1
|
Li D, Yu L, Zi J, Du X, Yan X, Chen H, Wang L, Zheng C, Wang G, Zhang J, Jiang Y. Signaling lymphocytic activation molecule family 8 disrupts epithelial barrier in chronic rhinosinusitis with nasal polyps through M1 macrophage polarization. Ann Allergy Asthma Immunol 2025; 134:431-441.e4. [PMID: 39870212 DOI: 10.1016/j.anai.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/21/2024] [Accepted: 01/19/2025] [Indexed: 01/29/2025]
Abstract
BACKGROUND Recent studies reveal that M1 macrophages accumulate predominantly in noneosinophilic chronic rhinosinusitis with nasal polyps (neCRSwNP). However, the precise mechanisms regulating M1 macrophages and their impact on the epithelial barrier remain unclear. OBJECTIVE To investigate the expression and regulatory role of signaling lymphocytic activation molecule family (SLAMF)8, a molecule exclusively expressed in myeloid cells, in M1 macrophage polarization and its potential contribution to neCRSwNP development. METHODS We evaluated SLAMF8 expression and its correlation with clinical variables using real-time quantitative polymerase chain reaction and Western blot in sinonasal mucosa samples from CRSwNP and control subjects. Immunofluorescence staining confirmed the co-expression of SLAMF8 with macrophages. After SLAMF8 knockdown, we explored the influence on macrophage M1 polarization and the effect on epithelial-mesenchymal transition (EMT) process and tight junction integrity in epithelial cells through an indirect co-culture system of M1 macrophages with human nasal epithelial cells. RESULTS SLAMF8 was highly expressed on M1 macrophages in polyp tissues, notably in neCRSwNP, and correlated with disease severity indices only in neCRSwNP. SLAMF8 knockdown in THP-1 cells reduced M1 macrophage markers (CD86, iNOS, and NLRP3) and decreased secretion of inflammatory cytokines (interleukin-1 beta, interleukin-6, and tumor necrosis factor alpha). Co-culture with M1 macrophage supernatant after SLAMF8 knockdown enhanced epithelial viability, reduced EMT and apoptosis, and up-regulated tight junction markers, occludin and claudin-4, in nasal epithelial cells. CONCLUSION SLAMF8 elevation correlates with the EMT, epithelial tight junction, and disease severity in neCRSwNP. SLAMF8 up-regulation promotes M1 macrophage polarization, which facilitates EMT and impairs nasal epithelial barrier function. SLAMF8 may represent a novel therapeutic target for neCRSwNP.
Collapse
Affiliation(s)
- Danyang Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Longgang Yu
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jiajia Zi
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xiaoyun Du
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Xudong Yan
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Han Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Lin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Chunge Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Guangyi Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China
| | - Jisheng Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
| | - Yan Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People's Republic of China.
| |
Collapse
|
2
|
Liu C, Wang K, Liu W, Zhang J, Fan Y, Sun Y. ALOX15 + M2 macrophages contribute to epithelial remodeling in eosinophilic chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol 2024; 154:592-608. [PMID: 38705258 DOI: 10.1016/j.jaci.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/30/2024] [Accepted: 04/16/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Epithelial remodeling is a prominent feature of eosinophilic chronic rhinosinusitis with nasal polyps (eCRSwNP), and infiltration of M2 macrophages plays a pivotal role in the pathogenesis of eCRSwNP, but the underlying mechanisms remain undefined. OBJECTIVE We sought to investigate the role of ALOX15+ M2 macrophages in the epithelial remodeling of eCRSwNP. METHODS Digital spatial transcriptomics and single-cell sequencing analyses were used to characterize the epithelial remodeling and cellular infiltrate in eCRSwNP. Hematoxylin and eosin staining, immunohistochemical staining, and immunofluorescence staining were used to explore the relationship between ALOX15+ M2 (CD68+CD163+) macrophages and epithelial remodeling. A coculture system of primary human nasal epithelial cells (hNECs) and the macrophage cell line THP-1 was used to determine the underlying mechanisms. RESULTS Spatial transcriptomics analysis showed the upregulation of epithelial remodeling-related genes, such as Vimentin and matrix metalloproteinase 10, and enrichment of epithelial-mesenchymal transition (EMT)-related pathways, in the epithelial areas in eCRSwNP, with more abundance of epithelial basal, goblet, and glandular cells. Single-cell analysis identified that ALOX15+, rather than ALOX15-, M2 macrophages were specifically highly expressed in eCRSwNP. CRSwNP with high ALOX15+ M2THP-1-IL-4+IL-13 macrophages had more obvious epithelial remodeling features and increased genes associated with epithelial remodeling and integrity of epithelial morphology versus that with low ALOX15+ M2THP-1-IL-4+IL-13 macrophages. IL-4/IL-13-polarized M2THP-1-IL-4+IL-13 macrophages upregulated expressions of EMT-related genes in hNECs, including Vimentin, TWIST1, Snail, and ZEB1. ALOX15 inhibition in M2THP-1-IL-4+IL-13 macrophages resulted in reduction of the EMT-related transcripts in hNECs. Blocking chemokine (C-C motif) ligand 13 signaling inhibited M2THP-1-IL-4+IL-13 macrophage-induced EMT alteration in hNECs. CONCLUSIONS ALOX15+ M2 macrophages are specifically increased in eCRSwNP and may contribute to the pathogenesis of epithelial remodeling via production of chemokine (C-C motif) ligand 13.
