1
|
Pham TNM, Behl C. Cellular models of stress resistance may pave ways to fight neurodegenerative diseases. Neural Regen Res 2025; 20:2579-2580. [PMID: 39503421 PMCID: PMC11801301 DOI: 10.4103/nrr.nrr-d-24-00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 02/08/2025] Open
Affiliation(s)
- Thu Nguyen Minh Pham
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Christian Behl
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
2
|
Papetti AV, Jin M, Ma Z, Stillitano AC, Jiang P. Chimeric brain models: Unlocking insights into human neural development, aging, diseases, and cell therapies. Neuron 2025:S0896-6273(25)00256-9. [PMID: 40300597 DOI: 10.1016/j.neuron.2025.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/07/2025] [Accepted: 03/31/2025] [Indexed: 05/01/2025]
Abstract
Human-rodent chimeric brain models serve as a unique platform for investigating the pathophysiology of human cells within a living brain environment. These models are established by transplanting human tissue- or human pluripotent stem cell (hPSC)-derived macroglial, microglial, or neuronal lineage cells, as well as cerebral organoids, into the brains of host animals. This approach has opened new avenues for exploring human brain development, disease mechanisms, and regenerative processes. Here, we highlight recent advancements in using chimeric models to study human neural development, aging, and disease. Additionally, we explore the potential applications of these models for studying human glial cell-replacement therapies, studying in vivo human glial-to-neuron reprogramming, and harnessing single-cell omics and advanced functional assays to uncover detailed insights into human neurobiology. Finally, we discuss strategies to enhance the precision and translational relevance of these models, expanding their impact in stem cell and neuroscience research.
Collapse
Affiliation(s)
- Ava V Papetti
- Department of Cell Biology and Neuroscience, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Ziyuan Ma
- Department of Cell Biology and Neuroscience, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Alessandro C Stillitano
- Department of Cell Biology and Neuroscience, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University-New Brunswick, Piscataway, NJ 08854, USA.
| |
Collapse
|
3
|
Hiya S, Maldonado-Díaz C, Rohde SK, Gonzales MM, Canbeldek L, Kulumani Mahadevan LS, Yokoda RT, Sullivan AC, Parker AS, White CL, Daoud EV, Flores-Almazan V, Crary JF, Farrell K, Walker JM, Richardson TE. Unraveling the clinical-pathological correlations of subjects with isolated and mixed neurodegenerative processes in the National Alzheimer's Coordinating Center dataset. J Neuropathol Exp Neurol 2025; 84:177-194. [PMID: 39728026 PMCID: PMC11842910 DOI: 10.1093/jnen/nlae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Although Alzheimer disease neuropathologic change (ADNC) is the most common pathology underlying clinical dementia, the presence of multiple comorbid neuropathologies is increasingly being recognized as a major contributor to the worldwide dementia burden. We analyzed 1051 subjects with specific combinations of isolated and mixed pathologies and conducted multivariate logistic regression analysis on a cohort of 4624 cases with mixed pathologies to systematically explore the independent cognitive contributions of each pathology. Alzheimer disease neuropathologic change and limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) were both associated with a primary clinical diagnosis of Alzheimer disease (AD) and were characterized by an amnestic dementia phenotype, while only ADNC associated with logopenic variant primary progressive aphasia (PPA). In subjects with ADNC and comorbid LATE-NC, Lewy body disease, and/or cerebrovascular disease, the clinical phenotype was usually diagnosed during life as "Probable AD." Conversely, the combination of ADNC with frontotemporal lobar degeneration with TDP-43, progressive supranuclear palsy (PSP), or corticobasal degeneration (CBD) resulted in a mixed clinical picture, with variable features of amnestic dementia, PPA subtypes, behavioral variant FTD, PSP syndrome, and CBD syndrome. These findings elucidate the cumulative effects of mixed pathologies and provide insights into interactions between neurodegenerative pathologies contributing to a variety of clinical dementia presentations.
