1
|
Evolution of the Human Chromosome 13 Synteny: Evolutionary Rearrangements, Plasticity, Human Disease Genes and Cancer Breakpoints. Genes (Basel) 2020; 11:genes11040383. [PMID: 32244767 PMCID: PMC7230465 DOI: 10.3390/genes11040383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/29/2023] Open
Abstract
The history of each human chromosome can be studied through comparative cytogenetic approaches in mammals which permit the identification of human chromosomal homologies and rearrangements between species. Comparative banding, chromosome painting, Bacterial Artificial Chromosome (BAC) mapping and genome data permit researchers to formulate hypotheses about ancestral chromosome forms. Human chromosome 13 has been previously shown to be conserved as a single syntenic element in the Ancestral Primate Karyotype; in this context, in order to study and verify the conservation of primate chromosomes homologous to human chromosome 13, we mapped a selected set of BAC probes in three platyrrhine species, characterised by a high level of rearrangements, using fluorescence in situ hybridisation (FISH). Our mapping data on Saguinus oedipus, Callithrix argentata and Alouatta belzebul provide insight into synteny of human chromosome 13 evolution in a comparative perspective among primate species, showing rearrangements across taxa. Furthermore, in a wider perspective, we have revised previous cytogenomic literature data on chromosome 13 evolution in eutherian mammals, showing a complex origin of the eutherian mammal ancestral karyotype which has still not been completely clarified. Moreover, we analysed biomedical aspects (the OMIM and Mitelman databases) regarding human chromosome 13, showing that this autosome is characterised by a certain level of plasticity that has been implicated in many human cancers and diseases.
Collapse
|
2
|
Solari S, Sotero-Caio CG, Baker RJ. Advances in systematics of bats: towards a consensus on species delimitation and classifications through integrative taxonomy. J Mammal 2019. [DOI: 10.1093/jmammal/gyy168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Sergio Solari
- Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Cibele G Sotero-Caio
- Departamento de Genética, Universidade Federal de Pernambuco, Cidade Universitária, Recife, PE, Brazil
| | - Robert J Baker
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
3
|
Baicharoen S, Hirai Y, Srikulnath K, Kongprom U, Hirai H. Hypervariability of Nucleolus Organizer Regions in Bengal Slow Lorises, Nycticebus bengalensis (Primates, Lorisidae). Cytogenet Genome Res 2016; 149:267-273. [PMID: 27648559 DOI: 10.1159/000449145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2016] [Indexed: 11/19/2022] Open
Abstract
Slow lorises are a cryptic species complex, and thus genetic markers are needed to identify distinct evolutionary lineages or species. We examined the nucleolus organizer regions (NORs) of Bengal slow lorises (Nycticebus bengalensis) using FISH with 18S rDNA (rDNA-FISH) and silver nitrate staining (Ag-NOR stain). Ten individuals of the putatively single species N. bengalensis showed higher variability in localization than 3 other congeners, though their overall karyotypes were similar. The rDNA-FISH analysis detected a total of 18 loci, in contrast to previous studies of other slow loris species that revealed far fewer (6-10) loci. Eight of the 18 loci detected in the present analysis were found to be semi-stable localizations at 4 different chromosomes, while 10 were found to be unstable localizations at 5 other chromosomes. The semi-stable locations showed occasional presence/absence of variations for rDNA-FISH, and unstable locations were polymorphic among individuals, contributing to the higher variability of NORs in this taxon. We hypothesize that the larger numbers of rDNA loci found in N. bengalensis were introduced by genomic dispersion through ectopic recombination in association with terminal regions including rDNA. Such differences are potentially very powerful chromosomal markers to be used in species identification and conservation.
