1
|
Guan M, Xie Y, Wang Z, Miao Y, Li X, Yu S, Wang HN. Brain connectivity and transcriptional changes induced by rTMS in first-episode major depressive disorder. Transl Psychiatry 2025; 15:159. [PMID: 40274783 PMCID: PMC12022310 DOI: 10.1038/s41398-025-03376-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 03/14/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a widely utilized non-invasive brain stimulation technique with demonstrated efficacy in treating major depressive disorder (MDD). However, the mechanisms underlying its therapeutic effects, particularly in modulating neural connectivity and influencing gene expression, remain incompletely understood. In this study, we investigated the voxel-wise degree centrality (DC) induced by 10 Hz rTMS targeting the left dorsolateral prefrontal cortex, as well as their associations with transcriptomic data from the Allen Human Brain Atlas. The results indicated that the active treatment significantly reduced clinical symptoms and increased DC in the left superior medial frontal gyrus, left middle occipital gyrus, and right anterior cingulate cortex. Partial least squares regression analysis revealed that genes associated with DC alternations were enriched biological processes related to neural plasticity and synaptic connectivity. Furthermore, protein-protein interaction (PPI) analysis identified key hub genes, including SCN1A, SNAP25, and PVALB, whose expression levels were positively correlated with DC changes. Notably, SCN1A emerged as a significant predictor on DC changes. These findings suggest that rTMS may exert its therapeutic effects in MDD by modulating specific molecular pathways and neural networks, providing valuable insights into its mechanisms of action.
Collapse
Affiliation(s)
- Muzhen Guan
- Department of Mental Health, Xi'an Medical College, Xi'an, China.
| | - Yuanjun Xie
- Medical Innovation Center, Sichuan University of Science and Engineering, Zigong, China
| | - Zhongheng Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ye Miao
- Reproductive Medicine Center, Department of Gynecology and Obstetrics, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
- Clinical Research Center for Reproductive Medicine and Gynecological Endocrine Diseases of Shaanxi Province, Xi'an, China
| | - Xiaosa Li
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shoufen Yu
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
2
|
Knox AT, Thompson CH, Scott D, Abramova TV, Stieve B, Freeman A, George AL. Genotype-function-phenotype correlations for SCN1A variants identified by clinical genetic testing. Ann Clin Transl Neurol 2025; 12:499-511. [PMID: 39838578 PMCID: PMC11920720 DOI: 10.1002/acn3.52297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/21/2024] [Accepted: 12/25/2024] [Indexed: 01/23/2025] Open
Abstract
OBJECTIVE Interpretation of clinical genetic testing, which identifies a potential genetic etiology in 25% of children with epilepsy, is limited by variants of uncertain significance. Understanding functional consequences of variants can help distinguish pathogenic from benign alleles. We combined automated patch clamp recording with neurophysiological simulations to discern genotype-function-phenotype correlations in a real-world cohort of children with SCN1A-associated epilepsy. METHODS Clinical data were extracted for children with SCN1A variants identified by clinical genetic testing. Functional properties of non-truncating NaV1.1 variant channels were determined using automated patch clamp recording. Functional data were incorporated into a parvalbumin-positive (PV+) interneuron computer model to predict variant effects on neuron firing and were compared with longitudinal clinical data describing epilepsy types, neurocognitive outcomes, and medication response. RESULTS Twelve SCN1A variants were identified (nine non-truncating). Six non-truncating variants exhibited no measurable sodium current in heterologous cells consistent with complete loss of function (LoF). Two variants caused either partial LoF (L479P) or a mixture of gain and loss of function (I1356M). The remaining non-truncating variant (T1250M) exhibited normal function. Functional data changed classification of pathogenicity for six variants. Complete LoF variants were universally associated with seizure onset before one year of age and febrile seizures, and were often associated with drug resistant epilepsy and below average cognitive outcomes. Simulations demonstrated abnormal firing in heterozygous model neurons containing dysfunctional variants. INTERPRETATION In SCN1A-associated epilepsy, functional analysis and neuron simulation studies resolved variants of uncertain significance and correlated with aspects of phenotype and medication response.
Collapse
Affiliation(s)
- Andrew T. Knox
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Christopher H. Thompson
- Department of PharmacologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Dillon Scott
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Tatiana V. Abramova
- Department of PharmacologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Bethany Stieve
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Abigail Freeman
- Department of NeurologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Alfred L. George
- Department of PharmacologyNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
3
|
Medyanik AD, Anisimova PE, Kustova AO, Tarabykin VS, Kondakova EV. Developmental and Epileptic Encephalopathy: Pathogenesis of Intellectual Disability Beyond Channelopathies. Biomolecules 2025; 15:133. [PMID: 39858526 PMCID: PMC11763800 DOI: 10.3390/biom15010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of neuropediatric diseases associated with epileptic seizures, severe delay or regression of psychomotor development, and cognitive and behavioral deficits. What sets DEEs apart is their complex interplay of epilepsy and developmental delay, often driven by genetic factors. These two aspects influence one another but can develop independently, creating diagnostic and therapeutic challenges. Intellectual disability is severe and complicates potential treatment. Pathogenic variants are found in 30-50% of patients with DEE. Many genes mutated in DEEs encode ion channels, causing current conduction disruptions known as channelopathies. Although channelopathies indeed make up a significant proportion of DEE cases, many other mechanisms have been identified: impaired neurogenesis, metabolic disorders, disruption of dendrite and axon growth, maintenance and synapse formation abnormalities -synaptopathies. Here, we review recent publications on non-channelopathies in DEE with an emphasis on the mechanisms linking epileptiform activity with intellectual disability. We focus on three major mechanisms of intellectual disability in DEE and describe several recently identified genes involved in the pathogenesis of DEE.
Collapse
Affiliation(s)
- Alexandra D. Medyanik
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Polina E. Anisimova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Angelina O. Kustova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Victor S. Tarabykin
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| |
Collapse
|
4
|
Rusina E, Simonti M, Duprat F, Cestèle S, Mantegazza M. Voltage-gated sodium channels in genetic epilepsy: up and down of excitability. J Neurochem 2024; 168:3872-3890. [PMID: 37654020 PMCID: PMC11591406 DOI: 10.1111/jnc.15947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 09/02/2023]
Abstract
The past two decades have witnessed a wide range of studies investigating genetic variants of voltage-gated sodium (NaV) channels, which are involved in a broad spectrum of diseases, including several types of epilepsy. We have reviewed here phenotypes and pathological mechanisms of genetic epilepsies caused by variants in NaV α and β subunits, as well as of some relevant interacting proteins (FGF12/FHF1, PRRT2, and Ankyrin-G). Notably, variants of all these genes can induce either gain- or loss-of-function of NaV leading to either neuronal hyperexcitability or hypoexcitability. We present the results of functional studies obtained with different experimental models, highlighting that they should be interpreted considering the features of the experimental system used. These systems are models, but they have allowed us to better understand pathophysiological issues, ameliorate diagnostics, orientate genetic counseling, and select/develop therapies within a precision medicine framework. These studies have also allowed us to gain insights into the physiological roles of different NaV channels and of the cells that express them. Overall, our review shows the progress that has been made, but also the need for further studies on aspects that have not yet been clarified. Finally, we conclude by highlighting some significant themes of general interest that can be gleaned from the results of the work of the last two decades.