Collapse
Affiliation(s)
- Satomi Hiya
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carolina Maldonado-Díaz
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Susan K Rohde
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mitzi M Gonzales
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA, United States
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Leyla Canbeldek
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lakshmi S Kulumani Mahadevan
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Raquel T Yokoda
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - A Campbell Sullivan
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alicia S Parker
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Elena V Daoud
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Victoria Flores-Almazan
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - John F Crary
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kurt Farrell
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Feng J, Shi H, Ma D, Faisal Beg M, Cao J. Supervised Functional Principal Component Analysis Under the Mixture Cure Rate Model: An Application to Alzheimer'S Disease. Stat Med 2025; 44:e10324. [PMID: 39853780 PMCID: PMC11760660 DOI: 10.1002/sim.10324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 10/08/2024] [Accepted: 12/13/2024] [Indexed: 01/26/2025]
Abstract
Brain imaging data is one of the primary predictors for assessing the risk of Alzheimer's disease (AD). This study aims to extract image-based features associated with the possibly right-censored time-to-event outcomes and to improve predictive performance. While the functional proportional hazards model is well-studied in the literature, these studies often do not consider the existence of patients who have a very low risk and are approximately insusceptible to AD. We introduce a functional mixture cure rate model that extends the proportional hazards model by allowing a proportion of event-free patients. We propose a novel supervised functional principal component analysis (sFPCA) method to extract image features associated with AD risk while accounting for the complexity arising from right censoring. The proposed method accommodates the irregular boundary issue inherent in brain images with bivariate splines over triangulations. We demonstrate the advantages of the proposed method through extensive simulation studies and provide an application to the Alzheimer's Disease Neuroimaging Initiative (ADNI) study.
Collapse
Affiliation(s)
- Jiahui Feng
- Department of Statistics and Actuarial ScienceSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Haolun Shi
- Department of Statistics and Actuarial ScienceSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Da Ma
- School of MedicineWake Forest UniversityWinston‐SalemNorth CarolinaUSA
| | - Mirza Faisal Beg
- School of EngineeringSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| | - Jiguo Cao
- Department of Statistics and Actuarial ScienceSimon Fraser UniversityBurnabyBritish ColumbiaCanada
| |
Collapse
|
5
|
Ng B, Zetterberg H. Know your brain aging to know your resilience in neurodegenerative diseases. Brain Commun 2025; 7:fcae467. [PMID: 39816193 PMCID: PMC11734524 DOI: 10.1093/braincomms/fcae467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/07/2024] [Accepted: 12/22/2024] [Indexed: 01/18/2025] Open
Abstract
This scientific commentary refers to 'Brain aging rejuvenation factors in adults with genetic and sporadic neurodegenerative disease', by Casaletto et al. (https://doi.org/10.1093/braincomms/fcae432).
Collapse
Affiliation(s)
- Bryan Ng
- Institute for Human Development and Potential (IHDP), Agency for Science, Technology and Research (A*STAR), Singapore 117609, Republic of Singapore
| | - Henrik Zetterberg
- Dementia Research Institute, University College London, London WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal 413 45, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 413 80, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| |
Collapse
|
6
|
Yao S, Boudreau RM, Galvin A, Murabito JM, Honig LS, Perls TT, Christensen K, Newman AB. All-Cause Mortality and Cause-Specific Death in U.S. Long-Lived Siblings: Data From the Long Life Family Study. J Gerontol A Biol Sci Med Sci 2024; 79:glae190. [PMID: 39086360 PMCID: PMC11439495 DOI: 10.1093/gerona/glae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND This study compared the mortality risk of long-lived siblings with the U.S. population average and their spouse controls, and investigated the leading causes of death and the familial effect in death pattern. METHODS In the Long Life Family Study (LLFS), 1 264 proband siblings (mean age 90.1, standard deviation [SD] 6.4) and 172 spouses (83.8, 7.2) from 511 U.S.-based families were recruited and followed more than 12 years. Their survival function was compared with a birth cohort-, baseline age-, sex-, and race-matched pseudo sample from U.S. census data. To examine underlying and contributing causes, we examined in detail 338 deaths with complete death adjudication at the University of Pittsburgh Field Center through the year 2018. A familial effect on survival and death patterns was examined using mixed-effect models. RESULTS The LLFS siblings had better survival than the matched U.S. population average. They also had slightly but not significantly better survival than their spouses' (HR = 1.18 [95%CI 0.94-1.49]) after adjusting for age and sex. Age at death ranged from 75 to 104 years, mean 91.4. The leading causes of death were cardiovascular disease (33.1%), dementia (22.2%), and cancer (10.7%). Mixed effect model shows a significant random effect of family in survival, with adjustment of baseline age and sex. There was no significant familial effect in the underlying cause of death or conditions directly contributing to death among siblings recruited by the University of Pittsburgh Field Center. CONCLUSIONS Our findings demonstrate a higher survival in the LLFS siblings than the U.S. census data, with a familial component of survival. We did not find significant correspondence in causes of death between siblings within families.