Collapse
|
4
|
The 14/15 association as a paradigmatic example of tracing karyotype evolution in New World monkeys. Chromosoma 2015; 125:747-56. [DOI: 10.1007/s00412-015-0565-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/24/2015] [Accepted: 11/30/2015] [Indexed: 10/22/2022]
|
5
|
Nie W. Molecular cytogenetic studies in strepsirrhine primates, Dermoptera and Scandentia. Cytogenet Genome Res 2012; 137:246-58. [PMID: 22614467 DOI: 10.1159/000338727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Since the first chromosome painting study between human and strepsirrhine primates was performed in 1996, nearly 30 species in Strepsirrhini, Dermoptera and Scandentia have been analyzed by cross-species chromosome painting. Here, the contribution of chromosome painting data to our understanding of primate genome organization, chromosome evolution and the karyotype phylogenetic relationships within strepsirrhine primates, Dermoptera and Scandentia is reviewed. Twenty-six to 43 homologous chromosome segments have been revealed in different species with human chromosome-specific paint probes. Various landmark rearrangements characteristic for each different lineage have been identified, as cytogenetic signatures that potentially unite certain lineages within strepsirrhine primates, Dermoptera and Scandentia.
Collapse
Affiliation(s)
- W Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China.
| |
Collapse
|
6
|
A Phylogenetic Analysis of Human Syntenies Revealed by Chromosome Painting in Euarchontoglires Orders. J MAMM EVOL 2010. [DOI: 10.1007/s10914-010-9150-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Abstract
Chromosome sorting by flow cytometry is the principle source of chromosome-specific DNA not only for chromosome painting, but also for many other types of genomic analysis such as library construction, discovery and isolation of genes, chromosome specific direct DNA selection, and array painting. Chromosome sorting coupled with chromosome painting is a rapid method for global phylogenomic comparisons. These two techniques have made notable contributions to our knowledge of the evolution of the mammalian genome. The flow sorting of multiple species allows reciprocal painting and permits the delineation of subchromosomal homology and the definition of chromosomal breakpoints. Chromosomes are valuable phylogenetic makers because rearrangements that become fixed at the species level are considered rare events and apparently tightly bound to the speciation process. This chapter covers the preparation of a single chromosome suspension from cell cultures, bivariate chromosome flow sorting, preparation of chromosome paints by degenerate oligonucleotide primed-PCR and the fluorescence in-situ hybridization and detection of whole chromosome specific probes.
Collapse
|
8
|
Abstract
In 1992 the Japanese macaque was the first species for which the homology of the entire karyotype was established by cross-species chromosome painting. Today, there are chromosome painting data on more than 50 species of primates. Although chromosome painting is a rapid and economical method for tracking translocations, it has limited utility for revealing intrachromosomal rearrangements. Fortunately, the use of BAC-FISH in the last few years has allowed remarkable progress in determining marker order along primate chromosomes and there are now marker order data on an array of primate species for a good number of chromosomes. These data reveal inversions, but also show that centromeres of many orthologous chromosomes are embedded in different genomic contexts. Even if the mechanisms of neocentromere formation and progression are just beginning to be understood, it is clear that these phenomena had a significant impact on shaping the primate genome and are fundamental to our understanding of genome evolution. In this report we complete and integrate the dataset of BAC-FISH marker order for human syntenies 1, 2, 4, 5, 8, 12, 17, 18, 19, 21, 22 and the X. These results allowed us to develop hypotheses about the content, marker order and centromere position in ancestral karyotypes at five major branching points on the primate evolutionary tree: ancestral primate, ancestral anthropoid, ancestral platyrrhine, ancestral catarrhine and ancestral hominoid. Current models suggest that between-species structural rearrangements are often intimately related to speciation. Comparative primate cytogenetics has become an important tool for elucidating the phylogeny and the taxonomy of primates. It has become increasingly apparent that molecular cytogenetic data in the future can be fruitfully combined with whole-genome assemblies to advance our understanding of primate genome evolution as well as the mechanisms and processes that have led to the origin of the human genome.