Collapse
Affiliation(s)
- Evgeniia Rusina
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Martina Simonti
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Fabrice Duprat
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| | - Sandrine Cestèle
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
| | - Massimo Mantegazza
- University Cote d'AzurValbonne‐Sophia AntipolisFrance
- CNRS UMR 7275Institute of Molecular and Cellular Pharmacology (IPMC)Valbonne‐Sophia AntipolisFrance
- InsermValbonne‐Sophia AntipolisFrance
| |
Collapse
|
5
|
Kim JA, Schimpf S, Yano ST, Nordli D, Phitsanuwong C. Categorizing Monogenic Epilepsies by Genetic Mechanisms May Predict Efficacy of the Ketogenic Diet. Pediatr Neurol 2024; 160:11-17. [PMID: 39173306 DOI: 10.1016/j.pediatrneurol.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/19/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND The ketogenic diet (KD) is an effective treatment for epilepsy. In recent years, studies have shown favorable efficacy of KD in epilepsy from genetic disorders. In this study, we propose an approach to KD in monogenic epilepsy: we evaluate the utility of categorizing genetic variants based on rational associations with the known mechanisms of KD. METHODS Patients with monogenic epilepsy treated with KD were reviewed. The genetic etiologies were categorized into five groups: (1) conditions causing cellular energy impairment, (2) GABA-pathies, (3) mToR-pathies, (4) ion channelopathies, and (5) no known mechanisms associated with KD mechanisms. Treatment response was defined as a median reduction in seizure frequency of greater than 50%. RESULTS Of 35 patients, 24 (69%) were responders at three months. Based on categories, Group 1 had the highest response rate with seven of seven (100%), followed by Group 2, six of seven (86%), and Group 3, two of three (67%). Patients in Groups 4 and 5 had poorer responses with three of seven (43%) and four of 11 (36%) response rates, respectively (P < 0.01). Median percentage of seizure reduction showed Group 1 with the highest reduction of 97.5%, Group 2 at 94%, and Groups 3, 4, and 5 at 62.5%, 30%, and 40%, respectively (P = 0.036). CONCLUSION Our findings show a favorable response to KD in patients with monogenic epilepsy (69% at three months) with the highest response in patients with conditions involving cellular energy impairment and GABA-pathies. The KD, therefore, should be considered early in patients with monogenic epilepsy, especially those involving genes associated with cellular energy impairment or GABA-pathies.
Collapse
Affiliation(s)
- Jeong-A Kim
- Section of Child Neurology, The University of Chicago Medicine, Chicago, Illinois
| | - Stephanie Schimpf
- Section of Child Neurology, The University of Chicago Medicine, Chicago, Illinois; Ketogenic Diet Program, The University of Chicago Comer Children's Hospital, Chicago, Illinois
| | - Sho T Yano
- Section of Child Neurology, The University of Chicago Medicine, Chicago, Illinois
| | - Douglas Nordli
- Section of Child Neurology, The University of Chicago Medicine, Chicago, Illinois
| | - Chalongchai Phitsanuwong
- Section of Child Neurology, The University of Chicago Medicine, Chicago, Illinois; Ketogenic Diet Program, The University of Chicago Comer Children's Hospital, Chicago, Illinois.
| |
Collapse
|
6
|
Miralles RM, Boscia AR, Kittur S, Hanflink JC, Panchal PS, Yorek MS, Deutsch TCJ, Reever CM, Vundela SR, Wengert ER, Patel MK. Parvalbumin interneuron impairment causes synaptic transmission deficits and seizures in SCN8A developmental and epileptic encephalopathy. JCI Insight 2024; 9:e181005. [PMID: 39435659 PMCID: PMC11529981 DOI: 10.1172/jci.insight.181005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024] Open
Abstract
SCN8A developmental and epileptic encephalopathy (DEE) is a severe epilepsy syndrome resulting from mutations in the voltage-gated sodium channel Nav1.6, encoded by the gene SCN8A. Nav1.6 is expressed in excitatory and inhibitory neurons, yet previous studies primarily focus on how SCN8A mutations affect excitatory neurons, with limited studies on the importance of inhibitory interneurons. Parvalbumin (PV) interneurons are a prominent inhibitory interneuron subtype that expresses Nav1.6. To assess PV interneuron function within SCN8A DEE, we used 2 mouse models harboring patient-derived SCN8A gain-of-function variants, Scn8aD/+, where the SCN8A variant N1768D is expressed globally, and Scn8aW/+-PV, where the SCN8A variant R1872W is selectively expressed in PV interneurons. Expression of the R1872W SCN8A variant selectively in PV interneurons led to development of spontaneous seizures and seizure-induced death. Electrophysiology studies showed that Scn8aD/+ and Scn8aW/+-PV interneurons were susceptible to depolarization block and exhibited increased persistent sodium current. Evaluation of synaptic connections between PV interneurons and pyramidal cells showed synaptic transmission deficits in Scn8aD/+ and Scn8aW/+-PV interneurons. Together, our findings indicate that PV interneuron failure via depolarization block along with inhibitory synaptic impairment likely elicits an overall inhibitory reduction in SCN8A DEE, leading to unchecked excitation and ultimately resulting in seizures and seizure-induced death.
Collapse
Affiliation(s)
- Raquel M. Miralles
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | | | | | | | | | | | - Caeley M. Reever
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
| | | | - Eric R. Wengert
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Manoj K. Patel
- Department of Anesthesiology and
- Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, USA
| |
Collapse
|
7
|
Qu G, Merchant JP, Clatot J, DeFlitch LM, Frederick DJ, Tang S, Salvatore M, Zhang X, Li J, Anderson SA, Goldberg EM. Targeted blockade of aberrant sodium current in a stem cell-derived neuron model of SCN3A encephalopathy. Brain 2024; 147:1247-1263. [PMID: 37935051 PMCID: PMC10994535 DOI: 10.1093/brain/awad376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/30/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023] Open
Abstract
Missense variants in SCN3A encoding the voltage-gated sodium (Na+) channel α subunit Nav1.3 are associated with SCN3A-related neurodevelopmental disorder (SCN3A-NDD), a spectrum of disease that includes epilepsy and malformation of cortical development. How genetic variation in SCN3A leads to pathology remains unclear, as prior electrophysiological work on disease-associated variants has been performed exclusively in heterologous cell systems. To further investigate the mechanisms of SCN3A-NDD pathogenesis, we used CRISPR/Cas9 gene editing to modify a control human induced pluripotent stem cell (iPSC) line to express the recurrent de novo missense variant SCN3A c.2624T>C (p.Ile875Thr). With the established Ngn2 rapid induction protocol, we generated glutamatergic forebrain-like neurons (iNeurons), which we showed to express SCN3A mRNA and Nav1.3-mediated Na+ currents. We performed detailed whole-cell patch clamp recordings to determine the effect of the SCN3A-p.Ile875Thr variant on endogenous Na+ currents in, and intrinsic excitability of, human neurons. Compared to control iNeurons, variant-expressing iNeurons exhibit markedly increased slowly-inactivating/persistent Na+ current, abnormal firing patterns with paroxysmal bursting and plateau-like potentials with action potential failure, and a hyperpolarized voltage threshold for action potential generation. We then validated these findings using a separate iPSC line generated from a patient harbouring the SCN3A-p.Ile875Thr variant compared to a corresponding CRISPR-corrected isogenic control line. Finally, we found that application of the Nav1.3-selective blocker ICA-121431 normalizes action potential threshold and aberrant firing patterns in SCN3A-p.Ile1875Thr iNeurons; in contrast, consistent with action as a Na+ channel blocker, ICA-121431 decreases excitability of control iNeurons. Our findings demonstrate that iNeurons can model the effects of genetic variation in SCN3A yet reveal a complex relationship between gain-of-function at the level of the ion channel versus impact on neuronal excitability. Given the transient expression of SCN3A in the developing human nervous system, selective blockade or suppression of Nav1.3-containing Na+ channels could represent a therapeutic approach towards SCN3A-NDD.
