD011132) and the National Science Foundation (grant nos. BCS-0452160, BCS-0552285, BCS-0635649, BCS-0833394, BCS-0962677, BCS-1440516, BCS-1440541, BCS-1440542, BCS-1440545, BCS-1627206, BCS-1719743, BCS-1725925, BCS-1944642, BCS-1944915, BCS-1945767, and BCS-2316863).
Collapse
Affiliation(s)
- Andrea B. Taylor
- Department of Foundational Biomedical SciencesTouro University CaliforniaVallejoCaliforniaUSA
| | - Megan A. Holmes
- Department of Family Medicine and Community HealthDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Myra F. Laird
- Department of Basic and Translational Sciences, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Claire E. Terhune
- Department of AnthropologyUniversity of ArkansasFayettevilleArkansasUSA
| |
Collapse
|
2
|
Davis JS, Montuelle SJ, Williams SH. Symphyseal morphology and jaw muscle recruitment levels during mastication in musteloid carnivorans. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:163-171. [PMID: 38149465 DOI: 10.1002/jez.2771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
In studies of mammalian mastication, a possible relationship has been proposed between bilateral recruitment of jaw adductor muscle force during unilateral chewing and the degree of fusion of the mandibular symphysis. Specifically, species that have unfused, mobile mandibular symphyses tend to utilize lower levels of jaw adductor force on the balancing (nonchewing) than the working (chewing) side of the head, when compared to related species with fused symphyses. Here, we compare jaw adductor recruitment levels in two species of musteloid carnivoran: the carnivorous ferret (unfused symphysis), and the frugivorous kinkajou (fused symphysis). During forceful chewing, we observe that ferrets recruit far more working-side muscle force than kinkajous, regardless of food toughness and that high working-to-balancing side ratios are the result of increased working-side force, often coupled with reduced balancing-side force. We propose that in carnivorans, high working-to-balancing side force ratios coupled with an unfused mandibular symphysis are necessary to rotate the hemimandible for precise unilateral occlusion of the carnassial teeth and to sustain laterally oriented force on the jaw to engage the carnassial teeth during shearing of tough foods. In contrast, the kinkajou's flattened cheekteeth permit less precise occlusion and require medially-oriented forces for grinding, thus, a fused symphysis is mechanically beneficial.
Collapse
Affiliation(s)
- Jillian Summer Davis
- Department of Biological Sciences, Ohio University, Athens, Ohio, USA
- Pathology, Anatomy, and Laboratory Medicine Department, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Stephane J Montuelle
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Warrensville Heights, Ohio, USA
| | - Susan H Williams
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, USA
| |
Collapse
|
3
|
Stilson KT, Luo ZX, Li P, Olson S, Ross CF. Three-dimensional mandibular kinematics of mastication in the marsupial Didelphis virginiana. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220548. [PMID: 37839456 PMCID: PMC10577026 DOI: 10.1098/rstb.2022.0548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/26/2023] [Indexed: 10/17/2023] Open
Abstract
Didelphis virginiana (the Virginia opossum) is often used as an extant model for understanding feeding behaviour in Mesozoic mammaliaforms, primarily due to their morphological similarities, including an unfused mandibular symphysis and tribosphenic molars. However, the three-dimensional jaw kinematics of opossum chewing have not yet been fully quantified. We used biplanar videofluoroscopy and the X-Ray Reconstruction of Moving Morphology workflow to quantify mandibular kinematics in four wild-caught opossums feeding on hard (almonds) and soft (cheese cubes) foods. These data were used to test hypotheses regarding the importance of roll versus yaw in chewing by early mammals, and the impact of food material properties (FMPs) on jaw kinematics. The magnitude of roll exceeds that of yaw, but both are necessary for tooth-tooth or tooth-food-tooth contact between complex occlusal surfaces. We confirmed the utility of the four vertical kinematic gape cycle phases identified in tetrapods but we further defined two more in order to capture non-vertical kinematics. Statistical tests support the separation of chew cycle phases into two functional groups: occlusal and non-occlusal phases. The separation of slow close into two (occlusal) phases gives quantitative kinematic support for the long-hypothesized multifunctionality of the tribosphenic molar. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.
Collapse
Affiliation(s)
- Kelsey T. Stilson
- Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Zhe-Xi Luo
- Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Peishu Li
- Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Selby Olson
- Department of Biology, University of Florida, Gainesville, FL 32610, USA
| | - Callum F. Ross
- Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
4
|
The Masticatory Apparatus of Humans (Homo sapiens): Evolution and Comparative Functional Morphology. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-13739-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
5
|
Davis JS, Williams SH. The influence of diet on masticatory motor patterns in musteloid carnivorans: An analysis of jaw adductor activity in ferrets (Mustela putorius furo) and kinkajous (Potos flavus). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 327:551-561. [PMID: 29441707 DOI: 10.1002/jez.2141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/29/2017] [Indexed: 11/06/2022]
Abstract
Broad similarities in the timing of jaw adductor activity driving jaw movements across distantly related and morphologically disparate species have led to the hypothesis that mammalian masticatory motor patterns are conserved. However, some quantitative analyses also suggest that masticatory motor patterns have evolved in concert with dietary and/or morphological specialization. Here, we assess this relationship in two closely related carnivoran species with divergent diets and morphology: carnivorous ferrets and frugivorous kinkajous. Using electromyography to characterize jaw adductor activity during rhythmic mastication, we test the hypotheses that (1) carnivoran masticatory motor patterns differ from those of non-carnivorans based on previously published data, and (2) differences between ferret and kinkajou motor patterns are associated with dietary and morphological differences. We find that both species exhibit highly synchronous jaw adductor activity that is likely typical of most carnivorans. Kinkajous differ from ferrets, however, in having a balancing-side zygomaticomandibularis that is active later than all other adductors. The significance of these different masticatory motor patterns may relate to morphological differences in the dentition of ferrets and kinkajous. Whereas ferret cheek teeth have vertical occlusal surfaces that limit jaw closing to a primarily dorsally directed movement, kinkajous have relatively flat occlusal surfaces that allow more transverse movement, which may be essential for processing fruits. Our results suggest that some aspects of masticatory motor patterns are highly conserved yet some components are modified in concert with functional and morphological evolution of the masticatory apparatus.