Collapse
Affiliation(s)
- Shanshan Yao
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert M Boudreau
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Angéline Galvin
- Epidemiology, Biostatistics, and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Joanne M Murabito
- Section of General Internal Medicine, Department of Medicine, and the Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Lawrence S Honig
- Department of Neurology, Sergievsky Center, Taub Institute, Columbia University, New York, New York, USA
| | - Thomas T Perls
- Geriatrics Section, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, Massachusetts, USA
| | - Kaare Christensen
- Epidemiology, Biostatistics, and Biodemography, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Anne B Newman
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Chan JP, Tanprasertsuk J, Johnson EJ, Dey P, Bruno RS, Johnson MA, Poon LW, Davey A, Woodard JL, Kuchan MJ. Associations between Brain Alpha-Tocopherol Stereoisomer Profile and Hallmarks of Brain Aging in Centenarians. Antioxidants (Basel) 2024; 13:997. [PMID: 39199242 PMCID: PMC11351880 DOI: 10.3390/antiox13080997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Brain alpha-tocopherol (αT) concentration was previously reported to be inversely associated with neurofibrillary tangle (NFT) counts in specific brain structures from centenarians. However, the contribution of natural or synthetic αT stereoisomers to this relationship is unknown. In this study, αT stereoisomers were quantified in the temporal cortex (TC) of 47 centenarians in the Georgia Centenarian Study (age: 102.2 ± 2.5 years, BMI: 22.1 ± 3.9 kg/m2) and then correlated with amyloid plaques (diffuse and neuritic plaques; DPs, NPs) and NFTs in seven brain regions. The natural stereoisomer, RRR-αT, was the primary stereoisomer in all subjects, accounting for >50% of total αT in all but five subjects. %RRR was inversely correlated with DPs in the frontal cortex (FC) (ρ = -0.35, p = 0.032) and TC (ρ = -0.34, p = 0.038). %RSS (a synthetic αT stereoisomer) was positively correlated with DPs in the TC (ρ = 0.39, p = 0.017) and with NFTs in the FC (ρ = 0.37, p = 0.024), TC (ρ = 0.42, p = 0.009), and amygdala (ρ = 0.43, p = 0.008) after controlling for covariates. Neither RRR- nor RSS-αT were associated with premortem global cognition. Even with the narrow and normal range of BMIs, BMI was correlated with %RRR-αT (ρ = 0.34, p = 0.021) and %RSS-αT (ρ = -0.45, p = 0.002). These results providing the first characterization of TC αT stereoisomer profiles in centenarians suggest that DP and NFT counts, but not premortem global cognition, are influenced by the brain accumulation of specific αT stereoisomers. Further study is needed to confirm these findings and to determine the potential role of BMI in mediating this relationship.
Collapse
Affiliation(s)
| | - Jirayu Tanprasertsuk
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA;
| | - Elizabeth J. Johnson
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA 02111, USA;
| | - Priyankar Dey
- College of Education and Human Ecology, The Ohio State University, Columbus, OH 43210, USA; (P.D.); (R.S.B.)
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India
| | - Richard S. Bruno
- College of Education and Human Ecology, The Ohio State University, Columbus, OH 43210, USA; (P.D.); (R.S.B.)
| | - Mary Ann Johnson
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Leonard W. Poon
- Institute of Gerontology, University of Georgia-Athens, Athens, GA 30602, USA;
| | - Adam Davey
- Department of Health Behavior and Nutrition Sciences, University of Delaware, Newark, DE 19716, USA;
| | - John L. Woodard
- Department of Psychology, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI 48202, USA;
| | | |
Collapse
|
8
|
Jury-Garfe N, Redding-Ochoa J, You Y, Martínez P, Karahan H, Chimal-Juárez E, Johnson TS, Zhang J, Resnick S, Kim J, Troncoso JC, Lasagna-Reeves CA. Enhanced microglial dynamics and a paucity of tau seeding in the amyloid plaque microenvironment contribute to cognitive resilience in Alzheimer's disease. Acta Neuropathol 2024; 148:15. [PMID: 39102080 PMCID: PMC11300572 DOI: 10.1007/s00401-024-02775-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Asymptomatic Alzheimer's disease (AsymAD) describes the status of individuals with preserved cognition but identifiable Alzheimer's disease (AD) brain pathology (i.e., beta-amyloid (Aβ) deposits, neuritic plaques, and neurofibrillary tangles) at autopsy. In this study, we investigated the postmortem brains of a cohort of AsymAD subjects to gain insight into the mechanisms underlying resilience to AD pathology and cognitive decline. Our results showed that AsymAD cases exhibit enrichment in core plaques, decreased filamentous plaque accumulation, and increased plaque-surrounding microglia. Less pathological tau aggregation in dystrophic neurites was found in AsymAD brains than in AD brains, and tau seeding activity was comparable to that in healthy brains. We used spatial transcriptomics to characterize the plaque niche further and revealed autophagy, endocytosis, and phagocytosis as the pathways associated with the genes upregulated in the AsymAD plaque niche. Furthermore, the levels of ARP2 and CAP1, which are actin-based motility proteins that participate in the dynamics of actin filaments to allow cell motility, were increased in the microglia surrounding amyloid plaques in AsymAD cases. Our findings suggest that the amyloid-plaque microenvironment in AsymAD cases is characterized by the presence of microglia with highly efficient actin-based cell motility mechanisms and decreased tau seeding compared with that in AD brains. These two mechanisms can potentially protect against the toxic cascade initiated by Aβ, preserving brain health, and slowing AD pathology progression.