Collapse
Affiliation(s)
- Guojie Qu
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Julie P Merchant
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jérôme Clatot
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Leah M DeFlitch
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Danny J Frederick
- Department of Child and Adolescent Psychiatry, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Sheng Tang
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Madeleine Salvatore
- Department of Child and Adolescent Psychiatry, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Xiaohong Zhang
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Jianping Li
- Department of Child and Adolescent Psychiatry, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Stewart A Anderson
- The Epilepsy NeuroGenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- The Epilepsy NeuroGenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
8
|
Miralles RM, Boscia AR, Kittur S, Vundela SR, Wengert ER, Patel MK. Parvalbumin Interneuron Impairment Leads to Synaptic Transmission Deficits and Seizures in SCN8A Epileptic Encephalopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579511. [PMID: 38464208 PMCID: PMC10925130 DOI: 10.1101/2024.02.09.579511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
SCN8A epileptic encephalopathy (EE) is a severe epilepsy syndrome resulting from de novo mutations in the voltage-gated sodium channel Na v 1.6, encoded by the gene SCN8A . Na v 1.6 is expressed in both excitatory and inhibitory neurons, yet previous studies have primarily focused on the impact SCN8A mutations have on excitatory neuron function, with limited studies on the importance of inhibitory interneurons to seizure onset and progression. Inhibitory interneurons are critical in balancing network excitability and are known to contribute to the pathophysiology of other epilepsies. Parvalbumin (PV) interneurons are the most prominent inhibitory neuron subtype in the brain, making up about 40% of inhibitory interneurons. Notably, PV interneurons express high levels of Na v 1.6. To assess the role of PV interneurons within SCN8A EE, we used two mouse models harboring patient-derived SCN8A gain-of-function mutations, Scn8a D/+ , where the SCN8A mutation N1768D is expressed globally, and Scn8a W/+ -PV, where the SCN8A mutation R1872W is selectively expressed in PV interneurons. Expression of the R1872W SCN8A mutation selectively in PV interneurons led to the development of spontaneous seizures in Scn8a W/+ -PV mice and seizure-induced death, decreasing survival compared to wild-type. Electrophysiology studies showed that PV interneurons in Scn8a D/+ and Scn8a W/+ -PV mice were susceptible to depolarization block, a state of action potential failure. Scn8a D/+ and Scn8a W/+ -PV interneurons also exhibited increased persistent sodium current, a hallmark of SCN8A gain-of-function mutations that contributes to depolarization block. Evaluation of synaptic connections between PV interneurons and pyramidal cells showed an increase in synaptic transmission failure at high frequencies (80-120Hz) as well as an increase in synaptic latency in Scn8a D/+ and Scn8a W/+ -PV interneurons. These data indicate a distinct impairment of synaptic transmission in SCN8A EE, potentially decreasing overall cortical network inhibition. Together, our novel findings indicate that failure of PV interneuron spiking via depolarization block along with frequency-dependent inhibitory synaptic impairment likely elicits an overall reduction in the inhibitory drive in SCN8A EE, leading to unchecked excitation and ultimately resulting in seizures and seizure-induced death.
Collapse
|
9
|
Witkowski G, Szulczyk B, Nurowska E, Jurek M, Pasierski M, Lipiec A, Charzewska A, Dawidziuk M, Milewski M, Owsiak S, Rola R, Sienkiewicz Jarosz H, Hoffman-Zacharska D. Functional Characteristics of the Nav1.1 p.Arg1596Cys Mutation Associated with Varying Severity of Epilepsy Phenotypes. Int J Mol Sci 2024; 25:1745. [PMID: 38339022 PMCID: PMC10855957 DOI: 10.3390/ijms25031745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Mutations of the SCN1A gene, which encodes the voltage-dependent Na+ channel's α subunit, are associated with diverse epileptic syndromes ranging in severity, even intra-family, from febrile seizures to epileptic encephalopathy. The underlying cause of this variability is unknown, suggesting the involvement of additional factors. The aim of our study was to describe the properties of mutated channels and investigate genetic causes for clinical syndromes' variability in the family of five SCN1A gene p.Arg1596Cys mutation carriers. The analysis of additional genetic factors influencing SCN1A-associated phenotypes was conducted through exome sequencing (WES). To assess the impact of mutations, we used patch clamp analysis of mutated channels expressed in HEK cells and in vivo neural excitability studies (NESs). In cells expressing the mutant channel, sodium currents were reduced. NESs indicated increased excitability of peripheral motor neurons in mutation carriers. WES showed the absence of non-SCA1 pathogenic variants that could be causative of disease in the family. Variants of uncertain significance in three genes, as potential modifiers of the most severe phenotype, were identified. The p.Arg1596Cys substitution inhibits channel function, affecting steady-state inactivation kinetics. Its clinical manifestations involve not only epileptic symptoms but also increased excitability of peripheral motor fibers. The role of Nav1.1 in excitatory neurons cannot be ruled out as a significant factor of the clinical phenotype.
Collapse
Affiliation(s)
- Grzegorz Witkowski
- First Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland; (S.O.); (H.S.J.)
- Military Institute of Aviation Medicine, Krasinskiego 54/56, 01-755 Warsaw, Poland;
| | - Bartlomiej Szulczyk
- Chair and Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, The Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.S.); (E.N.); (M.P.)
| | - Ewa Nurowska
- Chair and Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, The Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.S.); (E.N.); (M.P.)
| | - Marta Jurek
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (M.J.); (A.C.); (M.M.); (D.H.-Z.)
| | - Michal Pasierski
- Chair and Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, The Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.S.); (E.N.); (M.P.)
| | - Agata Lipiec
- Clinic of Pediatric Neurology, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland;
| | - Agnieszka Charzewska
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (M.J.); (A.C.); (M.M.); (D.H.-Z.)
| | - Mateusz Dawidziuk
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (M.J.); (A.C.); (M.M.); (D.H.-Z.)
| | - Michal Milewski
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (M.J.); (A.C.); (M.M.); (D.H.-Z.)
| | - Szymon Owsiak
- First Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland; (S.O.); (H.S.J.)
| | - Rafal Rola
- Military Institute of Aviation Medicine, Krasinskiego 54/56, 01-755 Warsaw, Poland;
| | - Halina Sienkiewicz Jarosz
- First Department of Neurology, Institute of Psychiatry and Neurology, Sobieskiego 9, 02-957 Warsaw, Poland; (S.O.); (H.S.J.)
| | - Dorota Hoffman-Zacharska
- Department of Medical Genetics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (M.J.); (A.C.); (M.M.); (D.H.-Z.)