Collapse
Affiliation(s)
- Jillian S Davis
- Department of Biological Sciences, Ohio University, Athens, Ohio.,Exercise Science Department, High Point University, High Point, North Carolina
| | - Susan H Williams
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio
| |
Collapse
|
6
|
Ram Y, Ross CF. Evaluating the triplet hypothesis during rhythmic mastication in primates. ACTA ACUST UNITED AC 2018; 221:jeb.165985. [PMID: 29133297 DOI: 10.1242/jeb.165985] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/07/2017] [Indexed: 11/20/2022]
Abstract
Mammalian mastication involves precise jaw movements including transverse movement of the mandible during the power stroke. Jaw elevation and transverse movement are driven by asymmetrical jaw elevator muscle activity, which is thought to include a phylogenetically primitive and conserved triplet motor pattern consisting of: triplet I (balancing side: superficial masseter and medial pterygoid; working side: posterior temporalis), which reaches onset, peak and offset first; and triplet II (working side: superficial masseter and medial pterygoid; balancing side: posterior temporalis), which is active second. Although the presence of a triplet motor pattern has been confirmed in several primate species, the prevalence of this motor pattern - i.e. the proportion of masticatory cycles that display it - has not been evaluated in primates. The present study quantifies the presence and prevalence of the triplet motor pattern in five different primate species, Eulemur fulvus, Propithecus verreauxi, Papio anubis, Macacafuscata and Pan troglodytes, using mean onset, peak and offset time relative to working superficial masseter. In all five of the species studied, the mean triplet motor pattern was observed at peak muscle activation, and in four out of the five species the triplet motor pattern occurred more frequently than expected at random at peak muscle activation and offset. Non-triplet motor patterns were observed in varying proportions at different time points in the masticatory cycle, suggesting that the presence or absence of the triplet motor pattern is not a binomial trait. Instead, the primate masticatory motor pattern is malleable within individual cycles, within individual animals and therefore within species.
Collapse
Affiliation(s)
- Yashesvini Ram
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago, IL 60637, USA
| | - Callum F Ross
- Department of Organismal Biology & Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
7
|
Animal Models for Dysphagia Studies: What Have We Learnt So Far. Dysphagia 2017; 32:73-77. [PMID: 28132098 DOI: 10.1007/s00455-016-9778-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 10/20/2022]
Abstract
Research using animal models has contributed significantly to realizing the goal of understanding dysfunction and improving the care of patients who suffer from dysphagia. But why should other researchers and the clinicians who see patients day in and day out care about this work? Results from studies of animal models have the potential to change and grow how we think about dysphagia research and practice in general, well beyond applying specific results to human studies. Animal research provides two key contributions to our understanding of dysphagia. The first is a more complete characterization of the physiology of both normal and pathological swallow than is possible in human subjects. The second is suggesting of specific, physiological, targets for development and testing of treatment interventions to improve dysphagia outcomes.
Collapse
|
8
|
Ying R, Wall CE. A method for discrimination of noise and EMG signal regions recorded during rhythmic behaviors. J Biomech 2016; 49:4113-4118. [PMID: 27789037 DOI: 10.1016/j.jbiomech.2016.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/04/2016] [Accepted: 10/09/2016] [Indexed: 11/18/2022]
Abstract
Analyses of muscular activity during rhythmic behaviors provide critical data for biomechanical studies. Electrical potentials measured from muscles using electromyography (EMG) require discrimination of noise regions as the first step in analysis. An experienced analyst can accurately identify the onset and offset of EMG but this process takes hours to analyze a short (10-15s) record of rhythmic EMG bursts. Existing computational techniques reduce this time but have limitations. These include a universal threshold for delimiting noise regions (i.e., a single signal value for identifying the EMG signal onset and offset), pre-processing using wide time intervals that dampen sensitivity for EMG signal characteristics, poor performance when a low frequency component (e.g., DC offset) is present, and high computational complexity leading to lack of time efficiency. We present a new statistical method and MATLAB script (EMG-Extractor) that includes an adaptive algorithm to discriminate noise regions from EMG that avoids these limitations and allows for multi-channel datasets to be processed. We evaluate the EMG-Extractor with EMG data on mammalian jaw-adductor muscles during mastication, a rhythmic behavior typified by low amplitude onsets/offsets and complex signal pattern. The EMG-Extractor consistently and accurately distinguishes noise from EMG in a manner similar to that of an experienced analyst. It outputs the raw EMG signal region in a form ready for further analysis.