Collapse
Affiliation(s)
- Nur Jury-Garfe
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Yanwen You
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pablo Martínez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Hande Karahan
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Enrique Chimal-Juárez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Travis S Johnson
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, USA
| | - Jie Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Susan Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging and National Institute of Health, Baltimore, MD, USA
| | - Jungsu Kim
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Cristian A Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Neurosciences Research Building 214G, 320 West 15th Street, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Enzlein T, Lashley T, Sammour DA, Hopf C, Chávez-Gutiérrez L. Integrative Single-Plaque Analysis Reveals Signature Aβ and Lipid Profiles in the Alzheimer's Brain. Anal Chem 2024; 96:9799-9807. [PMID: 38830618 PMCID: PMC11190877 DOI: 10.1021/acs.analchem.3c05557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
Cerebral accumulation of amyloid-β (Aβ) initiates molecular and cellular cascades that lead to Alzheimer's disease (AD). However, amyloid deposition does not invariably lead to dementia. Amyloid-positive but cognitively unaffected (AP-CU) individuals present widespread amyloid pathology, suggesting that molecular signatures more complex than the total amyloid burden are required to better differentiate AD from AP-CU cases. Motivated by the essential role of Aβ and the key lipid involvement in AD pathogenesis, we applied multimodal mass spectrometry imaging (MSI) and machine learning (ML) to investigate amyloid plaque heterogeneity, regarding Aβ and lipid composition, in AP-CU versus AD brain samples at the single-plaque level. Instead of focusing on a population mean, our analytical approach allowed the investigation of large populations of plaques at the single-plaque level. We found that different (sub)populations of amyloid plaques, differing in Aβ and lipid composition, coexist in the brain samples studied. The integration of MSI data with ML-based feature extraction further revealed that plaque-associated gangliosides GM2 and GM1, as well as Aβ1-38, but not Aβ1-42, are relevant differentiators between the investigated pathologies. The pinpointed differences may guide further fundamental research investigating the role of amyloid plaque heterogeneity in AD pathogenesis/progression and may provide molecular clues for further development of emerging immunotherapies to effectively target toxic amyloid assemblies in AD therapy. Our study exemplifies how an integrative analytical strategy facilitates the unraveling of complex biochemical phenomena, advancing our understanding of AD from an analytical perspective and offering potential avenues for the refinement of diagnostic tools.
Collapse
Affiliation(s)
- Thomas Enzlein
- Center
for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, Mannheim 68163, Germany
- KU
Leuven-VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium
- Department
of Neurosciences, Leuven Institute for Neuroscience and Disease, KU Leuven, Leuven 3000, Belgium
| | - Tammaryn Lashley
- Department
of Neurodegenerative Diseases, UCL Queen
Square Institute of Neurology, London WC1N 3BG, U.K.