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
10
|
Schneider MF, Vogt M, Scheuermann J, Müller V, Fischer-Hentrich AHL, Kremer T, Lugert S, Metzger F, Kudernatsch M, Kluger G, Hartlieb T, Noachtar S, Vollmar C, Kunz M, Tonn JC, Coras R, Blümcke I, Pace C, Heinen F, Klein C, Potschka H, Borggraefe I. Brain expression profiles of two SCN1A antisense RNAs in children and adolescents with epilepsy. Transl Neurosci 2024; 15:20220330. [PMID: 38283997 PMCID: PMC10811528 DOI: 10.1515/tnsci-2022-0330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024] Open
Abstract
Objective Heterozygous mutations within the voltage-gated sodium channel α subunit (SCN1A) are responsible for the majority of cases of Dravet syndrome (DS), a severe developmental and epileptic encephalopathy. Development of novel therapeutic approaches is mandatory in order to directly target the molecular consequences of the genetic defect. The aim of the present study was to investigate whether cis-acting long non-coding RNAs (lncRNAs) of SCN1A are expressed in brain specimens of children and adolescent with epilepsy as these molecules comprise possible targets for precision-based therapy approaches. Methods We investigated SCN1A mRNA expression and expression of two SCN1A related antisense RNAs in brain tissues in different age groups of pediatric non-Dravet patients who underwent surgery for drug resistant epilepsy. The effect of different antisense oligonucleotides (ASOs) directed against SCN1A specific antisense RNAs on SCN1A expression was tested. Results The SCN1A related antisense RNAs SCN1A-dsAS (downstream antisense, RefSeq identifier: NR_110598) and SCN1A-usAS (upstream AS, SCN1A-AS, RefSeq identifier: NR_110260) were widely expressed in the brain of pediatric patients. Expression patterns revealed a negative correlation of SCN1A-dsAS and a positive correlation of lncRNA SCN1A-usAS with SCN1A mRNA expression. Transfection of SK-N-AS cells with an ASO targeted against SCN1A-dsAS was associated with a significant enhancement of SCN1A mRNA expression and reduction in SCN1A-dsAS transcripts. Conclusion These findings support the role of SCN1A-dsAS in the suppression of SCN1A mRNA generation. Considering the haploinsufficiency in genetic SCN1A related DS, SCN1A-dsAS is an interesting target candidate for the development of ASOs (AntagoNATs) based precision medicine therapeutic approaches aiming to enhance SCN1A expression in DS.
Collapse
Affiliation(s)
- Marius Frederik Schneider
- Division of Molecular Biology, Biomedical Center Munich, Ludwig Maximilians University, Munich, Germany
- International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried, Germany
| | | | - Johanna Scheuermann
- Division of Molecular Biology, Biomedical Center Munich, Ludwig Maximilians University, Munich, Germany
| | - Veronika Müller
- Division of Molecular Biology, Biomedical Center Munich, Ludwig Maximilians University, Munich, Germany
| | | | - Thomas Kremer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Sebastian Lugert
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | - Manfred Kudernatsch
- Clinic for Neurosurgery, Schoen-Klinik Vogtareuth, Germany
- Paracelsus Medical University, Salzburg, Austria
| | - Gerhard Kluger
- Paracelsus Medical University, Salzburg, Austria
- Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schoen-Klinik Vogtareuth, Germany
| | - Till Hartlieb
- Paracelsus Medical University, Salzburg, Austria
- Neuropediatric Clinic and Clinic for Neurorehabilitation, Epilepsy Center for Children and Adolescents, Schoen-Klinik Vogtareuth, Germany
| | - Soheyl Noachtar
- Department of Neurology, Comprehensive Epilepsy Center, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Christian Vollmar
- Department of Neurology, Comprehensive Epilepsy Center, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Comprehensive Epilepsy Center, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Mathias Kunz
- Department of Neurosurgery, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Jörg Christian Tonn
- Department of Neurosurgery, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Claudia Pace
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilians University, Munich, Germany
| | - Florian Heinen
- Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilians University, Munich, Germany
| | - Ingo Borggraefe
- Comprehensive Epilepsy Center, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, Department of Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
11
|
McTague A, Scheffer IE, Kullmann DM, Sisodiya S. Epilepsies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 203:157-184. [PMID: 39174247 DOI: 10.1016/b978-0-323-90820-7.00016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Recent advances in genetic diagnosis have revealed the underlying etiology of many epilepsies and have identified pathogenic, causative variants in numerous ion and ligand-gated channel genes. This chapter describes the clinical presentations of epilepsy associated with different channelopathies including classic electroclinical syndromes and emerging gene-specific phenotypes. Also discussed are the archetypal epilepsy channelopathy, SCN1A-Dravet syndrome, considering the expanding phenotype. Clinical presentations where a channelopathy is suspected, such as sleep-related hypermotor epilepsy and epilepsy in association with movement disorders, are reviewed. Channelopathies pose an intriguing problem for the development of gene therapies. Design of targeted therapies requires physiologic insights into the often multifaceted impact of a pathogenic variant, coupled with an understanding of the phenotypic spectrum of a gene. As gene-specific novel therapies come online for the channelopathies, it is essential that clinicians are able to recognize epilepsy phenotypes likely to be due to channelopathy and institute early genetic testing in both children and adults. These findings are likely to have immediate management implications and to inform prognostic and reproductive counseling.
Collapse
Affiliation(s)
- Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom.
| | - Ingrid E Scheffer
- Austin Health and Royal Children's Hospital, Florey and Murdoch Children's Research Institutes, University of Melbourne, Melbourne, VIC, Australia
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| | - Sanjay Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; National Hospital for Neurology and Neurosurgery, Queen Square, London, United Kingdom
| |
Collapse
|
12
|
Teralı K, Türkyılmaz A, Sağer SG, Çebi AH. Prediction of molecular phenotypes for novel SCN1A variants from a Turkish genetic epilepsy syndromes cohort and report of two new patients with recessive Dravet syndrome. Clin Transl Sci 2024; 17:e13679. [PMID: 37955180 PMCID: PMC10772300 DOI: 10.1111/cts.13679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/23/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023] Open
Abstract
Dravet syndrome and genetic epilepsy with febrile seizures plus (GEFS+) are both epilepsy syndromes that can be attributed to deleterious mutations occurring in SCN1A, the gene encoding the pore-forming α-subunit of the NaV 1.1 voltage-gated sodium channel predominantly expressed in the central nervous system. In this research endeavor, our goal is to expand our prior cohort of Turkish patients affected by SCN1A-positive genetic epilepsy disorders. This will be accomplished by incorporating two recently discovered and infrequent index cases who possess a novel biallelic (homozygous) SCN1A missense variant, namely E158G, associated with Dravet syndrome. Furthermore, our intention is to use computational techniques to predict the molecular phenotypes of each distinct SCN1A variant that has been detected to date within our center. The correlation between genotype and phenotype in Dravet syndrome/GEFS+ is intricate and necessitates meticulous clinical investigation as well as advanced scientific exploration. Broadened mechanistic and structural insights into NaV 1.1 dysfunction offer significant promise in facilitating the development of targeted and effective therapies, which will ultimately enhance clinical outcomes in the treatment of epilepsy.