Collapse
|
9
|
Nie W, Fu B, O'Brien PCM, Wang J, Su W, Tanomtong A, Volobouev V, Ferguson-Smith MA, Yang F. Flying lemurs--the 'flying tree shrews'? Molecular cytogenetic evidence for a Scandentia-Dermoptera sister clade. BMC Biol 2008; 6:18. [PMID: 18452598 PMCID: PMC2386441 DOI: 10.1186/1741-7007-6-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 05/01/2008] [Indexed: 01/22/2023] Open
Abstract
Background Flying lemurs or Colugos (order Dermoptera) represent an ancient mammalian lineage that contains only two extant species. Although molecular evidence strongly supports that the orders Dermoptera, Scandentia, Lagomorpha, Rodentia and Primates form a superordinal clade called Supraprimates (or Euarchontoglires), the phylogenetic placement of Dermoptera within Supraprimates remains ambiguous. Results To search for cytogenetic signatures that could help to clarify the evolutionary affinities within this superordinal group, we have established a genome-wide comparative map between human and the Malayan flying lemur (Galeopterus variegatus) by reciprocal chromosome painting using both human and G. variegatus chromosome-specific probes. The 22 human autosomal paints and the X chromosome paint defined 44 homologous segments in the G. variegatus genome. A putative inversion on GVA 11 was revealed by the hybridization patterns of human chromosome probes 16 and 19. Fifteen associations of human chromosome segments (HSA) were detected in the G. variegatus genome: HSA1/3, 1/10, 2/21, 3/21, 4/8, 4/18, 7/15, 7/16, 7/19, 10/16, 12/22 (twice), 14/15, 16/19 (twice). Reverse painting of G. variegatus chromosome-specific paints onto human chromosomes confirmed the above results, and defined the origin of the homologous human chromosomal segments in these associations. In total, G. variegatus paints revealed 49 homologous chromosomal segments in the HSA genome. Conclusion Comparative analysis of our map with published maps from representative species of other placental orders, including Scandentia, Primates, Lagomorpha and Rodentia, suggests a signature rearrangement (HSA2q/21 association) that links Scandentia and Dermoptera to one sister clade. Our results thus provide new evidence for the hypothesis that Scandentia and Dermoptera have a closer phylogenetic relationship to each other than either of them has to Primates.
Collapse
Affiliation(s)
- Wenhui Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming,Yunnan 650223, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Ruiz-Herrera A, Robinson TJ. Chromosomal instability in Afrotheria: fragile sites, evolutionary breakpoints and phylogenetic inference from genome sequence assemblies. BMC Evol Biol 2007; 7:199. [PMID: 17958882 PMCID: PMC2211313 DOI: 10.1186/1471-2148-7-199] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 10/24/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Extant placental mammals are divided into four major clades (Laurasiatheria, Supraprimates, Xenarthra and Afrotheria). Given that Afrotheria is generally thought to root the eutherian tree in phylogenetic analysis of large nuclear gene data sets, the study of the organization of the genomes of afrotherian species provides new insights into the dynamics of mammalian chromosomal evolution. Here we test if there are chromosomal bands with a high tendency to break and reorganize in Afrotheria, and by analyzing the expression of aphidicolin-induced common fragile sites in three afrotherian species, whether these are coincidental with recognized evolutionary breakpoints. RESULTS We described 29 fragile sites in the aardvark (OAF) genome, 27 in the golden mole (CAS), and 35 in the elephant-shrew (EED) genome. We show that fragile sites are conserved among afrotherian species and these are correlated with evolutionary breakpoints when compared to the human (HSA) genome. Inddition, by computationally scanning the newly released opossum (Monodelphis domestica) and chicken sequence assemblies for use as outgroups to Placentalia, we validate the HSA 3/21/5 chromosomal synteny as a rare genomic change that defines the monophyly of this ancient African clade of mammals. On the other hand, support for HSA 1/19p, which is also thought to underpin Afrotheria, is currently ambiguous. CONCLUSION We provide evidence that (i) the evolutionary breakpoints that characterise human syntenies detected in the basal Afrotheria correspond at the chromosomal band level with fragile sites, (ii) that HSA 3p/21 was in the amniote ancestor (i.e., common to turtles, lepidosaurs, crocodilians, birds and mammals) and was subsequently disrupted in the lineage leading to marsupials. Its expansion to include HSA 5 in Afrotheria is unique and (iii) that its fragmentation to HSA 3p/21 + HSA 5/21 in elephant and manatee was due to a fission within HSA 21 that is probably shared by all Paenungulata.