Collapse
Affiliation(s)
- Rex Ying
- Department of Computer Science, Duke University, Durham, NC 27708, USA
| | - Christine E Wall
- Department of Evolutionary Anthropology, Duke University, Campus Box 90383, Durham, NC 27708, USA.
| |
Collapse
|
9
|
Edmonds H. Zygomatic Arch Cortical Area and Diet in Haplorhines. Anat Rec (Hoboken) 2016; 299:1789-1800. [DOI: 10.1002/ar.23478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/18/2016] [Accepted: 08/22/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Hallie Edmonds
- Institute of Human Origins, School of Human Evolution and Social Change, Arizona State University; Arizona
| |
Collapse
|
10
|
Abstract
Feeding is the set of behaviors whereby organisms acquire and process the energy required for survival and reproduction. Thus, feeding system morphology is presumably subject to selection to maintain or improve feeding performance. Relationships among feeding system morphology, feeding behavior, and diet not only explain the morphological diversity of extant primates, but can also be used to reconstruct feeding behavior and diet in fossil taxa. Dental morphology has long been known to reflect aspects of feeding behavior and diet but strong relationships of craniomandibular morphology to feeding behavior and diet have yet to be defined.
Collapse
|
11
|
Fitton LC, Shi JF, Fagan MJ, O'Higgins P. Masticatory loadings and cranial deformation in Macaca fascicularis: a finite element analysis sensitivity study. J Anat 2012; 221:55-68. [PMID: 22690885 DOI: 10.1111/j.1469-7580.2012.01516.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Biomechanical analyses are commonly conducted to investigate how craniofacial form relates to function, particularly in relation to dietary adaptations. However, in the absence of corresponding muscle activation patterns, incomplete muscle data recorded experimentally for different individuals during different feeding tasks are frequently substituted. This study uses finite element analysis (FEA) to examine the sensitivity of the mechanical response of a Macaca fascicularis cranium to varying muscle activation patterns predicted via multibody dynamic analysis. Relative to the effects of varying bite location, the consequences of simulated variations in muscle activation patterns and of the inclusion/exclusion of whole muscle groups were investigated. The resulting cranial deformations were compared using two approaches; strain maps and geometric morphometric analyses. The results indicate that, with bite force magnitude controlled, the variations among the mechanical responses of the cranium to bite location far outweigh those observed as a consequence of varying muscle activations. However, zygomatic deformation was an exception, with the activation levels of superficial masseter being most influential in this regard. The anterior portion of temporalis deforms the cranial vault, but the remaining muscles have less profound effects. This study for the first time systematically quantifies the sensitivity of an FEA model of a primate skull to widely varying masticatory muscle activations and finds that, with the exception of the zygomatic arch, reasonable variants of muscle loading for a second molar bite have considerably less effect on cranial deformation and the resulting strain map than does varying molar bite point. The implication is that FEA models of biting crania will generally produce acceptable estimates of deformation under load as long as muscle activations and forces are reasonably approximated. In any one FEA study, the biological significance of the error in applied muscle forces is best judged against the magnitude of the effect that is being investigated.
Collapse
Affiliation(s)
- L C Fitton
- Centre for Anatomical and Human Sciences, Hull York Medical School, University of York, UK.
| | | | | | | |
Collapse
|
12
|
|
13
|
Vinyard CJ, Glander KE, Teaford MF, Thompson CL, Deffenbaugh M, Williams SH. Methods for Studying the Ecological Physiology of Feeding in Free-Ranging Howlers (Alouatta palliata) at La Pacifica, Costa Rica. INT J PRIMATOL 2012. [DOI: 10.1007/s10764-012-9579-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
14
|
SCOTT JE, HOGUE AS, RAVOSA MJ. The adaptive significance of mandibular symphyseal fusion in mammals. J Evol Biol 2012; 25:661-73. [DOI: 10.1111/j.1420-9101.2012.02457.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Williams SH, Vinyard CJ, Wall CE, Doherty AH, Crompton AW, Hylander WL. A preliminary analysis of correlated evolution in Mammalian chewing motor patterns. Integr Comp Biol 2011; 51:247-59. [PMID: 21719433 PMCID: PMC3135829 DOI: 10.1093/icb/icr068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Descriptive and quantitative analyses of electromyograms (EMG) from the jaw adductors during feeding in mammals have demonstrated both similarities and differences among species in chewing motor patterns. These observations have led to a number of hypotheses of the evolution of motor patterns, the most comprehensive of which was proposed by Weijs in 1994. Since then, new data have been collected and additional hypotheses for the evolution of motor patterns have been proposed. Here, we take advantage of these new data and a well-resolved species-level phylogeny for mammals to test for the correlated evolution of specific components of mammalian chewing motor patterns. We focus on the evolution of the coordination of working-side (WS) and balancing-side (BS) jaw adductors (i.e., Weijs' Triplets I and II), the evolution of WS and BS muscle recruitment levels, and the evolution of asynchrony between pairs of muscles. We converted existing chewing EMG data into binary traits to incorporate as much data as possible and facilitate robust phylogenetic analyses. We then tested hypotheses of correlated evolution of these traits across our phylogeny using a maximum likelihood method and the Bayesian Markov Chain Monte Carlo method. Both sets of analyses yielded similar results highlighting the evolutionary changes that have occurred across mammals in chewing motor patterns. We find support for the correlated evolution of (1) Triplets I and II, (2) BS deep masseter asynchrony and Triplets I and II, (3) a relative delay in the activity of the BS deep masseter and a decrease in the ratio of WS to BS muscle recruitment levels, and (4) a relative delay in the activity of the BS deep masseter and a delay in the activity of the BS posterior temporalis. In contrast, changes in relative WS and BS activity levels across mammals are not correlated with Triplets I and II. Results from this work can be integrated with dietary and morphological data to better understand how feeding and the masticatory apparatus have evolved across mammals in the context of new masticatory demands.