Collapse
Affiliation(s)
- Kerem Teralı
- Department of Medical Biochemistry, Faculty of MedicineCyprus International UniversityNicosiaCyprus
| | - Ayberk Türkyılmaz
- Department of Medical Genetics, Faculty of MedicineKaradeniz Technical UniversityTrabzonTurkey
| | - Safiye Güneş Sağer
- Department of Pediatric NeurologyKartal Dr. Lütfi Kırdar City HospitalİstanbulTurkey
| | - Alper Han Çebi
- Department of Medical Genetics, Faculty of MedicineKaradeniz Technical UniversityTrabzonTurkey
| |
Collapse
|
13
|
Lersch R, Jannadi R, Grosse L, Wagner M, Schneider MF, von Stülpnagel C, Heinen F, Potschka H, Borggraefe I. Targeted Molecular Strategies for Genetic Neurodevelopmental Disorders: Emerging Lessons from Dravet Syndrome. Neuroscientist 2023; 29:732-750. [PMID: 35414300 PMCID: PMC10623613 DOI: 10.1177/10738584221088244] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dravet syndrome is a severe developmental and epileptic encephalopathy mostly caused by heterozygous mutation of the SCN1A gene encoding the voltage-gated sodium channel α subunit Nav1.1. Multiple seizure types, cognitive deterioration, behavioral disturbances, ataxia, and sudden unexpected death associated with epilepsy are a hallmark of the disease. Recently approved antiseizure medications such as fenfluramine and cannabidiol have been shown to reduce seizure burden. However, patients with Dravet syndrome are still medically refractory in the majority of cases, and there is a high demand for new therapies aiming to improve behavioral and cognitive outcome. Drug-repurposing approaches for SCN1A-related Dravet syndrome are currently under investigation (i.e., lorcaserin, clemizole, and ataluren). New therapeutic concepts also arise from the field of precision medicine by upregulating functional SCN1A or by activating Nav1.1. These include antisense nucleotides directed against the nonproductive transcript of SCN1A with the poison exon 20N and against an inhibitory noncoding antisense RNA of SCN1A. Gene therapy approaches such as adeno-associated virus-based upregulation of SCN1A using a transcriptional activator (ETX101) or CRISPR/dCas technologies show promising results in preclinical studies. Although these new treatment concepts still need further clinical research, they offer great potential for precise and disease modifying treatment of Dravet syndrome.
Collapse
Affiliation(s)
- Robert Lersch
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Rawan Jannadi
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Institute of Human Genetics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Leonie Grosse
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Matias Wagner
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Institute of Human Genetics, Technical University of Munich, Munich, Germany
- Institute for Neurogenomics, Helmholtz Centre Munich, German Research Center for Health and Environment (GmbH), Munich, Germany
| | - Marius Frederik Schneider
- Metabolic Biochemistry, Biomedical Center Munich, Medical Faculty, Ludwig Maximilians University, Munich, Germany
- International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried, Germany
| | - Celina von Stülpnagel
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Research Institute for Rehabilitation, Transition and Palliation, Paracelsus Medical Private University (PMU), Salzburg, Austria
| | - Florian Heinen
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilians University, Munich, Germany
| | - Ingo Borggraefe
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
- Comprehensive Epilepsy Center, University Hospital of Munich, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
14
|
Nájera-Chávez BC, Seeber L, Goldhahn K, Panzer A. Use of Sodium Channel Blockers in the Thr226Met Pathologic Variant of SCN1A: A Case Report. Neuropediatrics 2023; 54:417-421. [PMID: 37467773 PMCID: PMC10643020 DOI: 10.1055/a-2133-5343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/09/2023] [Indexed: 07/21/2023]
Abstract
The Thr226Met pathologic variant of the SCN1A gene has been associated with the clinical development of an early infantile developmental and epileptic encephalopathy (EIDEE) different from Dravet's syndrome. The electrophysiological mechanisms of the mutated channel lead to a paradoxical gain and loss of function. The use of sodium channel blockers (SCB) that counteract this gain of function has been described in previous studies and they can be safely administered to patients carrying mutations in other sodium channel subtypes without causing a worsening of seizures. We report the use of SCB in a child harboring the Thr226Met pathologic variant of SCN1A with early-onset pharmaco-resistant migrating seizures, as well as developmental delay. Lacosamide led to a dramatic reduction in seizure frequency; however, only a mild improvement in the epileptic activity depicted by electroencephalography (EEG) was achieved. The introduction of carbamazepine as an add-on therapy led to a notable reduction in epileptic activity via EEG and to an improvement in sensorimotor development. Despite the overall clinical improvement, the patient developed febrile seizures and a nonepileptic jerking of the right hand. In this case of EIDEE with the Thr226Met variant, we demonstrate a beneficial pharmacological intervention of SCB in contrast to findings described in current literature. Our report encourages the cautious use of SCB at early stages of the disease in patients carrying this pathologic variant.
Collapse
Affiliation(s)
| | - Lea Seeber
- Epilepsy Center - Neuropediatrics, DRK Kliniken Berlin, Westend, Germany
| | - Klaus Goldhahn
- Epilepsy Center - Neuropediatrics, DRK Kliniken Berlin, Westend, Germany
| | - Axel Panzer
- Epilepsy Center - Neuropediatrics, DRK Kliniken Berlin, Westend, Germany
| |
Collapse
|
15
|
Brunklaus A, George AL, Lal D, Heinzen EL, Goldman AM. Prophecy or empiricism? Clinical value of predicting versus determining genetic variant functions. Epilepsia 2023; 64:2909-2913. [PMID: 37562820 DOI: 10.1111/epi.17743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023]
Abstract
The recent explosion of epilepsy genetic testing has created challenges for interpretation of gene variants. Assessments of the functional consequences of genetic variants either by predictive or experimental strategies can contribute to estimating pathogenicity, but there is no consensus on which approach is best. The Special Interest Group on Epilepsy Genetics hosted a session during the Annual American Epilepsy Society Meeting in December 2022 to discuss this topic. The session featured a debate of the relative advantages and limitations of predicting (prophecy) versus experimentally determining (empiricism) variant function using ion channel gene variants as examples. This commentary summarizes these discussions.
Collapse
Affiliation(s)
- Andreas Brunklaus
- Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Alfred L George
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Erin L Heinzen
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Alica M Goldman
- Department of Neurology, Peter Kellaway Neurophysiology Section, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
16
|
Okubo Y, Shibuya M, Nakamura H, Kawashima A, Kodama K, Endo W, Inui T, Togashi N, Aihara Y, Shirota M, Funayama R, Niihori T, Fujita A, Nakayama K, Aoki Y, Matsumoto N, Kure S, Kikuchi A, Haginoya K. Neonatal developmental and epileptic encephalopathy with movement disorders and arthrogryposis: A case report with a novel missense variant of SCN1A. Brain Dev 2023; 45:505-511. [PMID: 37442734 DOI: 10.1016/j.braindev.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Variants of SCN1A represent the archetypal channelopathy associated with several epilepsy syndromes. The clinical phenotypes have recently expanded from Dravet syndrome. CASE REPORT: We present a female patient with the de novo SCN1A missense variant, c.5340G > A (p. Met1780Ile). The patient had various clinical features with neonatal onset SCN1A epileptic encephalopathy, arthrogryposis multiplex congenita, thoracic hypoplasia, thoracic scoliosis, and hyperekplexia. CONCLUSION: Our findings are compatible with neonatal developmental and epileptic encephalopathy with movement disorders and arthrogryposis; the most severe phenotype probably caused by gain-of-function variant of SCN1A. The efficacy of sodium channel blocker was also discussed. Further exploration of the phenotype-genotype relationship of SCN1A variants may lead to better pharmacological treatments and family guidance.