| | - Denis Abu Sammour
- Center
for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, Mannheim 68163, Germany
| | - Carsten Hopf
- Center
for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, Mannheim 68163, Germany
- Mannheim
Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
- Medical Faculty, Heidelberg University, Heidelberg 69120, Germany
| | - Lucía Chávez-Gutiérrez
- KU
Leuven-VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium
- Department
of Neurosciences, Leuven Institute for Neuroscience and Disease, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
10
|
de Vries LE, Huitinga I, Kessels HW, Swaab DF, Verhaagen J. The concept of resilience to Alzheimer's Disease: current definitions and cellular and molecular mechanisms. Mol Neurodegener 2024; 19:33. [PMID: 38589893 PMCID: PMC11003087 DOI: 10.1186/s13024-024-00719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Some individuals are able to maintain their cognitive abilities despite the presence of significant Alzheimer's Disease (AD) neuropathological changes. This discrepancy between cognition and pathology has been labeled as resilience and has evolved into a widely debated concept. External factors such as cognitive stimulation are associated with resilience to AD, but the exact cellular and molecular underpinnings are not completely understood. In this review, we discuss the current definitions used in the field, highlight the translational approaches used to investigate resilience to AD and summarize the underlying cellular and molecular substrates of resilience that have been derived from human and animal studies, which have received more and more attention in the last few years. From these studies the picture emerges that resilient individuals are different from AD patients in terms of specific pathological species and their cellular reaction to AD pathology, which possibly helps to maintain cognition up to a certain tipping point. Studying these rare resilient individuals can be of great importance as it could pave the way to novel therapeutic avenues for AD.
Collapse
Affiliation(s)
- Luuk E de Vries
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Kim B, Yannatos I, Blam K, Wiebe D, Xie SX, McMillan CT, Mechanic‐Hamilton D, Wolk DA, Lee EB. Neighborhood disadvantage reduces cognitive reserve independent of neuropathologic change. Alzheimers Dement 2024; 20:2707-2718. [PMID: 38400524 PMCID: PMC11032541 DOI: 10.1002/alz.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024]
Abstract
INTRODUCTION Individuals in socioeconomically disadvantaged neighborhoods exhibit increased risk for impaired cognitive function. Whether this association relates to the major dementia-related neuropathologies is unknown. METHODS This cross-sectional study included 469 autopsy cases from 2011 to 2023. The relationships between neighborhood disadvantage measured by Area Deprivation Index (ADI) percentiles categorized into tertiles, cognition evaluated by the last Mini-Mental State Examination (MMSE) scores before death, and 10 dementia-associated proteinopathies and cerebrovascular disease were assessed using regression analyses. RESULTS Higher ADI was significantly associated with lower MMSE score. This was mitigated by increasing years of education. ADI was not associated with an increase in dementia-associated neuropathologic change. Moreover, the significant association between ADI and cognition remained even after controlling for changes in major dementia-associated proteinopathies or cerebrovascular disease. DISCUSSION Neighborhood disadvantage appears to be associated with decreased cognitive reserve. This association is modified by education but is independent of the major dementia-associated neuropathologies.
Collapse
Affiliation(s)
- Boram Kim
- Translational Neuropathology Research LaboratoryDepartment of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Isabel Yannatos
- Penn Frontotemporal Degeneration CenterDepartment of NeurologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kaitlin Blam
- Translational Neuropathology Research LaboratoryDepartment of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Douglas Wiebe
- Department of Emergency MedicineDepartment of EpidemiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Sharon X. Xie
- Department of BiostatisticsEpidemiology and InformaticsPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Corey T. McMillan
- Penn Frontotemporal Degeneration CenterDepartment of NeurologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dawn Mechanic‐Hamilton
- Penn Memory CenterDepartment of NeurologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - David A. Wolk
- Penn Memory CenterDepartment of NeurologyPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Edward B. Lee
- Translational Neuropathology Research LaboratoryDepartment of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
12
|
Jin M, Ma Z, Dang R, Zhang H, Kim R, Xue H, Pascual J, Finkbeiner S, Head E, Liu Y, Jiang P. A Trisomy 21-linked Hematopoietic Gene Variant in Microglia Confers Resilience in Human iPSC Models of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584646. [PMID: 38559257 PMCID: PMC10979994 DOI: 10.1101/2024.03.12.584646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
