1
|
Lian Z, Chen R, Xian M, Huang P, Xu J, Xiao X, Ning X, Zhao J, Xie J, Duan J, Li B, Wang W, Shi X, Wang X, Jia N, Chen X, Li J, Yang Z. Targeted inhibition of m6A demethylase FTO by FB23 attenuates allergic inflammation in the airway epithelium. FASEB J 2024; 38:e23846. [PMID: 39093041 DOI: 10.1096/fj.202400545r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/02/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Epithelial cells play a crucial role in asthma, contributing to chronic inflammation and airway hyperresponsiveness. m6A modification, which involves key proteins such as the demethylase fat mass and obesity-associated protein (FTO), is crucial in the regulation of various diseases, including asthma. However, the role of FTO in epithelial cells and the development of asthma remains unclear. In this study, we investigated the demethylase activity of FTO using a small-molecule inhibitor FB23 in epithelial cells and allergic inflammation in vivo and in vitro. We examined the FTO-regulated transcriptome-wide m6A profiling by methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-seq under FB23 treatment and allergic inflammation conditions. Immunofluorescence staining was performed to assess the tissue-specific expression of FTO in asthmatic bronchial mucosa. We demonstrated that FB23 alleviated allergic inflammation in IL-4/IL-13-treated epithelial cells and house dust mite (HDM)-induced allergic airway inflammation mouse model. The demethylase activity of FTO contributed to the regulation of TNF-α signaling via NF-κB and epithelial-mesenchymal transition-related pathways under allergic inflammation conditions in epithelial cells. FTO was expressed in epithelial, submucosal gland, and smooth muscle cells in human bronchial mucosa. In conclusion, FB23-induced inhibition of FTO alleviates allergic inflammation in epithelial cells and HDM-induced mice, potentially through diverse cellular processes and epithelial-mesenchymal transition signaling pathways, suggesting that FTO is a potential therapeutic target in asthma management.
Collapse
Affiliation(s)
- Zexuan Lian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Ruchong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Mo Xian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Peiying Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Jiahan Xu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Xiaojun Xiao
- State Key Laboratory of Respiratory Disease Allergy Division at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University, Shenzhen, Guangdong, P.R. China
| | - Xiaoping Ning
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Jin Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Jianlei Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Jielin Duan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Bizhou Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Wanjun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Xu Shi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Xinru Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Nan Jia
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Xuepeng Chen
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, P.R. China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Zhaowei Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
2
|
Jiang Y, Yang J, Yang S, Lu Y, Qi Y. Atomization of Trollius improves nasal mucosal inflammation through p38MAPK/Akt/NF-kB pathway. Minerva Med 2024; 115:248-250. [PMID: 37166211 DOI: 10.23736/s0026-4806.23.08627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Yan Jiang
- Department of Ear Nose Throat, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Jinsong Yang
- Gansu Armed Police Corps Hospital, Lanzhou, China
| | - Shaohua Yang
- Department of Ear Nose Throat, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China
| | - Yan Lu
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Yinhui Qi
- Department of Ear Nose Throat, Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou, China -
| |
Collapse
|
3
|
Jiang Y, Liu B, Bao X, Zhou P, Li J. TNF-α Regulates the Glucocorticoid Receptor Alpha Expression in Human Nasal Epithelial Cells Via p65-NF-κb and p38-MAPK Signaling Pathways. IRANIAN JOURNAL OF BIOTECHNOLOGY 2023; 21:e3117. [PMID: 36811108 PMCID: PMC9938934 DOI: 10.30498/ijb.2022.298590.3117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 07/06/2022] [Indexed: 02/24/2023]
Abstract
Background Tumor necrosis factor (TNF)-α induces changes in the glucocorticoid receptor (GR) isoforms' expression in human nasal epithelial cells (HNECs) in chronic rhinosinusitis (CRS). Objective However, the underlying mechanism of TNF-α induced GR isoforms' expression in HNECs remains unclear. Here, we explored changes in inflammatory cytokines and glucocorticoid receptor alpha isoform (GRα) expression in HNECs. Materials and Methods To explore the expression of TNF-α in nasal polyps and nasal mucosa of CRS, fluorescence immunohistochemical analysis was employed. To investigate changes in inflammatory cytokines and GRα expression in HNECs, RT-PCR and western blotting were performed following the cells' incubation with TNF-α. Cells were pretreated with the nuclear factor-κB gene binding (NF-κB) inhibitor QNZ, the p38 inhibitor SB203580, and dexamethasone for one hour, then a TNF-α. Western blotting, RT-PCR, and immunofluorescence had been utilized for the cells' analysis and the ANOVA for the data analysis. Results The TNF-α fluorescence intensity was mainly distributed in nasal epithelial cells of nasal tissues. TNF-α prominently inhibited the expression of GRα mRNA from 6 to 24 h in HNECs. GRα protein was decreased from 12 to 24 h. Treatment with QNZ, SB203580, or dexamethasone inhibited the TNF-α and interleukin (IL)-6 mRNA expression and increased the GRα levels. Conclusion TNF-α induced changes in the GR isoforms' expression in HNECs, and it was mediated through p65-NF-κB and p38-MAPK signal transduction pathways, which could be considered a promising neutrophilic CRS treatment.