Collapse
Affiliation(s)
- Susan H Williams
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH 45701, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Vinyard CJ, Williams SH, Wall CE, Doherty AH, Crompton AW, Hylander WL. A preliminary analysis of correlations between chewing motor patterns and mandibular morphology across mammals. Integr Comp Biol 2011; 51:260-70. [PMID: 21724618 DOI: 10.1093/icb/icr066] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The establishment of a publicly-accessible repository of physiological data on feeding in mammals, the Feeding Experiments End-user Database (FEED), along with improvements in reconstruction of mammalian phylogeny, significantly improves our ability to address long-standing questions about the evolution of mammalian feeding. In this study, we use comparative phylogenetic methods to examine correlations between jaw robusticity and both the relative recruitment and the relative time of peak activity for the superficial masseter, deep masseter, and temporalis muscles across 19 mammalian species from six orders. We find little evidence for a relationship between jaw robusticity and electromyographic (EMG) activity for either the superficial masseter or temporalis muscles across mammals. We hypothesize that future analyses may identify significant associations between these physiological and morphological variables within subgroups of mammals that share similar diets, feeding behaviors, and/or phylogenetic histories. Alternatively, the relative peak recruitment and timing of the balancing-side (i.e., non-chewing-side) deep masseter muscle (BDM) is significantly negatively correlated with the relative area of the mandibular symphysis across our mammalian sample. This relationship exists despite BDM activity being associated with different loading regimes in the symphyses of primates compared to ungulates, suggesting a basic association between magnitude of symphyseal loads and symphyseal area among these mammals. Because our sample primarily represents mammals that use significant transverse movements during chewing, future research should address whether the correlations between BDM activity and symphyseal morphology characterize all mammals or should be restricted to this "transverse chewing" group. Finally, the significant correlations observed in this study suggest that physiological parameters are an integrated and evolving component of feeding across mammals.
Collapse
Affiliation(s)
- Christopher J Vinyard
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities Colleges of Medicine, Rootstown, OH 44272, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Crompton AW. Masticatory motor programs in Australian herbivorous mammals: diprotodontia. Integr Comp Biol 2011; 51:271-81. [PMID: 21700567 DOI: 10.1093/icb/icr028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Movement of the jaw during molar occlusion is determined by the sequence of activity in the adductor muscles and this sequence is one way to define a masticatory motor program. Based on the similarity of molar structure, it is probable that the American opossum and the early Tertiary mammals that gave rise to all Australian marsupials probably shared a common "primitive" masticatory motor program. The distinct and various patterns of movement of the jaw in the major groups of Australian marsupial herbivores (diprotodontids) are achieved by both subtle and substantial shifts in the timing of the primitive sequence. All diprotodonts divide jaw movements during occlusion into a vertical Phase Im and horizontal Phase IIm, but the number of muscles involved and the level of activity associated with each phase varies considerably. In macropodids (potoroos and kangaroos) Phase Im dominates; in wombats Phase IIm dominates and in koalas the two phases are more evenly divided, with a more equal distribution of muscles between them. The motor program of koalas parallels that of some placental ungulates, while both macropodids and wombats have motor programs unique among mammals.
Collapse
Affiliation(s)
- Alfred W Crompton
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
18
|
Hylander WL, Vinyard CJ, Wall CE, Williams SH, Johnson KR. Functional and Evolutionary significance of the recruitment and firing patterns of the jaw adductors during chewing in verreaux's sifaka (Propithecus verreauxi). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 145:531-47. [DOI: 10.1002/ajpa.21529] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/17/2011] [Indexed: 11/09/2022]
|
19
|
Roberts TE, Lanier HC, Sargis EJ, Olson LE. Molecular phylogeny of treeshrews (Mammalia: Scandentia) and the timescale of diversification in Southeast Asia. Mol Phylogenet Evol 2011; 60:358-72. [PMID: 21565274 DOI: 10.1016/j.ympev.2011.04.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 04/11/2011] [Accepted: 04/26/2011] [Indexed: 11/26/2022]
Abstract
Resolving the phylogeny of treeshrews (Order Scandentia) has historically proven difficult, in large part because of access to specimens and samples from critical taxa. We used "antique" DNA methods with non-destructive sampling of museum specimens to complete taxon sampling for the 20 currently recognized treeshrew species and to estimate their phylogeny and divergence times. Most divergence among extant species is estimated to have taken place within the past 20 million years, with deeper divergences between the two families (Ptilocercidae and Tupaiidae) and between Dendrogale and all other genera within Tupaiidae. All but one of the divergences between currently recognized species had occurred by 4Mya, suggesting that Miocene tectonics, volcanism, and geographic instability drove treeshrew diversification. These geologic processes may be associated with an increase in net diversification rate in the early Miocene. Most evolutionary relationships appear consistent with island-hopping or landbridge colonization between contiguous geographic areas, although there are exceptions in which extinction may play an important part. The single recent divergence is between Tupaia palawanensis and Tupaia moellendorffi, both endemic to the Philippines, and may be due to Pleistocene sea level fluctuations and post-landbridge isolation in allopatry. We provide a time-calibrated phylogenetic framework for answering evolutionary questions about treeshrews and about evolutionary patterns and processes in Euarchonta. We also propose subsuming the monotypic genus Urogale, a Philippine endemic, into Tupaia, thereby reducing the number of extant treeshrew genera from five to four.