Collapse
Affiliation(s)
- Aurora Ruiz-Herrera
- Evolutionary Genomics Group, Department of Botany & Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
| | | |
Collapse
|
12
|
Dumas F, Stanyon R, Sineo L, Stone G, Bigoni F. Phylogenomics of species from four genera of New World monkeys by flow sorting and reciprocal chromosome painting. BMC Evol Biol 2007; 7 Suppl 2:S11. [PMID: 17767727 PMCID: PMC1963484 DOI: 10.1186/1471-2148-7-s2-s11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background The taxonomic and phylogenetic relationships of New World monkeys (Platyrrhini) are difficult to distinguish on the basis of morphology and because diagnostic fossils are rare. Recently, molecular data have led to a radical revision of the traditional taxonomy and phylogeny of these primates. Here we examine new hypotheses of platyrrhine evolutionary relationships by reciprocal chromosome painting after chromosome flow sorting of species belonging to four genera of platyrrhines included in the Cebidae family: Callithrix argentata (silvered-marmoset), Cebuella pygmaea (pygmy marmoset), Callimico goeldii (Goeldi's marmoset) and Saimiri sciureus (squirrel monkey). This is the first report of reciprocal painting in marmosets. Results The paints made from chromosome flow sorting of the four platyrrhine monkeys provided from 42 to 45 hybridization signals on human metaphases. The reciprocal painting of monkey probes on human chromosomes revealed that 21 breakpoints are common to all four studied species. There are only three additional breakpoints. A breakpoint on human chromosome 13 was found in Callithrix argentata, Cebuella pygmaea and Callimico goeldii, but not in Saimiri sciureus. There are two additional breakpoints on human chromosome 5: one is specific to squirrel monkeys, and the other to Goeldi's marmoset. Conclusion The reciprocal painting results support the molecular genomic assemblage of Cebidae. We demonstrated that the five chromosome associations previously hypothesized to phylogenetically link tamarins and marmosets are homologous and represent derived chromosome rearrangements. Four of these derived homologous associations tightly nest Callimico goeldii with marmosets. One derived association 2/15 may place squirrel monkeys within the Cebidae assemblage. An apparently common breakpoint on chromosome 5q33 found in both Saimiri and Aotus nancymae could be evidence of a phylogenetic link between these species. Comparison with previous reports shows that many syntenic associations found in platyrrhines have the same breakpoints and are homologous, derived rearrangements showing that the New World monkeys are a closely related group of species. Our data support the hypothesis that the ancestral karyotype of the Platyrrhini has a diploid number of 2n = 54 and is almost identical to that found today in capuchin monkeys; congruent with a basal position of the Cebidae among platyrrhine families.