Collapse
Affiliation(s)
- Yongquan Jiang
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bin Liu
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ximing Bao
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | - Jiping Li
- Department of Otorhinolaryngology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
4
|
Matsuda M, Tanaka Y, Shimora H, Takemoto N, Nomura M, Terakawa R, Hashimoto K, Sakae H, Kanda A, Iwai H, Kitatani K, Nabe T. Pathogenic changes in group 2 innate lymphoid cells (ILC2s) in a steroid-insensitive asthma model of mice. Eur J Pharmacol 2021; 916:174732. [PMID: 34971621 DOI: 10.1016/j.ejphar.2021.174732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/21/2021] [Accepted: 12/24/2021] [Indexed: 01/25/2023]
Abstract
A certain population of asthma patients is resistant to steroid therapy, whereas the mechanisms remain unclear. One of characteristic features of steroid-resistant asthma patients is severe airway eosinophilia based on type-2 inflammation. Aims of this study were: 1) to develop a murine model of steroid-resistant asthma, 2) to elucidate that predominant cellular source of a type-2 cytokine, IL-5 was group 2 innate lymphoid cells (ILC2s), 3) to analyze pathogenic alteration of ILC2s in the severe asthma, and 4) to evaluate therapeutic potential of anti-IL-5 monoclonal antibody (mAb) on the steroid-resistant asthma. Ovalbumin (OVA)-sensitized BALB/c mice were intratracheally challenged with OVA at 5 or 500 μg/animal 4 times. Development of airway eosinophilia and remodeling in 5-μg OVA model were significantly suppressed by 1 mg/kg dexamethasone, whereas those in 500-μg OVA model were relatively insensitive to the dose of dexamethasone. ILC2s isolated from the lung of the steroid-insensitive model (500-μg OVA) produced significantly larger amounts of IL-5 in response to IL-33/TSLP than ILC2s from the steroid-sensitive model (5-μg OVA). Interestingly, TSLP receptor expression on ILC2s was up-regulated in the steroid-insensitive model. Treatment with anti-IL-5 mAb in combination with dexamethasone significantly suppressed the airway remodeling of the steroid-insensitive model. In conclusion, multiple intratracheal administration of a high dose of antigen induced steroid-insensitive asthma in sensitized mice. IL-5 was mainly produced from ILC2s, phenotype of which had been pathogenically altered probably through the up-regulation of TSLP receptors. IL-5 blockage could be a useful therapeutic strategy for steroid-resistant asthma.