While challenging, identifying individuals displaying resilience to Alzheimer's disease (AD) and understanding the underlying mechanism holds great promise for the development of new therapeutic interventions to effectively treat AD. Down syndrome (DS), or trisomy 21, is the most common genetic cause of AD. Interestingly, some people with DS, despite developing AD neuropathology, show resilience to cognitive decline. Furthermore, DS individuals are at an increased risk of myeloid leukemia due to somatic mutations in hematopoietic cells. Recent studies indicate that somatic mutations in hematopoietic cells may lead to resilience to neurodegeneration. Microglia, derived from hematopoietic lineages, play a central role in AD etiology. We therefore hypothesize that microglia carrying the somatic mutations associated with DS myeloid leukemia may impart resilience to AD. Using CRISPR-Cas9 gene editing, we introduce a trisomy 21-linked hotspot CSF2RB A455D mutation into human pluripotent stem cell (hPSC) lines derived from both DS and healthy individuals. Employing hPSC-based in vitro microglia culture and in vivo human microglia chimeric mouse brain models, we show that in response to pathological tau, the CSF2RB A455D mutation suppresses microglial type-1 interferon signaling, independent of trisomy 21 genetic background. This mutation reduces neuroinflammation and enhances phagocytic and autophagic functions, thereby ameliorating senescent and dystrophic phenotypes in human microglia. Moreover, the CSF2RB A455D mutation promotes the development of a unique microglia subcluster with tissue repair properties. Importantly, human microglia carrying CSF2RB A455D provide protection to neuronal function, such as neurogenesis and synaptic plasticity in chimeric mouse brains where human microglia largely repopulate the hippocampus. When co-transplanted into the same mouse brains, human microglia with CSF2RB A455D mutation phagocytize and replace human microglia carrying the wildtype CSF2RB gene following pathological tau treatment. Our findings suggest that hPSC-derived CSF2RB A455D microglia could be employed to develop effective microglial replacement therapy for AD and other age-related neurodegenerative diseases, even without the need to deplete endogenous diseased microglia prior to cell transplantation.
Collapse
Affiliation(s)
- Mengmeng Jin
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Ziyuan Ma
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Rui Dang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Haiwei Zhang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Rachael Kim
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| | - Haipeng Xue
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jesse Pascual
- Department of Pathology and Laboratory Medicine, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Steven Finkbeiner
- Ceter for Systems and Therapeutics and the Taube/Koret Center for Neurodegenerative Disease, Gladstone Institutes; University of California, San Francisco, CA 94158, USA
- Departments of Neurology and Physiology, University of California, San Francisco, CA 94158, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, Department of Neurology, University of California, Irvine, CA 92697, USA
| | - Ying Liu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University New Brunswick, Piscataway, NJ 08854, USA
| |
Collapse
|
13
|
da Silva SP, de Castro CCM, Rabelo LN, Engelberth RC, Fernández-Calvo B, Fiuza FP. Neuropathological and sociodemographic factors associated with the cortical amyloid load in aging and Alzheimer's disease. GeroScience 2024; 46:621-643. [PMID: 37870702 PMCID: PMC10828279 DOI: 10.1007/s11357-023-00982-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and is characterized by a progressive decline in cognitive abilities. A pathological hallmark of AD is a region-specific accumulation of the amyloid-beta protein (Aβ). Here, we explored the association between regional Aβ deposition, sociodemographic, and local biochemical factors. We quantified the Aβ burden in postmortem cortical samples from parietal (PCx) and temporal (TCx) regions of 27 cognitively unimpaired (CU) and 15 AD donors, aged 78-100 + years. Histological images of Aβ immunohistochemistry and local concentrations of pathological and inflammatory proteins were obtained at the "Aging, Dementia and TBI Study" open database. We used the area fraction fractionator stereological methodology to quantify the Aβ burden in the gray and white matter within each cortical region. We found higher Aβ burdens in the TCx of AD octogenarians compared to CU ones. We also found higher Aβ loads in the PCx of AD nonagenarians than in AD octogenarians. Moreover, AD women exhibited increased Aβ deposition compared to CU women. Interestingly, we observed a negative correlation between education years and Aβ burden in the white matter of both cortices in CU samples. In AD brains, the Aβ40, Aβ42, and pTau181 isoforms of Aβ and Tau proteins were positively correlated with the Aβ burden. Additionally, in the TCx of AD donors, the proinflammatory cytokine TNFα showed a positive correlation with the Aβ load. These novel findings contribute to understanding the interplay between sociodemographic characteristics, local inflammatory signaling, and the development of AD-related pathology in the cerebral cortex.