Collapse
Affiliation(s)
- Trina E Roberts
- University of Alaska Museum, University of Alaska Fairbanks, 907 Yukon Dr., Fairbanks, AK 99775, USA.
| | | | | | | |
Collapse
|
20
|
Thompson CL, Donley EM, Stimpson CD, Horne WI, Vinyard CJ. The influence of experimental manipulations on chewing speed during in vivo laboratory research in tufted capuchins (Cebus apella). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2011; 145:402-14. [PMID: 21469081 DOI: 10.1002/ajpa.21514] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 01/30/2011] [Indexed: 11/09/2022]
Abstract
Even though in vivo studies of mastication in living primates are often used to test functional and adaptive hypotheses explaining primate masticatory behavior, we currently have little data addressing how experimental procedures performed in the laboratory influence mastication. The obvious logistical issue in assessing how animal manipulation impacts feeding physiology reflects the difficulty in quantifying mechanical parameters without handling the animal. In this study, we measured chewing cycle duration as a mechanical variable that can be collected remotely to: 1) assess how experimental manipulations affect chewing speed in Cebus apella, 2) compare captive chewing cycle durations to that of wild conspecifics, and 3) document sources of variation (beyond experimental manipulation) impacting captive chewing cycle durations. We find that experimental manipulations do increase chewing cycle durations in C. apella by as much as 152 milliseconds (ms) on average. These slower chewing speeds are mainly an effect of anesthesia (and/or restraint), rather than electrode implantation or more invasive surgical procedures. Comparison of captive and wild C. apella suggest there is no novel effect of captivity on chewing speed, although this cannot unequivocally demonstrate that masticatory mechanics are similar in captive and wild individuals. Furthermore, we document significant differences in cycle durations due to inter-individual variation and food type, although duration did not always significantly correlate with mechanical properties of foods. We advocate that the significant reduction in chewing speed be considered as an appropriate qualification when applying the results of laboratory-based feeding studies to adaptive explanations of primate feeding behaviors.
Collapse
Affiliation(s)
- C L Thompson
- Department of Anthropology, Kent State University, OH 44242, USA.
| | | | | | | | | |
Collapse
|
21
|
Crompton AW, Owerkowicz T, Skinner J. Masticatory motor pattern in the koala (Phascolarctos cinereus): a comparison of jaw movements in marsupial and placental herbivores. ACTA ACUST UNITED AC 2010; 313:564-78. [DOI: 10.1002/jez.628] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Vinyard CJ, Taylor AB. A preliminary analysis of the relationship between jaw-muscle architecture and jaw-muscle electromyography during chewing across primates. Anat Rec (Hoboken) 2010; 293:572-82. [PMID: 20235313 PMCID: PMC3098528 DOI: 10.1002/ar.21121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The architectural arrangement of the fibers within a muscle has a significant impact on how a muscle functions. Recent work on primate jaw-muscle architecture demonstrates significant associations with dietary variation and feeding behaviors. In this study, the relationship between masseter and temporalis muscle architecture and jaw-muscle activity patterns is explored using Belanger's treeshrews and 11 primate species, including two genera of strepsirrhines (Lemur and Otolemur) and five genera of anthropoids (Aotus, Callithrix, Cebus, Macaca, and Papio). Jaw-muscle weights, fiber lengths, and physiologic cross-sectional areas (PCSA) were quantified for this preliminary analysis or collected from the literature and compared to published electromyographic recordings from these muscles. Results indicate that masseter architecture is unrelated to the superficial masseter working-side/balancing-side (W/B) ratio across primate species. Alternatively, relative temporalis architecture is correlated with temporalis W/B ratios across primates. Specifically, relative temporalis PCSA is inversely related to the W/B ratio for the anterior temporalis, indicating that as animals recruit a larger relative percentage of their balancing-side temporalis, they possess the ability to generate relatively larger amounts of force from these muscles. These findings support three broader conclusions. First, masseter muscle architecture may have experienced divergent evolution across different primate clades related to novel functional roles in different groups. Second, the temporalis may be functionally constrained (relative to the masseter) across primates in its functional role of creating vertical occlusal forces during chewing. Finally, the contrasting results for the masseter and temporalis suggest that the fiber architecture of these muscles has evolved as distinct functional units in primates.
Collapse
Affiliation(s)
- Christopher J Vinyard
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities College of Medicine, Rootstown, OH 44272, USA.
| | | |
Collapse
|
23
|
Vinyard CJ, Wall CE, Williams SH, Hylander WL. Patterns of variation across primates in jaw-muscle electromyography during mastication. Integr Comp Biol 2008; 48:294-311. [PMID: 21669792 DOI: 10.1093/icb/icn071] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Christopher J Vinyard
- *Department of Anatomy and Neurobiology, NEOUCOM, Rootstown, OH, USA; Department of Evolutionary Anthropology, Duke University, Durham, NC, USA; Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH, USA
| | | | | | | |
Collapse
|
24
|
Crompton AW, Barnet J, Lieberman DE, Owerkowicz T, Skinner J, Baudinette RV. Control of jaw movements in two species of macropodines (Macropus eugenii and Macropus rufus). Comp Biochem Physiol A Mol Integr Physiol 2007; 150:109-23. [PMID: 18065250 DOI: 10.1016/j.cbpa.2007.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/25/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
Abstract
The masticatory motor patterns of three tammar wallabies and two red kangaroos were determined by analyzing the pattern of electromyographic (EMG) activity of the jaw adductors and correlating it with lower jaw movements, as recorded by digital video and videoradiography. Transverse jaw movements were limited by the width of the upper incisal arcade. Molars engaged in food breakdown during two distinct occlusal phases characterized by abrupt changes in the direction of working-side hemimandible movement. Separate orthal (Phase I) and transverse (Phase II) trajectories were observed. The working-side lower jaw initially was drawn laterally by the balancing-side medial pterygoid and then orthally by overlapping activity in the balancing- and working-side temporalis and the balancing-side superficial masseter and medial pterygoid. Transverse movement occurred principally via the working-side medial pterygoid and superficial masseter. This pattern contrasted to that of placental herbivores, which are known to break down food when they move the working-side lower jaw transversely along a relatively longer linear path without changing direction during the power stroke. The placental trajectory results from overlapping activity in the working- and balancing-side adductor muscles, suggesting that macropods and placental herbivores have modified the primitive masticatory motor pattern in different ways.