Collapse
Affiliation(s)
- Masaya Matsuda
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagao-toge cho, Hirakata, Osaka, 573-0101, Japan
| | - Yoshiyuki Tanaka
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagao-toge cho, Hirakata, Osaka, 573-0101, Japan
| | - Hayato Shimora
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagao-toge cho, Hirakata, Osaka, 573-0101, Japan
| | - Naoki Takemoto
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagao-toge cho, Hirakata, Osaka, 573-0101, Japan
| | - Miku Nomura
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagao-toge cho, Hirakata, Osaka, 573-0101, Japan
| | - Ryogo Terakawa
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagao-toge cho, Hirakata, Osaka, 573-0101, Japan
| | - Kennosuke Hashimoto
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagao-toge cho, Hirakata, Osaka, 573-0101, Japan
| | - Harumi Sakae
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagao-toge cho, Hirakata, Osaka, 573-0101, Japan
| | - Akira Kanda
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, 573-1010, Osaka, Japan
| | - Hiroshi Iwai
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, 573-1010, Osaka, Japan
| | - Kazuyuki Kitatani
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagao-toge cho, Hirakata, Osaka, 573-0101, Japan
| | - Takeshi Nabe
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagao-toge cho, Hirakata, Osaka, 573-0101, Japan.
| |
Collapse
|
5
|
Bawazeer MA, Theoharides TC. IL-33 stimulates human mast cell release of CCL5 and CCL2 via MAPK and NF-κB, inhibited by methoxyluteolin. Eur J Pharmacol 2019; 865:172760. [PMID: 31669588 DOI: 10.1016/j.ejphar.2019.172760] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022]
Abstract
Mast Cells (MCs) are critical for allergic reactions but also play important roles in inflammation, following stimulation by non-allergic triggers such as cytokines. Upon stimulation, MCs secrete numerous newly synthesized mediators, but the mechanism of the release of chemokines, which are important in the pathogenesis of allergic and inflammatory diseases, remains unknown. IL-33 is an "alarmin", known to augment allergic stimulation of MCs, but its effect on the release of chemokines is not known. The present work investigated the action of IL-33 on the release of the chemokines CCL5 and CCL2 from human MCs, as well as the inhibitory effect of the flavonoid 3',4',5,7-tetramethoxyflavone (methoxyluteolin). Stimulation of cultured human MCs (LAD2) and primary MCs (hCBMCs) by IL-33 (1-100 ng/ml) increased the gene expression and the release of CCL5 (P < 0.0001) and CCL2 (P < 0.01). Stimulation with IL-33 (10 ng/ml) activated MAPK components, as shown by phosphorylation of p38α MAPK, JNK, and c-Jun using Western blot analysis. Inhibition of these responses by known inhibitors confirmed that CCL5 and CCL2 are stimulated by the activation of p38α MAPK, JNK, and IκB-α. The gene expression and the release of CCL5 and CCL2 stimulated by IL-33 were significantly inhibited by 2 h pre-treatment with methoxyluteolin (10, 50, 100 μM). The inhibition by methoxyluteolin (50 μM) was not mediated via MAPK inhibition as phosphorylated p38α MAPK and JNK expression were not affected. In conclusion, IL-33 plays an important role in chemokine release from human MCs and that is by activation of more than one signaling pathway. The inhibitory effect of methoxyluteolin may indicate that it can be developed as a novel treatment for inflammatory diseases.