Collapse
Affiliation(s)
- Yukimune Okubo
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan.
| | - Moriei Shibuya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Haruhiko Nakamura
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Aritomo Kawashima
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Kaori Kodama
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Wakaba Endo
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Takehiko Inui
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Noriko Togashi
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Yu Aihara
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Matsuyuki Shirota
- Division of Interdisciplinary Medical Science, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ryo Funayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Niihori
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine
| | - Keiko Nakayama
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine
| | - Shigeo Kure
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan; Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Atsuo Kikuchi
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan.
| |
Collapse
|
17
|
Musto E, Liao VWY, Johannesen KM, Fenger CD, Lederer D, Kothur K, Fisk K, Bennetts B, Vrielynck P, Delaby D, Ceulemans B, Weckhuysen S, Sparber P, Bouman A, Ardern-Holmes S, Troedson C, Battaglia DI, Goel H, Feyma T, Bakhtiari S, Tjoa L, Boxill M, Demina N, Shchagina O, Dadali E, Kruer M, Cantalupo G, Contaldo I, Polster T, Isidor B, Bova SM, Fazeli W, Wouters L, Miranda MJ, Darra F, Pede E, Le Duc D, Jamra RA, Küry S, Proietti J, McSweeney N, Brokamp E, Andrews PI, Gouray Garcia M, Chebib M, Møller RS, Ahring PK, Gardella E. GABRA1-Related Disorders: From Genetic to Functional Pathways. Ann Neurol 2023; 95:27-41. [PMID: 37606373 DOI: 10.1002/ana.26774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE Variants in GABRA1 have been associated with a broad epilepsy spectrum, ranging from genetic generalized epilepsies to developmental and epileptic encephalopathies. However, our understanding of what determines the phenotype severity and best treatment options remains inadequate. We therefore aimed to analyze the electroclinical features and the functional effects of GABRA1 variants to establish genotype-phenotype correlations. METHODS Genetic and electroclinical data of 27 individuals (22 unrelated and 2 families) harboring 20 different GABRA1 variants were collected and accompanied by functional analysis of 19 variants. RESULTS Individuals in this cohort could be assigned into different clinical subgroups based on the functional effect of their variant and its structural position within the GABRA1 subunit. A homogenous phenotype with mild cognitive impairment and infantile onset epilepsy (focal seizures, fever sensitivity, and electroencephalographic posterior epileptiform discharges) was described for variants in the extracellular domain and the small transmembrane loops. These variants displayed loss-of-function (LoF) effects, and the patients generally had a favorable outcome. A more severe phenotype was associated with variants in the pore-forming transmembrane helices. These variants displayed either gain-of-function (GoF) or LoF effects. GoF variants were associated with severe early onset neurodevelopmental disorders, including early infantile developmental and epileptic encephalopathy. INTERPRETATION Our data expand the genetic and phenotypic spectrum of GABRA1 epilepsies and permit delineation of specific subphenotypes for LoF and GoF variants, through the heterogeneity of phenotypes and variants. Generally, variants in the transmembrane helices cause more severe phenotypes, in particular GoF variants. These findings establish the basis for a better understanding of the pathomechanism and a precision medicine approach in GABRA1-related disorders. Further studies in larger populations are needed to provide a conclusive genotype-phenotype correlation. ANN NEUROL 2023.
Collapse
Affiliation(s)
- Elisa Musto
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
- Pediatric Neurology, Department of Woman and Child Health and Public Health, Child Health Area, Catholic University UCSC, Rome, Italy
- Epilepsy and Movement Disorder Neurology, Ospedale Pediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Vivian W Y Liao
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Katrine M Johannesen
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
- Department of Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Christina D Fenger
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
- Amplexa Genetics, Odense, Denmark
| | - Damien Lederer
- Center for Human Genetics, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Kavitha Kothur
- Kids Neuroscience Centre, Children's Hospital at Westmead, University of Sydney, Sydney, New South Wales, Australia
| | - Katrina Fisk
- Sydney Genome Diagnostics, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Bruce Bennetts
- Sydney Genome Diagnostics, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia
- Specialty of Genomic Medicine, Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Pascal Vrielynck
- Reference Center for Refractory Epilepsy, Catholic University of Louvain, William Lennox Neurological Hospital, Ottignies, Belgium
| | - Delphine Delaby
- Reference Center for Refractory Epilepsy, Catholic University of Louvain, William Lennox Neurological Hospital, Ottignies, Belgium
| | - Berten Ceulemans
- Department of Pediatric Neurology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, VIB-Department of Molecular Genetics, University of Antwerp, Antwerp, Belgium
- Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp, Belgium
| | - Peter Sparber
- Research Center for Medical Genetics Moskvorechie 1, Moscow, Russia
| | - Arjan Bouman
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Simone Ardern-Holmes
- Kids Neuroscience Centre, Children's Hospital at Westmead, University of Sydney, Sydney, New South Wales, Australia
- T. Y. Nelson Department of Neurology and Neurosurgery, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Christopher Troedson
- T. Y. Nelson Department of Neurology and Neurosurgery, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Domenica I Battaglia
- Pediatric Neurology, Department of Woman and Child Health and Public Health, Child Health Area, Catholic University UCSC, Rome, Italy
| | - Himanshu Goel
- Hunter Genetics, Newcastle, New South Wales, Australia
| | - Timothy Feyma
- Gillette Children's Specialty Healthcare, Saint Paul, MN, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Linda Tjoa
- Townsville University Hospital, Douglas, Queensland, Australia
| | - Martin Boxill
- Department of Pediatrics, Viborg Regional Hospital, Viborg, Denmark
| | - Nina Demina
- Research Center for Medical Genetics Moskvorechie 1, Moscow, Russia
| | - Olga Shchagina
- Research Center for Medical Genetics Moskvorechie 1, Moscow, Russia
| | - Elena Dadali
- Research Center for Medical Genetics Moskvorechie 1, Moscow, Russia
| | - Michael Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Gaetano Cantalupo
- Child Neuropsychiatry Section, Department of Surgical Sciences, Dentistry, Gynecology and Paediatrics, University of Verona, Verona, Italy
- UOC Neuropsichiatria Infantile, Dipartimento Materno-Infantile, Azienda Ospedaliero-Universitaria Integrata (full member of the ERN EpiCare), Verona, Italy
- Center for Research on Epilepsies in Pediatric age (CREP), Verona, Italy
| | - Ilaria Contaldo
- Pediatric Neurology, Department of Woman and Child Health and Public Health, Child Health Area, Catholic University UCSC, Rome, Italy
| | - Tilman Polster
- Department of Epileptology (Krankenhaus Mara), Bielefeld University Medical School, Bielefeld, Germany
| | | | - Stefania M Bova
- Pediatric Neurology Unit, V. Buzzi Children's Hospital, Milan, Italy
| | - Walid Fazeli
- Department of Neuropediatrics, Children's Hospital, University of Bonn, Bonn, Germany
| | - Leen Wouters
- Department of Pediatrics, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Maria J Miranda
- Department of Pediatrics, Pediatric Neurology, Herlev University Hospital, Copenhagen University, Herlev, Denmark
| | - Francesca Darra
- Child Neuropsychiatry Section, Department of Surgical Sciences, Dentistry, Gynecology and Paediatrics, University of Verona, Verona, Italy
- UOC Neuropsichiatria Infantile, Dipartimento Materno-Infantile, Azienda Ospedaliero-Universitaria Integrata (full member of the ERN EpiCare), Verona, Italy
- Center for Research on Epilepsies in Pediatric age (CREP), Verona, Italy
| | - Elisa Pede
- Pediatric Neurology, Department of Woman and Child Health and Public Health, Child Health Area, Catholic University UCSC, Rome, Italy
| | - Diana Le Duc
- Department of Human Genetics, University of Leipzig Faculty of Medicine, Leipzig, Germany
| | - Rami Abou Jamra
- Department of Human Genetics, University of Leipzig Faculty of Medicine, Leipzig, Germany
| | - Sébastien Küry
- Service de Génétique Médicale, CHU Nantes, Nantes, France
- l'Institut du Thorax, INSERM, CNRS, Université de Nantes, Nantes, France
| | - Jacopo Proietti
- Child Neuropsychiatry Section, Department of Surgical Sciences, Dentistry, Gynecology and Paediatrics, University of Verona, Verona, Italy
- Irish Centre for Fetal and Neonatal Translational Research, Child Neuropsychiatry, Cork, Ireland
| | - Niamh McSweeney
- Department of Paediatrics, Cork University Hospital, Cork, Ireland
| | - Elly Brokamp
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Ian Andrews
- Department of Neurology, Sydney Children's Hospital, Randwick, New South Wales, Australia
| | | | - Mary Chebib
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Philip K Ahring
- Brain and Mind Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Dianalund, Denmark
- Department of Regional Health Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
18
|
Doorn N, van Hugte EJH, Ciptasari U, Mordelt A, Meijer HGE, Schubert D, Frega M, Nadif Kasri N, van Putten MJAM. An in silico and in vitro human neuronal network model reveals cellular mechanisms beyond Na V1.1 underlying Dravet syndrome. Stem Cell Reports 2023; 18:1686-1700. [PMID: 37419110 PMCID: PMC10444571 DOI: 10.1016/j.stemcr.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023] Open
Abstract
Human induced pluripotent stem cell (hiPSC)-derived neuronal networks on multi-electrode arrays (MEAs) provide a unique phenotyping tool to study neurological disorders. However, it is difficult to infer cellular mechanisms underlying these phenotypes. Computational modeling can utilize the rich dataset generated by MEAs, and advance understanding of disease mechanisms. However, existing models lack biophysical detail, or validation and calibration to relevant experimental data. We developed a biophysical in silico model that accurately simulates healthy neuronal networks on MEAs. To demonstrate the potential of our model, we studied neuronal networks derived from a Dravet syndrome (DS) patient with a missense mutation in SCN1A, encoding sodium channel NaV1.1. Our in silico model revealed that sodium channel dysfunctions were insufficient to replicate the in vitro DS phenotype, and predicted decreased slow afterhyperpolarization and synaptic strengths. We verified these changes in DS patient-derived neurons, demonstrating the utility of our in silico model to predict disease mechanisms.