Collapse
Affiliation(s)
- A W Crompton
- Museum of Comparative Zoology, Harvard University, 26 Oxford St, Cambridge, Massachusetts 02138, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Kayalioglu M, Shcherbatyy V, Seifi A, Liu ZJ. Roles of intrinsic and extrinsic tongue muscles in feeding: electromyographic study in pigs. Arch Oral Biol 2007; 52:786-96. [PMID: 17350586 PMCID: PMC2241921 DOI: 10.1016/j.archoralbio.2007.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 01/02/2007] [Accepted: 01/03/2007] [Indexed: 10/23/2022]
Abstract
The performance of tongue muscles in various feeding behaviours is not well defined. This study was undertaken to examine the role of the intrinsic and extrinsic tongue muscles during natural drinking, food ingestion and chewing. Ten 12-week-old Yucatan miniature pigs (5 in each gender) were used. Under anesthesia, fine-wire electrodes were inserted into three intrinsic (verticalis and transversus [V/T]; superior and inferior longitudinalis [SL and IL]) and two extrinsic (genioglossus [GG] and styloglossus [SG]) tongue muscles and two jaw muscles (masseter [MA] and anterior digastricus [DI]). Electromyogram (EMG) and jaw movement were recorded and synchronized when pigs were drinking water, ingesting and chewing food freely. Chewing frequency (CF), onset of activation, burst duration and integrated activity (IEMG) were assessed quantitatively, and EMG activities during drinking and ingestion were examined qualitatively. Results indicate that during chewing, the V/T and GG had one phase of activity starting at early jaw opening, and the V/T activity lasted through late of jaw closing. The SL, IL and SG had double phases with the first starting at jaw opening and the second at late jaw closing phases. The three intrinsic tongue muscles and the SG were active during 35-48% of the chewing cycle. IEMG values of the SL, IL and SG of both sides were significantly greater compared to the other muscles (p<0.05-0.01). Both the SL and the IL showed significantly higher activities in the contralateral than ipsilateral sides (p<0.05). The timing sequences of both extrinsic and intrinsic muscles were similar between ingestion and chewing, but amplitudes of the GG and IL were greatly enhanced and those of the MA and SL were reduced during ingestion. The simultaneous activation of the MA, GG and V/T were seen during drinking, along with major activity in the GG and V/T. These results suggested that the majority of activity in the intrinsic and extrinsic tongue muscles occurred during jaw opening and the occlusal phases of chewing. The activity of the GG and IL played a major role during ingestion, whereas simultaneous activation of jaw, extrinsic and intrinsic tongue muscles and major activity in the GG and V/T occurred during drinking.
Collapse
|
26
|
Langenbach GEJ, Zhang F, Herring SW, van Eijden TMGJ, Hannam AG. Dynamic mechanics in the pig mandibular symphysis. J Anat 2007; 209:69-78. [PMID: 16822271 PMCID: PMC2100305 DOI: 10.1111/j.1469-7580.2006.00584.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
During mastication, various biomechanical events occur at the mammalian jaw symphysis. Previously, these events have been studied in the static environment, or by direct recording of surface bone strains. Thus far, however, it has not been possible to demonstrate directly the forces and torques passing through the symphysis in association with dynamically changing muscle tensions. Therefore, we modified a previously published dynamic pig jaw model to predict the forces and torques at the symphysis, and related these to simulated masticatory muscle tensions, and bite, joint and food bolus forces. An artificial rigid joint was modelled at the symphysis, allowing measurements of the tri-axial forces and torques passing through it. The model successfully confirmed three previously postulated loading patterns at the symphysis. Dorsoventral shear occurred when the lower teeth hit the artificial food bolus. It was associated with balancing-side jaw adductor forces, and reaction forces from the working-side bite point. Medial transverse bending occurred during jaw opening, and was associated with bilateral tensions in the lateral pterygoid. Lateral transverse bending (wishboning) occurred at the late stage of the power stroke, and was associated with the actions of the deep and superficial masseters. The largest predicted force was dorsoventral shear force, and the largest torque was a 'wishboning' torque about the superoinferior axis. We suggest that dynamic modelling offers a new and powerful method for studying jaw biomechanics, especially when the parameters involved are difficult or impossible to measure in vivo.