Collapse
Affiliation(s)
- Mona Abubakr Bawazeer
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA; College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Theoharis C Theoharides
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Graduate Program in Pharmacology and Experimental Therapeutics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|
6
|
Desbiens L, Lapointe C, Gendron L, Gharagozloo M, Vincent L, Pejler G, Gris D, D'Orléans-Juste P. Experimental Autoimmune Encephalomyelitis Potentiates Mouse Mast Cell Protease 4-Dependent Pressor Responses to Centrally or Systemically Administered Big Endothelin-1. J Pharmacol Exp Ther 2019; 370:437-446. [PMID: 31248979 DOI: 10.1124/jpet.118.256016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/25/2019] [Indexed: 01/03/2025] Open
Abstract
Multiple sclerosis is a neurodegenerative disease affecting predominantly female patients between 20 and 45 years of age. We previously reported the significant contribution of mouse mast cell protease 4 (mMCP-4) in the synthesis of endothelin-1 (ET-1) in healthy mice and in a murine model of experimental autoimmune encephalomyelitis (EAE). In the current study, the cardiovascular effects of ET-1 and big endothelin-1 (big-ET-1) administered systemically or intrathecally were assessed in the early preclinical phase of EAE in telemetry instrumented/conscious mice. Chymase-specific enzymatic activity was also measured in the lung, brain, and mast cell extracts in vitro. Finally, the impact of EAE immunization was studied on the pulmonary and brain mRNA expression of different genes of the endothelin pathway, interleukin-33 (IL-33), and monitoring of immunoreactive tumor necrosis factor-α (TNF-α). Systemically or intrathecally administered big-ET-1 triggered increases in blood pressure in conscious mice. One week post-EAE, the pressor responses to big-ET-1 were potentiated in wild-type (WT) mice but not in mMCP-4 knockout (KO) mice. EAE triggered mMCP-4-specific activity in cerebral homogenates and peritoneal mast cells. Enhanced pulmonary, but not cerebral preproendothelin-1 and IL-33 mRNA were found in KO mice and further increased 1 week post-EAE immunization, but not in WT animals. Finally, TNF-α levels were also increased in serum from mMCP-4 KO mice, but not WT, 1 week post-EAE. Our study suggests that mMCP-4 activity is enhanced both centrally and systemically in a mouse model of EAE.
Collapse
MESH Headings
- Animals
- Brain/drug effects
- Brain/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Endothelin-1/administration & dosage
- Endothelin-1/pharmacology
- Gene Knockout Techniques
- Hemodynamics/drug effects
- Injections, Spinal
- Interleukin-33/deficiency
- Interleukin-33/genetics
- Lung/drug effects
- Lung/metabolism
- Mast Cells/drug effects
- Mast Cells/metabolism
- Mice
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Serine Endopeptidases/deficiency
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Louisane Desbiens
- Department of Pharmacology and Physiology, Medical School, Université de Sherbrooke, Sherbrooke, Québec, Canada (L.D., C.L., L.G., M.G., L.V., D.G., P.D'.O.J.); Department of Medical Biochemistry and Microbiology, Uppsala University BMC, Uppsala, Sweden (G.P.); and Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden (G.P.)
| | - Catherine Lapointe
- Department of Pharmacology and Physiology, Medical School, Université de Sherbrooke, Sherbrooke, Québec, Canada (L.D., C.L., L.G., M.G., L.V., D.G., P.D'.O.J.); Department of Medical Biochemistry and Microbiology, Uppsala University BMC, Uppsala, Sweden (G.P.); and Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden (G.P.)
| | - Louis Gendron
- Department of Pharmacology and Physiology, Medical School, Université de Sherbrooke, Sherbrooke, Québec, Canada (L.D., C.L., L.G., M.G., L.V., D.G., P.D'.O.J.); Department of Medical Biochemistry and Microbiology, Uppsala University BMC, Uppsala, Sweden (G.P.); and Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden (G.P.)
| | - Marjan Gharagozloo
- Department of Pharmacology and Physiology, Medical School, Université de Sherbrooke, Sherbrooke, Québec, Canada (L.D., C.L., L.G., M.G., L.V., D.G., P.D'.O.J.); Department of Medical Biochemistry and Microbiology, Uppsala University BMC, Uppsala, Sweden (G.P.); and Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden (G.P.)
| | - Laurence Vincent
- Department of Pharmacology and Physiology, Medical School, Université de Sherbrooke, Sherbrooke, Québec, Canada (L.D., C.L., L.G., M.G., L.V., D.G., P.D'.O.J.); Department of Medical Biochemistry and Microbiology, Uppsala University BMC, Uppsala, Sweden (G.P.); and Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden (G.P.)
| | - Gunnar Pejler
- Department of Pharmacology and Physiology, Medical School, Université de Sherbrooke, Sherbrooke, Québec, Canada (L.D., C.L., L.G., M.G., L.V., D.G., P.D'.O.J.); Department of Medical Biochemistry and Microbiology, Uppsala University BMC, Uppsala, Sweden (G.P.); and Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden (G.P.)