Collapse
Affiliation(s)
- Chang Liu
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Kanghua Wang
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wenqin Liu
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Jinxiu Zhang
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yunping Fan
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Yueqi Sun
- Department of Otolaryngology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
3
|
Fan HL, Han ZT, Gong XR, Wu YQ, Fu YJ, Zhu TM, Li H. Macrophages in CRSwNP: Do they deserve more attention? Int Immunopharmacol 2024; 134:112236. [PMID: 38744174 DOI: 10.1016/j.intimp.2024.112236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Chronic rhinosinusitis (CRS) represents a heterogeneous disorder primarily characterized by the persistent inflammation of the nasal cavity and paranasal sinuses. The subtype known as chronic rhinosinusitis with nasal polyposis (CRSwNP) is distinguished by a significantly elevated recurrence rate and augmented challenges in the management of nasal polyps. The pathogenesis underlying this subtype remains incompletely understood. Macrophages play a crucial role in mediating the immune system's response to inflammatory stimuli. These cells exhibit remarkable plasticity and heterogeneity, differentiating into either the pro-inflammatory M1 phenotype or the anti-inflammatory and reparative M2 phenotype depending on the surrounding microenvironment. In CRSwNP, macrophages demonstrate reduced production of Interleukin 10 (IL-10), compromised phagocytic activity, and decreased autophagy. Dysregulation of pro-resolving mediators may occur during the inflammatory resolution process, which could potentially hinder the adequate functioning of anti-inflammatory macrophages in facilitating resolution. Collectively, these factors may contribute to the prolonged inflammation observed in CRSwNP. Additionally, macrophages may enhance fibrin cross-linking through the release of factor XIII-A (FAXIII), promoting fibrin deposition and plasma protein retention. Macrophages also modulate vascular permeability by releasing Vascular endothelial growth factor (VEGF). Moreover, they may disrupt the balance between Matrix Metalloproteinases (MMPs) and Tissue Inhibitors of Metalloproteinases (TIMPs), which favors extracellular matrix (ECM) degradation, edema formation, and pseudocyst development. Accumulating evidence suggests a close association between macrophage infiltration and CRSwNP; however, the precise mechanisms underlying this relationship warrant further investigation. In different subtypes of CRSwNP, different macrophage phenotypic aggregations trigger different types of inflammatory features. Increasing evidence suggests that macrophage infiltration is closely associated with CRSwNP, but the mechanism and the relationship between macrophage typing and CRSwNP endophenotyping remain to be further explored. This review discusses the role of different types of macrophages in the pathogenesis of different types of CRSwNP and their contribution to polyp formation, in the hope that a better understanding of the role of macrophages in specific CRSwNP will contribute to a precise and individualized understanding of the disease.
Collapse
Affiliation(s)
- Hong-Li Fan
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhou-Tong Han
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xin-Ru Gong
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu-Qi Wu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yi-Jie Fu
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China
| | - Tian-Min Zhu
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Hui Li
- School of Preclinical Medicine, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Elbaz-Hayoun S, Rinsky B, Hagbi-Levi S, Grunin M, Chowers I. CCR1 mediates Müller cell activation and photoreceptor cell death in macular and retinal degeneration. eLife 2023; 12:e81208. [PMID: 37903056 PMCID: PMC10615370 DOI: 10.7554/elife.81208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/04/2023] [Indexed: 11/01/2023] Open
Abstract
Mononuclear cells are involved in the pathogenesis of retinal diseases, including age-related macular degeneration (AMD). Here, we examined the mechanisms that underlie macrophage-driven retinal cell death. Monocytes were extracted from patients with AMD and differentiated into macrophages (hMdɸs), which were characterized based on proteomics, gene expression, and ex vivo and in vivo properties. Using bioinformatics, we identified the signaling pathway involved in macrophage-driven retinal cell death, and we assessed the therapeutic potential of targeting this pathway. We found that M2a hMdɸs were associated with retinal cell death in retinal explants and following adoptive transfer in a photic injury model. Moreover, M2a hMdɸs express several CCRI (C-C chemokine receptor type 1) ligands. Importantly, CCR1 was upregulated in Müller cells in models of retinal injury and aging, and CCR1 expression was correlated with retinal damage. Lastly, inhibiting CCR1 reduced photic-induced retinal damage, photoreceptor cell apoptosis, and retinal inflammation. These data suggest that hMdɸs, CCR1, and Müller cells work together to drive retinal and macular degeneration, suggesting that CCR1 may serve as a target for treating these sight-threatening conditions.