Collapse
Affiliation(s)
- G E J Langenbach
- Department of Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), Universiteit van Amsterdam en Vrije Universiteit, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Williams SH, Vinyard CJ, Wall CE, Hylander WL. Masticatory motor patterns in ungulates: a quantitative assessment of jaw-muscle coordination in goats, alpacas and horses. ACTA ACUST UNITED AC 2007; 307:226-40. [PMID: 17436331 DOI: 10.1002/jez.362] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We investigated patterns of jaw-muscle coordination during rhythmic mastication in three species of ungulates displaying the marked transverse jaw movements typical of many large mammalian herbivores. In order to quantify consistent motor patterns during chewing, electromyograms were recorded from the superficial masseter, deep masseter, posterior temporalis and medial pterygoid muscles of goats, alpacas and horses. Timing differences between muscle pairs were evaluated in the context of an evolutionary model of jaw-muscle function. In this model, the closing and food reduction phases of mastication are primarily controlled by two distinct muscle groups, triplet I (balancing-side superficial masseter and medial pterygoid and working-side posterior temporalis) and triplet II (working-side superficial masseter and medial pterygoid and balancing-side posterior temporalis), and the asynchronous activity of the working- and balancing-side deep masseters. The three species differ in the extent to which the jaw muscles are coordinated as triplet I and triplet II. Alpacas, and to a lesser extent, goats, exhibit the triplet pattern whereas horses do not. In contrast, all three species show marked asynchrony of the working-side and balancing-side deep masseters, with jaw closing initiated by the working-side muscle and the balancing-side muscle firing much later during closing. However, goats differ from alpacas and horses in the timing of the balancing-side deep masseter relative to the triplet II muscles. This study highlights interspecific differences in the coordination of jaw muscles to influence transverse jaw movements and the production of bite force in herbivorous ungulates.
Collapse
Affiliation(s)
- Susan H Williams
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, OH 45701, USA.
| | | | | | | |
Collapse
|
28
|
Wall CE, Vinyard CJ, Johnson KR, Williams SH, Hylander WL. Phase II jaw movements and masseter muscle activity during chewing inPapio anubis. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2006; 129:215-24. [PMID: 16278877 DOI: 10.1002/ajpa.20290] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It was proposed that the power stroke in primates has two distinct periods of occlusal contact, each with a characteristic motion of the mandibular molars relative to the maxillary molars. The two movements are called phase I and phase II, and they occur sequentially in that order (Kay and Hiiemae [1974] Am J. Phys. Anthropol. 40:227-256, Kay and Hiiemae [1974] Prosimian Biology, Pittsburgh: University of Pittsburgh Press, p. 501-530). Phase I movement is said to be associated with shearing along a series of crests, producing planar phase I facets and crushing on surfaces on the basins of the molars. Phase I terminates in centric occlusion. Phase II movement is said to be associated with grinding along the same surfaces that were used for crushing at the termination of phase I. Hylander et al. ([1987] Am J. Phys. Anthropol. 72:287-312; see also Hiiemae [1984] Food Acquisition and Processing, London: Academic Press, p. 257-281; Hylander and Crompton [1980] Am J. Phys. Anthropol. 52:239-251, [1986] Arch. Oral. Biol. 31:841-848) analyzed data on macaques and suggested that phase II movement may not be nearly as significant for food breakdown as phase I movement simply because, based on the magnitude of mandibular bone strain patterns, adductor muscle and occlusal forces are likely negligible during movement out of centric occlusion. Our goal is to better understand the functional significance of phase II movement within the broader context of masticatory kinematics during the power stroke. We analyze vertical and transverse mandibular motion and relative activity of the masseter and temporalis muscles during phase I and II movements in Papio anubis. We test whether significant muscle activity and, by inference, occlusal force occurs during phase II movement. We find that during phase II movement, there is negligible force developed in the superficial and deep masseter and the anterior and posterior temporalis muscles. Furthermore, mandibular movements are small during phase II compared to phase I. These results suggest that grinding during phase II movement is of minimal importance for food breakdown, and that most food breakdown on phase II facets occurs primarily at the end of phase I movement (i.e., crushing during phase I movement). We note, however, that depending on the orientation of phase I facets, significant grinding also occurs along phase I facets during phase I.
Collapse
Affiliation(s)
- Christine E Wall
- Department of Biological Anthropology and Anatomy, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | |
Collapse
|
29
|
Taylor AB. Feeding behavior, diet, and the functional consequences of jaw form in orangutans, with implications for the evolution of Pongo. J Hum Evol 2006; 50:377-93. [PMID: 16413045 DOI: 10.1016/j.jhevol.2005.10.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 08/24/2005] [Accepted: 10/20/2005] [Indexed: 11/17/2022]
Abstract
Orangutans are amongst the most craniometrically variable of the extant great apes, yet there has been no attempt to explicitly link this morphological variation with observed differences in behavioral ecology. This study explores the relationship between feeding behavior, diet, and mandibular morphology in orangutans. All orangutans prefer ripe, pulpy fruit when available. However, some populations of Bornean orangutans (Pongo pygmaeus morio and P. p. wurmbii) rely more heavily on bark and relatively tough vegetation during periods of low fruit yield than do Sumatran orangutans (Pongo abelii). I tested the hypothesis that Bornean orangutans exhibit structural features of the mandible that provide greater load resistance abilities to masticatory and incisal forces. Compared to P. abelii, P. p. morio exhibits greater load resistance abilities as reflected in a relatively deeper mandibular corpus, deeper and wider mandibular symphysis, and relatively greater condylar area. P. p. wurmbii exhibits most of these same morphologies, and in all comparisons is either comparable in jaw proportions to P. p. morio, or intermediate between P. p. morio and P. abelii. These data indicate that P. p. morio and P. p. wurmbii are better suited to resisting large and/or frequent jaw loads than P. abelii. Using these results, I evaluated mandibular morphology in P. p. pygmaeus, a Bornean orangutan population whose behavioral ecology is poorly known. Pongo p. pygmaeus generally exhibits relatively greater load resistance capabilities than P. abelii, but less than P. p. morio. These results suggest that P. p. pygmaeus may consume greater amounts of tougher and/or more obdurate foods than P. abelii, and that consumption of such foods may intensify amongst Bornean orangutan populations. Finally, data from this study are used to evaluate variation in craniomandibular morphology in Khoratpithecus piriyai, possibly the earliest relative of Pongo from the late Miocene of Thailand, and the late Pleistocene Hoa Binh subfossil orangutan recovered from Vietnam. With the exception of a relatively thicker M(3) mandibular corpus, K. piriyai has jaw proportions that would be expected for an extant orangutan of comparable jaw size. Likewise, the Hoa Binh subfossil does not differ in skull proportions from extant Pongo, independent of the effects of increase in jaw size. These results indicate that differences in skull and mandibular proportions between these fossil and subfossil orangutans and extant Pongo are allometric. Furthermore, the ability of K. piriyai to resist jaw loads appears to have been comparable to that of extant orangutans. However, the similarity in jaw proportions between P. abelii and K. piriyai suggest the latter may have been dietarily more similar to Sumatran orangutans.