| | - Denis Gris
- Department of Pharmacology and Physiology, Medical School, Université de Sherbrooke, Sherbrooke, Québec, Canada (L.D., C.L., L.G., M.G., L.V., D.G., P.D'.O.J.); Department of Medical Biochemistry and Microbiology, Uppsala University BMC, Uppsala, Sweden (G.P.); and Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden (G.P.)
| | - Pedro D'Orléans-Juste
- Department of Pharmacology and Physiology, Medical School, Université de Sherbrooke, Sherbrooke, Québec, Canada (L.D., C.L., L.G., M.G., L.V., D.G., P.D'.O.J.); Department of Medical Biochemistry and Microbiology, Uppsala University BMC, Uppsala, Sweden (G.P.); and Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden (G.P.)
| |
Collapse
|
7
|
Manley GCA, Parker LC, Zhang Y. Emerging Regulatory Roles of Dual-Specificity Phosphatases in Inflammatory Airway Disease. Int J Mol Sci 2019; 20:E678. [PMID: 30764493 PMCID: PMC6387402 DOI: 10.3390/ijms20030678] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
Inflammatory airway disease, such as asthma and chronic obstructive pulmonary disease (COPD), is a major health burden worldwide. These diseases cause large numbers of deaths each year due to airway obstruction, which is exacerbated by respiratory viral infection. The inflammatory response in the airway is mediated in part through the MAPK pathways: p38, JNK and ERK. These pathways also have roles in interferon production, viral replication, mucus production, and T cell responses, all of which are important processes in inflammatory airway disease. Dual-specificity phosphatases (DUSPs) are known to regulate the MAPKs, and roles for this family of proteins in the pathogenesis of airway disease are emerging. This review summarizes the function of DUSPs in regulation of cytokine expression, mucin production, and viral replication in the airway. The central role of DUSPs in T cell responses, including T cell activation, differentiation, and proliferation, will also be highlighted. In addition, the importance of this protein family in the lung, and the necessity of further investigation into their roles in airway disease, will be discussed.
Collapse
Affiliation(s)
- Grace C A Manley
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117597, Singapore.
| | - Lisa C Parker
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore.
- Immunology Programme, Life Science Institute, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
8
|
Clemenzi MN, Wellhauser L, Aljghami ME, Belsham DD. Tumour necrosis factor α induces neuroinflammation and insulin resistance in immortalised hypothalamic neurones through independent pathways. J Neuroendocrinol 2019; 31:e12678. [PMID: 30582235 DOI: 10.1111/jne.12678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 12/27/2022]
Abstract
The links between obesity, inflammation and insulin resistance, which are all key characteristics of type 2 diabetes mellitus, are yet to be delineated in the brain. One of the key neuroinflammatory proteins detected in the hypothalamus with over-nutrition is tumour necrosis factor (TNF)α. Using immortalised embryonic rat and mouse hypothalamic cell lines (rHypoE-7 and mHypoE-46) that express orexigenic neuropeptide Y and agouti-related peptide, we investigated changes in insulin signalling and inflammatory gene marker mRNA expression after TNFα exposure. A quantitative polymerase chain reaction array of 84 inflammatory markers (cytokines, chemokines and receptors) demonstrated an increase in the expression of multiple genes encoding inflammatory markers upon exposure to 100 ng mL-1 TNFα for 4 hours. Furthermore, neurones pre-exposed to TNFα (50 ng mL-1 ) for 6 or 16 hours exhibited a significant reduction in phosphorylated Akt compared to control after insulin treatment, indicating the attenuation of insulin signalling. mRNA expression of insulin signalling-related genes was also decreased with exposure to TNFα. TNFα significantly increased mRNA expression of IκBα, Tnfrsf1a and IL6 at 4 and 24 hours, activating a pro-inflammatory state. An inhibitor study using an inhibitor of nuclear factor kappa B kinase subunit β (IKK-β) inhibitor, PS1145, demonstrated that TNFα-induced neuroinflammatory marker expression occurs through the IKK-β/nuclear factor-kappa B pathway, whereas oleate, a monounsaturated fatty acid, had no effect on inflammatory markers. To test the efficacy of anti-inflammatory treatment to reverse insulin resistance, neurones were treated with TNFα and PS1145, which did not significantly restore the TNFα-induced changes in cellular insulin sensitivity, indicating that an alternative pathway may be involved. In conclusion, exposure to the inflammatory cytokine TNFα causes cellular insulin resistance and inflammation marker expression in the rHypoE-7 and mHypoE-46 neurones, consistent with effects seen with TNFα in peripheral tissues. It also mimics insulin- and palmitate-induced insulin resistance in hypothalamic neurones. The present study provides further evidence that altered central energy metabolism may be caused by obesity-induced cytokine expression.