Collapse
Affiliation(s)
- Sarah Elbaz-Hayoun
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Batya Rinsky
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Shira Hagbi-Levi
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Michelle Grunin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Itay Chowers
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
5
|
Wang T, Chen Y, Gao R, Shui J, Xie B. Overexpression of AXL on macrophages associates with disease severity and recurrence in chronic rhinosinusitis with nasal polyps. Int Immunopharmacol 2023; 121:110449. [PMID: 37302367 DOI: 10.1016/j.intimp.2023.110449] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by high tissue heterogeneity and risk of postoperative recurrence, but the underlying mechanisms are poorly elucidated. This study aims to explore the expressions of AXL on macrophages and their roles in the pathogenesis of CRSwNP, and evaluate their associations with disease severity and recurrence. METHODS Healthy controls (HCs), chronic rhinosinusitis without nasal polyps (CRSsNP) and CRSwNP patients were recruited in this study. Protein and mRNA levels of AXL and macrophage markers were detected in tissue samples, and their relationships with clinical variables and risk of postoperative recurrence were assessed. Immunofluorescence staining was conducted to confirm the location of AXL and its co-expression with macrophages. Regulated AXL in THP-1 and peripheral blood mononuclear cells (PBMC)-derived macrophages, and evaluated their polarization and cytokine secretion. RESULTS We found that AXL was enhanced in the mucosa and serum samples of CRSwNP patients, especially in recurrent cases. Tissue AXL levels were positively correlated with peripheral eosinophil count and percentage, Lund-Mackay score, Lund-Kennedy score, and macrophage M2 markers levels. Immunofluorescence staining results demonstrated that AXL was augmented and predominantly expressed on M2 macrophages in the tissues of CRSwNP, particularly in recurrent cases. In vitro experiment, overexpression of AXL promoted the M2 polarization of THP-1 and PBMC-derived macrophages, and facilitated the production of TGF-β1 and CCL-24. CONCLUSIONS AXL driving the M2 macrophage polarization exacerbated the disease severity and contributed to the postoperative recurrence in CRSwNP patients. Our findings supported AXL-targeted prevention and treatment of recurrent CRSwNP.
Collapse
Affiliation(s)
- Tiansheng Wang
- Department of Otolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yu Chen
- Department of Otolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ru Gao
- Department of Otolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jian Shui
- Clinical Laboratory, Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People's Republic of China
| | - Bin Xie
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
6
|
Konstantinou GN, Konstantinou GN, Koulias C, Petalas K, Makris M. Further Understanding of Neuro-Immune Interactions in Allergy: Implications in Pathophysiology and Role in Disease Progression. J Asthma Allergy 2022; 15:1273-1291. [PMID: 36117919 PMCID: PMC9473548 DOI: 10.2147/jaa.s282039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022] Open
Abstract
The complicated interaction between the central and the autonomic (sympathetic, parasympathetic, and enteric) nervous systems on the one hand and the immune system and its components, on the other hand, seems to substantially contribute to allergy pathophysiology, uncovering an under-recognized association that could have diagnostic and therapeutic potentials. Neurons connect directly with and regulate the function of many immune cells, including mast cells, the cells that have a leading role in allergic disorders. Proinflammatory mediators such as cytokines, neurotrophins, chemokines, and neuropeptides are released by immune cells, which stimulate sensory neurons. The release of neurotransmitters and neuropeptides caused by the activation of these neurons directly impacts the functional activity of immune cells and vice versa, playing a decisive role in this communication. Successful application of Pavlovian conditioning in allergic disorders supports the existence of a psychoneuroimmunological interplay in classical allergic hypersensitivity reactions. Activation of neuronal homeostatic reflexes, like sneezing in allergic rhinitis, coughing in allergic asthma, and vomiting in food allergy, offers additional evidence of a neuroimmunological interaction that aims to maintain homeostasis. Dysregulation of this interaction may cause overstimulation of the immune system that will produce profound symptoms and exaggerated hemodynamic responses that will lead to severe allergic pathophysiological events, including anaphylaxis. In this article, we have systematically reviewed and discussed the evidence regarding the role of the neuro-immune interactions in common allergic clinical modalities like allergic rhinitis, chronic rhinosinusitis, allergic asthma, food allergy, atopic dermatitis, and urticaria. It is essential to understand unknown – to most of the immunology and allergy experts – neurological networks that not only physiologically cooperate with the immune system to regulate homeostasis but also pathogenetically interact with more or less known immunological pathways, contribute to what is known as neuroimmunological inflammation, and shift homeostasis to instability and disease clinical expression. This understanding will provide recognition of new allergic phenotypes/endotypes and directions to focus on specialized treatments, as the era of personalized patient-centered medicine, is hastening apace.
Collapse
Affiliation(s)
- George N Konstantinou
- Department of Allergy and Clinical Immunology, 424 General Military Training Hospital, Thessaloniki, Greece
| | - Gerasimos N Konstantinou
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Centre of Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Christopher Koulias
- Allergy Unit, 2nd Department of Dermatology and Venereology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | | | - Michael Makris
- Allergy Unit, 2nd Department of Dermatology and Venereology, National and Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| |
Collapse
|
7
|
Zhang L. Evolving management of upper airway diseases: focus on Asia. Int Forum Allergy Rhinol 2020; 9:1233-1235. [PMID: 31682333 DOI: 10.1002/alr.22470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|