Collapse
Affiliation(s)
- Nina Doorn
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, the Netherlands.
| | - Eline J H van Hugte
- Department of Neurology, Academic Center for Epileptology Kempenhaeghe, 5591 VE Heeze, the Netherlands; Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands
| | - Ummi Ciptasari
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands
| | - Annika Mordelt
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands
| | - Hil G E Meijer
- Department of Applied Mathematics, University of Twente, 7522 NB Enschede, the Netherlands
| | - Dirk Schubert
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands
| | - Monica Frega
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, the Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, 6500 HB Nijmegen, the Netherlands; Department of Cognitive Neurosciences, Radboudumc, Donders Institute for Brain Cognition and Behaviour, 6525 HR Nijmegen, the Netherlands
| | - Michel J A M van Putten
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, the Netherlands; Department of Neurology and Clinical Neurophysiology, Medisch Spectrum Twente, 7512 KZ Enschede, the Netherlands
| |
Collapse
|
19
|
Hinckley CA, Zhu Z, Chu JH, Gubbels C, Danker T, Cherry JJ, Whelan CD, Engle SJ, Nguyen V. Functional evaluation of epilepsy-associated KCNT1 variants in multiple cellular systems reveals a predominant gain of function impact on channel properties. Epilepsia 2023; 64:2126-2136. [PMID: 37177976 DOI: 10.1111/epi.17648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE Gain of function variants in the sodium-activated potassium channel KCNT1 have been associated with pediatric epilepsy disorders. Here, we systematically examine a spectrum of KCNT1 variants and establish their impact on channel function in multiple cellular systems. METHODS KCNT1 variants identified from published reports and genetic screening of pediatric epilepsy patients were expressed in Xenopus oocytes and HEK cell lines. Variant impact on current magnitude, current-voltage relationships, and sodium ion modulation were examined. RESULTS We determined basic properties of KCNT1 in Xenopus oocyte and HEK systems, including the role of extra- and intracellular sodium in regulating KCNT1 activity. The most common six KCNT1 variants demonstrated strong gain of function (GOF) effects on one or more channel properties. Analysis of 36 total variants identified phenotypic heterogeneity but a strong tendency for pathogenic variants to exert GOF effects on channel properties. By controlling intracellular sodium, we demonstrate that multiple pathogenic KCNT1 variants modulate channel voltage dependence by altering the sensitivity to sodium ions. SIGNIFICANCE This study represents the largest systematic functional examination of KCNT1 variants to date. We both confirm previously reported GOF channel phenotypes and expand the number of variants with in vitro GOF effects. Our data provide further evidence that novel KCNT1 variants identified in epilepsy patients lead to disease through generalizable GOF mechanisms including increases in current magnitude and/or current-voltage relationships.
Collapse
Affiliation(s)
| | | | | | | | - Timm Danker
- NMI Technologietransfer GmbH, Reutlingen, Germany
| | | | | | | | | |
Collapse
|
20
|
Abstract
In recent years, there has been a significant increase in preclinical studies to test genetic therapies for epilepsy. Some of these therapies have advanced to clinical trials and are being tested in patients with monogenetic or focal refractory epilepsy. This article provides an overview of the current state of preclinical studies that show potential for clinical translation. Specifically, we focus on genetic therapies that have demonstrated a clear effect on seizures in animal models and have the potential to be translated to clinical settings. Both therapies targeting the cause of the disease and those that treat symptoms are discussed. We believe that the next few years will be crucial in determining the potential of genetic therapies for treating patients with epilepsy.
Collapse
Affiliation(s)
- James S. Street
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Yichen Qiu
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
21
|
Langford J, Vukadin L, Carey JC, Botto LD, Velinder M, Mao R, Miller CE, Filloux F, Ahn EYE. SON-Related Zhu-Tokita-Takenouchi-Kim Syndrome With Recurrent Hemiplegic Migraine: Putative Role of PRRT2. Neurol Genet 2023; 9:e200062. [PMID: 37057295 PMCID: PMC10091367 DOI: 10.1212/nxg.0000000000200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/20/2023] [Indexed: 04/15/2023]
Abstract
Background and Objectives Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome (OMIM 617140) is a recently identified neurodevelopmental disorder caused by heterozygous loss-of-function (LoF) variants in SON. Because the SON protein functions as an RNA-splicing regulator, it has been shown that some clinical features of ZTTK syndrome can be attributed to abnormal RNA splicing. Several neurologic features have been observed in patients with ZTTK syndrome, including seizure/epilepsy and other EEG abnormalities. However, a relationship between SON LoF in ZTTK syndrome and hemiplegic migraine remains unknown. Methods We identified a patient with a pathogenic variant in SON who shows typical clinical features of ZTTK syndrome and experienced recurrent episodes of hemiplegic migraine. To define clinical features, brain MRI and EEG during and after episodes of hemiplegic migraine were characterized. To identify molecular mechanisms for this clinical presentation, we investigated the impact of small interfering RNA (siRNA)-mediated SON knockdown on mRNA expression of the CACNA1A, ATP1A2, SCN1A, and PRRT2 genes, known to be associated with hemiplegic migraine, by quantitative RT-PCR. Pre-mRNA splicing of PRRT2 on SON knockdown was further examined by RT-PCR using primers targeting specific exons. Results Recurrent episodes of hemiplegic migraine in our patient typically followed modest closed head injuries, and recurrent seizures occurred during the most severe of these episodes. Transient hemispheric cortical interstitial edema and asymmetric EEG slowing were identified during episodes. Our siRNA experiments revealed that SON knockdown significantly reduces PRRT2 mRNA levels in U87MG and SH-SY5Y cell lines, although a reduction in CACNA1A, ATP1A2, and SCN1A mRNA expression was not observed. We further identified that SON knockdown leads to failure in intron 2 removal from PRRT2 pre-mRNA, resulting in a premature termination codon that blocks the generation of functionally intact full-length PRRT2. Discussion This report identifies recurrent hemiplegic migraine as a novel clinical manifestation of ZTTK syndrome, further characterizes this clinical feature, and provides evidence for downregulation of PRRT2 caused by SON LoF as a mechanism causing hemiplegic migraine. Examination of the SON gene may be indicated in individuals with recurrent hemiplegic migraine.