Collapse
Affiliation(s)
| | - Leigh Wellhauser
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Makram E Aljghami
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Liu C, Zhang X, Xiang Y, Qu X, Liu H, Liu C, Tan M, Jiang J, Qin X. Role of epithelial chemokines in the pathogenesis of airway inflammation in asthma (Review). Mol Med Rep 2018; 17:6935-6941. [PMID: 29568899 DOI: 10.3892/mmr.2018.8739] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/23/2018] [Indexed: 11/06/2022] Open
Abstract
As the first barrier to the outside environment, airway epithelial cells serve a central role in the initiation and development of airway inflammation. Chemokines are the most direct and immediate cell factors for the recruitment and migration of inflammatory cells. The present review focused on the role of epithelial chemokines in the pathogenesis of airway inflammation in asthma. In addition to traditional CC family chemokines and CXC family chemokines, airway epithelial cells also express other chemokines, including thymic stromal lymphopoietin and interleukin‑33. By expressing and secreting chemokines, airway epithelial cells serve a key role in orchestrating airway inflammation in asthma.
Collapse
Affiliation(s)
- Chi Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xun Zhang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yang Xiang
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xiangping Qu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Huijun Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Caixia Liu
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Meiling Tan
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Institute of Surgery Research, Third Military Medical University, Chongqing 400042, P.R. China
| | - Xiaoqun Qin
- Department of Physiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
10
|
Macrophages produce IL-33 by activating MAPK signaling pathway during RSV infection. Mol Immunol 2017; 87:284-292. [PMID: 28531812 DOI: 10.1016/j.molimm.2017.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/26/2017] [Accepted: 05/13/2017] [Indexed: 12/11/2022]
Abstract
It has been reported that RSV infection can enhance IL-33 production in lung macrophages. However, little is known about specific signaling pathways for activation of macrophages during RSV infection. In the present study, by using real-time RT-PCR as well as western blot assay, it became clear that RSV infection can enhance not only the expression of mRNAs for MAPK molecules (including p38, JNK1/2, and ERK1/2), but also the levels of MAPK proteins in lung macrophages as well as RAW264.7 cells. Furthermore, infection with RSV resulted in an increased level of phosphorylated MAPK proteins in RAW264.7 cells, suggesting that MAPK signaling pathway may participate in the process of RSV-induced IL-33 secretion by macrophages. In fact, the elevated production of IL-33 in RAW264.7 was attenuated significantly by pretreatment of the cells with special MAPK inhibitor before RSV infection, further confirming the function of MAPKs pathway in RSV-induced IL-33 production in macrophages. In contrast, the expression of NF-κB mRNA as well as the production of NF-κB protein in lung macrophages and RAW264.7 cells was not enhanced markedly after RSV infection. Moreover, RSV infection failed to induce the phosphorylation of NF-κB in RAW264.7 cells, suggesting that NF-κB signaling pathway may be not involved in RSV-induced IL-33 production in macrophages. Conclusion, these results indicate that RSV-induced production of IL-33 in macrophages is dependent on the activation of MAPK signaling pathway.
Collapse
|
11
|
Ge GF, Shi WW, Yu CH, Jin XY, Zhang HH, Zhang WY, Wang LC, Yu B. Baicalein attenuates vinorelbine-induced vascular endothelial cell injury and chemotherapeutic phlebitis in rabbits. Toxicol Appl Pharmacol 2017; 318:23-32. [DOI: 10.1016/j.taap.2017.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 12/14/2022]
|