Collapse
Affiliation(s)
- Sayonara P da Silva
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, RN, 59280-000, Brazil
| | - Carla C M de Castro
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, RN, 59280-000, Brazil
| | - Lívia N Rabelo
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, RN, 59280-000, Brazil
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, Brazil
| | - Rovena C Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Biosciences Center, Federal University of Rio Grande Do Norte, Natal, Brazil
| | - Bernardino Fernández-Calvo
- Department of Psychology, University of Córdoba, Córdoba, Spain
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Department of Psychology, Federal University of Paraíba, João Pessoa, Brazil
| | - Felipe P Fiuza
- Graduate Program in Neuroengineering, Edmond and Lily Safra International Institute of Neuroscience, Santos Dumont Institute, Macaíba, RN, 59280-000, Brazil.
| |
Collapse
|
14
|
Hiya S, Maldonado-Díaz C, Walker JM, Richardson TE. Cognitive symptoms progress with limbic-predominant age-related TDP-43 encephalopathy stage and co-occurrence with Alzheimer disease. J Neuropathol Exp Neurol 2023; 83:2-10. [PMID: 37966908 PMCID: PMC10746699 DOI: 10.1093/jnen/nlad098] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is a neuropathologic entity characterized by transactive response DNA-binding protein of 43-kDa (TDP-43)-immunoreactive inclusions that originate in the amygdala and then progress to the hippocampi and middle frontal gyrus. LATE-NC may mimic Alzheimer disease clinically and often co-occurs with Alzheimer disease neuropathologic change (ADNC). This report focuses on the cognitive effects of isolated and concomitant LATE-NC and ADNC. Cognitive/neuropsychological, neuropathologic, genetic, and demographic variables were analyzed in 28 control, 31 isolated LATE-NC, 244 isolated ADNC, and 172 concurrent LATE-NC/ADNC subjects from the National Alzheimer's Coordinating Center. Cases with LATE-NC and ADNC were significantly older than controls; cases with ADNC had a significantly higher proportion of cases with at least one APOE ε4 allele. Both LATE-NC and ADNC exhibited deleterious effects on overall cognition proportional to their neuropathological stages; concurrent LATE-NC/ADNC exhibited the worst overall cognitive effect. Multivariate logistic regression analysis determined an independent risk of cognitive impairment for progressive LATE-NC stages (OR 1.66; p = 0.0256) and ADNC levels (OR 3.41; p < 0.0001). These data add to the existing knowledge on the clinical consequences of LATE-NC pathology and the growing literature on the effects of multiple concurrent neurodegenerative pathologies.
Collapse
Affiliation(s)
- Satomi Hiya
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carolina Maldonado-Díaz
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
15
|
Souchet B, Michaïl A, Billoir B, Braudeau J. Biological Diagnosis of Alzheimer's Disease Based on Amyloid Status: An Illustration of Confirmation Bias in Medical Research? Int J Mol Sci 2023; 24:17544. [PMID: 38139372 PMCID: PMC10744068 DOI: 10.3390/ijms242417544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) was first characterized by Dr. Alois Alzheimer in 1906 by studying a demented patient and discovering cerebral amyloid plaques and neurofibrillary tangles. Subsequent research highlighted the roles of Aβ peptides and tau proteins, which are the primary constituents of these lesions, which led to the amyloid cascade hypothesis. Technological advances, such as PET scans using Florbetapir, have made it possible to visualize amyloid plaques in living patients, thus improving AD's risk assessment. The National Institute on Aging and the Alzheimer's Association introduced biological diagnostic criteria in 2011, which underlined the amyloid deposits diagnostic value. However, potential confirmation bias may have led researchers to over-rely on amyloid markers independent of AD's symptoms, despite evidence of their limited specificity. This review provides a critical examination of the current research paradigm in AD, including, in particular, the predominant focus on amyloid and tau species in diagnostics. We discuss the potential multifaceted consequences of this approach and propose strategies to mitigate its overemphasis in the development of new biomarkers. Furthermore, our study presents comprehensive guidelines aimed at enhancing the creation of biomarkers for accurately predicting AD dementia onset. These innovations are crucial for refining patient selection processes in clinical trial enrollment and for the optimization of therapeutic strategies. Overcoming confirmation bias is essential to advance the diagnosis and treatment of AD and to move towards precision medicine by incorporating a more nuanced understanding of amyloid biomarkers.