Collapse
Affiliation(s)
- Francesca Dumas
- Dipartimento di Biologia animale (DBA) Università degli Studi di Palermo, via Archirafi 18. Palermo, Italy
| | - Roscoe Stanyon
- Dipartimento di Biologia Animale e Genetica, Laboratori di Antropologia, Via del Proconsolo 12, 50122 Firenze, Italy
| | - Luca Sineo
- Dipartimento di Biologia animale (DBA) Università degli Studi di Palermo, via Archirafi 18. Palermo, Italy
| | - Gary Stone
- Comparative Molecular Cytogenetics Core, National Cancer Institute, Frederick Maryland, USA
| | - Francesca Bigoni
- Dipartimento di Biologia Animale e Genetica, Laboratori di Antropologia, Via del Proconsolo 12, 50122 Firenze, Italy
| |
Collapse
|
13
|
|
14
|
Yang F, Graphodatsky AS, Li T, Fu B, Dobigny G, Wang J, Perelman PL, Serdukova NA, Su W, O'Brien PC, Wang Y, Ferguson-Smith MA, Volobouev V, Nie W. Comparative genome maps of the pangolin, hedgehog, sloth, anteater and human revealed by cross-species chromosome painting: further insight into the ancestral karyotype and genome evolution of eutherian mammals. Chromosome Res 2006; 14:283-96. [PMID: 16628499 DOI: 10.1007/s10577-006-1045-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 02/16/2006] [Indexed: 12/14/2022]
Abstract
To better understand the evolution of genome organization of eutherian mammals, comparative maps based on chromosome painting have been constructed between human and representative species of three eutherian orders: Xenarthra, Pholidota, and Eulipotyphla, as well as between representative species of the Carnivora and Pholidota. These maps demonstrate the conservation of such syntenic segment associations as HSA3/21, 4/8, 7/16, 12/22, 14/15 and 16/19 in Eulipotyphla, Pholidota and Xenarthra and thus further consolidate the notion that they form part of the ancestral karyotype of the eutherian mammals. Our study has revealed many potential ancestral syntenic associations of human chromosomal segments that serve to link the families as well as orders within the major superordinial eutherian clades defined by molecular markers. The HSA2/8 and 7/10 associations could be the cytogenetic signatures that unite the Xenarthrans, while the HSA1/19p could be a putative signature that links the Afrotheria and Xenarthra. But caution is required in the interpretation of apparently shared syntenic associations as detailed analyses also show examples of apparent convergent evolution that differ in breakpoints and extent of the involved segments.
Collapse
Affiliation(s)
- Fengtang Yang
- Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, PR China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ye J, Biltueva L, Huang L, Nie W, Wang J, Jing M, Su W, Vorobieva NV, Jiang X, Graphodatsky AS, Yang F. Cross-species chromosome painting unveils cytogenetic signatures for the Eulipotyphla and evidence for the polyphyly of Insectivora. Chromosome Res 2006; 14:151-9. [PMID: 16544189 DOI: 10.1007/s10577-006-1032-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Revised: 12/19/2005] [Indexed: 10/24/2022]
Abstract
Insectivore-like animals are traditionally believed among the first eutherian mammals that have appeared on the earth. The modern insectivores are thus crucial for understanding the systematics and phylogeny of eutherian mammals as a whole. Here cross-species chromosome painting, with probes derived from flow-sorted chromosomes of human, was used to delimit the homologous chromosomal segments in two Soricidae species, the common shrew (Sorex araneus, 2n = 20/21), and Asiatic short-tailed shrew (Blarinella griselda, 2n = 44), and one Erinaceidae species, the shrew-hedgehog (Neotetracus sinensis, 2n = 32), and human. We report herewith the first comparative maps for the Asiatic short-tailed shrew and the shrew-hedgehog, in addition to a refined comparative map for the common shrew. In total, the 22 human autosomal paints detected 40, 51 and 58 evolutionarily conserved segments in the genomes of common shrew, Asiatic short-tailed shrew, and shrew-hedgehog, respectively, demonstrating that the common shrew has retained a conserved genome organization while the Asiatic short-tailed shrew and shrew-hedgehog have relatively rearranged genomes. In addition to confirming the existence of such ancestral human segmental combinations as HSA 3/21, 12/22, 14/15 and 7/16 that are shared by most eutherian mammals, our study reveals a shared human segmental combination, HSA 4/20, that could phylogenetically unite the Eulipotyphlan (i.e., the core insectivores) species. Our results provide cytogenetic evidence for the polyphyly of the order Insectivora and additional data for the eventual reconstruction of the ancestral eutherian karyotype.
Collapse
Affiliation(s)
- Jianping Ye
- Key Laboratory of Cellular and Molecular Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, Yunnan, 650223, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|