Collapse
Affiliation(s)
- Andrea B Taylor
- Departments of Community and Family Medicine and Biological Anthropology and Anatomy, Duke University Medical Center, Box 3907, Durham, NC 27710, USA.
| |
Collapse
|
30
|
Vinyard CJ, Wall CE, Williams SH, Johnson KR, Hylander WL. Masseter electromyography during chewing in ring-tailed lemurs (Lemur catta). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2006; 130:85-95. [PMID: 16345068 DOI: 10.1002/ajpa.20307] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We examined masseter recruitment and firing patterns during chewing in four adult ring-tailed lemurs (Lemur catta), using electromyography (EMG). During chewing of tougher foods, the working-side superficial masseter tends to show, on average, 1.7 times more scaled EMG activity than the balancing-side superficial masseter. The working-side deep masseter exhibits, on average, 2.4 times the scaled EMG activity of the balancing-side deep masseter. The relatively larger activity in the working-side muscles suggests that ring-tailed lemurs recruit relatively less force from their balancing-side muscles during chewing. The superficial masseter working-to-balancing-side (W/B) ratio for lemurs overlaps with W/B ratios from anthropoid primates. In contrast, the lemur W/B ratio for the deep masseter is more similar to that of greater galagos, while both are significantly larger than W/B ratios of anthropoids. Because ring-tailed lemurs have unfused and hence presumably weaker symphyses, these data are consistent with the symphyseal fusion-muscle recruitment hypothesis stating that symphyseal fusion in anthropoids provides increased strength for resisting forces created by the balancing-side jaw muscles during chewing. Among the masseter muscles of ring-tailed lemurs, the working-side deep masseter peaks first on average, followed in succession by the balancing-side deep masseter, balancing-side superficial masseter, and finally the working-side superficial masseter. Ring-tailed lemurs are similar to greater galagos in that their balancing-side deep masseter peaks well before their working-side superficial masseter. We see the opposite pattern in anthropoids, where the balancing-side deep masseter peaks, on average, after the working-side superficial masseter. This late activity of the balancing-side deep masseter in anthropoids is linked to lateral-transverse bending, or wishboning, of their mandibular symphyses. Subsequently, the stresses incurred during wishboning are hypothesized to be a proximate reason for strengthening, and hence fusion, of the anthropoid symphysis. Thus, the absence of this muscle-firing pattern in ring-tailed lemurs with their weaker, unfused symphyses provides further correlational support for the symphyseal fusion late-acting balancing-side deep masseter hypothesis linking wishboning and symphyseal strengthening in anthropoids. The early peak activity of the working-side deep masseter in ring-tailed lemurs is unlike galagos and most similar to the pattern seen in macaques and baboons. We hypothesize that this early activity of the working-side deep masseter moves the lower jaw both laterally toward the working side and vertically upward, to position it for the upcoming power stroke. From an evolutionary perspective, the differences in peak firing times for the working-side deep masseter between ring-tailed lemurs and greater galagos indicate that deep masseter firing patterns are not conserved among strepsirrhines.
Collapse
Affiliation(s)
- Christopher J Vinyard
- Department of Anatomy, Northeastern Ohio Universities College of Medicine, Rootstown, Ohio 44272, USA.
| | | | | | | | | |
Collapse
|
31
|
Williams SH, Wright BW, Truong VD, Daubert CR, Vinyard CJ. Mechanical properties of foods used in experimental studies of primate masticatory function. Am J Primatol 2005; 67:329-46. [PMID: 16287104 DOI: 10.1002/ajp.20189] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In vivo studies of jaw-muscle behavior have been integral factors in the development of our current understanding of the primate masticatory apparatus. However, even though it has been shown that food textures and mechanical properties influence jaw-muscle activity during mastication, very little effort has been made to quantify the relationship between the elicited masticatory responses of the subject and the mechanical properties of the foods that are eaten. Recent work on human mastication highlights the importance of two mechanical properties-toughness and elastic modulus (i.e., stiffness)-for food breakdown during mastication. Here we provide data on the toughness and elastic modulus of the majority of foods used in experimental studies of the nonhuman primate masticatory apparatus. Food toughness ranges from approximately 56.97 Jm(-2) (apple pulp) to 4355.45 Jm(-2) (prune pit). The elastic modulus of the experimental foods ranges from 0.07 MPa for gummy bears to 346 MPa for popcorn kernels. These data can help researchers studying primate mastication select among several potential foods with broadly similar mechanical properties. Moreover, they provide a framework for understanding how jaw-muscle activity varies with food mechanical properties in these studies.
Collapse
Affiliation(s)
- Susan H Williams
- Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, Ohio 45701, USA.
| | | | | | | | | |
Collapse
|