Collapse
Affiliation(s)
| | | | | | - Jérôme Braudeau
- AgenT SAS, 4 Rue Pierre Fontaine, 91000 Evry-Courcouronnes, France; (B.S.); (A.M.); (B.B.)
| |
Collapse
|
16
|
Jury-Garfe N, You Y, Martínez P, Redding-Ochoa J, Karahan H, Johnson TS, Zhang J, Kim J, Troncoso JC, Lasagna-Reeves CA. Enhanced microglial dynamics and paucity of tau seeding in the amyloid plaque microenvironment contributes to cognitive resilience in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550884. [PMID: 37546928 PMCID: PMC10402121 DOI: 10.1101/2023.07.27.550884] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Asymptomatic Alzheimer's disease (AsymAD) describes the status of subjects with preserved cognition but with identifiable Alzheimer's disease (AD) brain pathology (i.e. Aβ-amyloid deposits, neuritic plaques, and neurofibrillary tangles) at autopsy. In this study, we investigated the postmortem brains of a cohort of AsymAD cases to gain insight into the underlying mechanisms of resilience to AD pathology and cognitive decline. Our results showed that AsymAD cases exhibit an enrichment of core plaques and decreased filamentous plaque accumulation, as well as an increase in microglia surrounding this last type. In AsymAD cases we found less pathological tau aggregation in dystrophic neurites compared to AD and tau seeding activity comparable to healthy control subjects. We used spatial transcriptomics to further characterize the plaque niche and found autophagy, endocytosis, and phagocytosis within the top upregulated pathways in the AsymAD plaque niche, but not in AD. Furthermore, we found ARP2, an actin-based motility protein crucial to initiate the formation of new actin filaments, increased within microglia in the proximity of amyloid plaques in AsymAD. Our findings support that the amyloid-plaque microenvironment in AsymAD cases is characterized by microglia with highly efficient actin-based cell motility mechanisms and decreased tau seeding compared to AD. These two mechanisms can potentially provide protection against the toxic cascade initiated by Aβ that preserves brain health and slows down the progression of AD pathology.
Collapse
Affiliation(s)
- Nur Jury-Garfe
- Stark Neuroscience Research Institute, Indiana University, Indianapolis, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yanwen You
- Stark Neuroscience Research Institute, Indiana University, Indianapolis, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Pablo Martínez
- Stark Neuroscience Research Institute, Indiana University, Indianapolis, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Javier Redding-Ochoa
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Hande Karahan
- Stark Neuroscience Research Institute, Indiana University, Indianapolis, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Travis S. Johnson
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, USA
| | - Jie Zhang
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jungsu Kim
- Stark Neuroscience Research Institute, Indiana University, Indianapolis, USA
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, USA
| | - Juan C. Troncoso
- Departments of Pathology, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Cristian A. Lasagna-Reeves
- Stark Neuroscience Research Institute, Indiana University, Indianapolis, USA
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
17
|
Nelson TJ, Xu Y. Sting and p53 DNA repair pathways are compromised in Alzheimer's disease. Sci Rep 2023; 13:8304. [PMID: 37221295 PMCID: PMC10206146 DOI: 10.1038/s41598-023-35533-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. A common finding in AD is DNA damage. Double-strand DNA breaks (DSBs) are particularly hazardous to neurons because their post-mitotic state forces neurons to rely on error-prone and potentially mutagenic mechanisms to repair DNA breaks. However, it remains unclear whether DNA damage results from increased DNA damage or failure of DNA repair. Oligomerization of the tumor suppressor protein p53 is an essential part of DSB repair, and p53 phosphorylated on S15 is an indicator of DNA damage. We report that the monomer:dimer ratio of phosphorylated (S15) p53 is increased by 2.86-fold in temporal lobes of AD patients compared to age-matched controls, indicating that p53 oligomerization is compromised in AD. In vitro oxidation of p53 with 100 nM H2O2 produced a similar shift in the monomer:dimer ratio. A COMET test showed a higher level of DNA degradation in AD consistent with double-strand DNA damage or inhibition of repair. Protein carbonylation was also elevated (190% of control), indicating elevated oxidative stress in AD patients. Levels of the DNA repair support protein 14-3-3σ, γ-H2AX, a phosphorylated histone marking double strand DNA breaks, and phosphorylated ataxia telangiectasia mutated (ATM) protein were all increased. cGAS-STING-interferon signaling was impaired in AD and was accompanied by a depletion of STING protein from Golgi and a failure to elevate interferon despite the presence of DSBs. The results suggest that oxidation of p53 by ROS could inhibit the DDR and decrease its ability to orchestrate DSB repair by altering the oligomerization state of p53. The failure of immune-stimulated DNA repair may contribute to cell loss in AD and suggests new therapeutic targets for AD.
Collapse
Affiliation(s)
- Thomas J Nelson
- Department of Neurology, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, 25704, USA.
| | - Yunhui Xu
- Department of Neurology, Marshall University Joan C. Edwards School of Medicine, Huntington, WV, 25704, USA
| |
Collapse
|