Collapse
Affiliation(s)
- Jordan Langford
- University of Utah School of Medicine, University of Utah (J.L.), Salt Lake City, UT; Department of Pathology, Division of Molecular and Cellular Pathology (L.V., E.-Y.E.A.), University of Alabama at Birmingham, Birmingham, AL; Division of Medical Genetics (L.D.B.), Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT; Utah Center for Genetic Discovery, Eccles Institute of Human Genetics (M.V.), University of Utah School of Medicine; Department of Pathology (R.M.), University of Utah School of Medicine, Salt Lake City, UT; Division of Integrated Oncology and Genetics (R.M., C.E.M.), Molecular Genetics, ARUP Laboratories, Salt Lake City, UT; Division of Pediatric Neurology (F.F.), University of Utah School of Medicine, Salt Lake City, UT; and O'Neal Comprehensive Cancer Center (E.-Y.E.A.), University of Alabama at Birmingham, Birmingham, AL
| | - Lana Vukadin
- University of Utah School of Medicine, University of Utah (J.L.), Salt Lake City, UT; Department of Pathology, Division of Molecular and Cellular Pathology (L.V., E.-Y.E.A.), University of Alabama at Birmingham, Birmingham, AL; Division of Medical Genetics (L.D.B.), Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT; Utah Center for Genetic Discovery, Eccles Institute of Human Genetics (M.V.), University of Utah School of Medicine; Department of Pathology (R.M.), University of Utah School of Medicine, Salt Lake City, UT; Division of Integrated Oncology and Genetics (R.M., C.E.M.), Molecular Genetics, ARUP Laboratories, Salt Lake City, UT; Division of Pediatric Neurology (F.F.), University of Utah School of Medicine, Salt Lake City, UT; and O'Neal Comprehensive Cancer Center (E.-Y.E.A.), University of Alabama at Birmingham, Birmingham, AL
| | - John C Carey
- University of Utah School of Medicine, University of Utah (J.L.), Salt Lake City, UT; Department of Pathology, Division of Molecular and Cellular Pathology (L.V., E.-Y.E.A.), University of Alabama at Birmingham, Birmingham, AL; Division of Medical Genetics (L.D.B.), Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT; Utah Center for Genetic Discovery, Eccles Institute of Human Genetics (M.V.), University of Utah School of Medicine; Department of Pathology (R.M.), University of Utah School of Medicine, Salt Lake City, UT; Division of Integrated Oncology and Genetics (R.M., C.E.M.), Molecular Genetics, ARUP Laboratories, Salt Lake City, UT; Division of Pediatric Neurology (F.F.), University of Utah School of Medicine, Salt Lake City, UT; and O'Neal Comprehensive Cancer Center (E.-Y.E.A.), University of Alabama at Birmingham, Birmingham, AL
| | - Lorenzo D Botto
- University of Utah School of Medicine, University of Utah (J.L.), Salt Lake City, UT; Department of Pathology, Division of Molecular and Cellular Pathology (L.V., E.-Y.E.A.), University of Alabama at Birmingham, Birmingham, AL; Division of Medical Genetics (L.D.B.), Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT; Utah Center for Genetic Discovery, Eccles Institute of Human Genetics (M.V.), University of Utah School of Medicine; Department of Pathology (R.M.), University of Utah School of Medicine, Salt Lake City, UT; Division of Integrated Oncology and Genetics (R.M., C.E.M.), Molecular Genetics, ARUP Laboratories, Salt Lake City, UT; Division of Pediatric Neurology (F.F.), University of Utah School of Medicine, Salt Lake City, UT; and O'Neal Comprehensive Cancer Center (E.-Y.E.A.), University of Alabama at Birmingham, Birmingham, AL
| | - Matt Velinder
- University of Utah School of Medicine, University of Utah (J.L.), Salt Lake City, UT; Department of Pathology, Division of Molecular and Cellular Pathology (L.V., E.-Y.E.A.), University of Alabama at Birmingham, Birmingham, AL; Division of Medical Genetics (L.D.B.), Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT; Utah Center for Genetic Discovery, Eccles Institute of Human Genetics (M.V.), University of Utah School of Medicine; Department of Pathology (R.M.), University of Utah School of Medicine, Salt Lake City, UT; Division of Integrated Oncology and Genetics (R.M., C.E.M.), Molecular Genetics, ARUP Laboratories, Salt Lake City, UT; Division of Pediatric Neurology (F.F.), University of Utah School of Medicine, Salt Lake City, UT; and O'Neal Comprehensive Cancer Center (E.-Y.E.A.), University of Alabama at Birmingham, Birmingham, AL
| | - Rong Mao
- University of Utah School of Medicine, University of Utah (J.L.), Salt Lake City, UT; Department of Pathology, Division of Molecular and Cellular Pathology (L.V., E.-Y.E.A.), University of Alabama at Birmingham, Birmingham, AL; Division of Medical Genetics (L.D.B.), Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT; Utah Center for Genetic Discovery, Eccles Institute of Human Genetics (M.V.), University of Utah School of Medicine; Department of Pathology (R.M.), University of Utah School of Medicine, Salt Lake City, UT; Division of Integrated Oncology and Genetics (R.M., C.E.M.), Molecular Genetics, ARUP Laboratories, Salt Lake City, UT; Division of Pediatric Neurology (F.F.), University of Utah School of Medicine, Salt Lake City, UT; and O'Neal Comprehensive Cancer Center (E.-Y.E.A.), University of Alabama at Birmingham, Birmingham, AL
| | - Christine E Miller
- University of Utah School of Medicine, University of Utah (J.L.), Salt Lake City, UT; Department of Pathology, Division of Molecular and Cellular Pathology (L.V., E.-Y.E.A.), University of Alabama at Birmingham, Birmingham, AL; Division of Medical Genetics (L.D.B.), Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT; Utah Center for Genetic Discovery, Eccles Institute of Human Genetics (M.V.), University of Utah School of Medicine; Department of Pathology (R.M.), University of Utah School of Medicine, Salt Lake City, UT; Division of Integrated Oncology and Genetics (R.M., C.E.M.), Molecular Genetics, ARUP Laboratories, Salt Lake City, UT; Division of Pediatric Neurology (F.F.), University of Utah School of Medicine, Salt Lake City, UT; and O'Neal Comprehensive Cancer Center (E.-Y.E.A.), University of Alabama at Birmingham, Birmingham, AL
| | - Francis Filloux
- University of Utah School of Medicine, University of Utah (J.L.), Salt Lake City, UT; Department of Pathology, Division of Molecular and Cellular Pathology (L.V., E.-Y.E.A.), University of Alabama at Birmingham, Birmingham, AL; Division of Medical Genetics (L.D.B.), Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT; Utah Center for Genetic Discovery, Eccles Institute of Human Genetics (M.V.), University of Utah School of Medicine; Department of Pathology (R.M.), University of Utah School of Medicine, Salt Lake City, UT; Division of Integrated Oncology and Genetics (R.M., C.E.M.), Molecular Genetics, ARUP Laboratories, Salt Lake City, UT; Division of Pediatric Neurology (F.F.), University of Utah School of Medicine, Salt Lake City, UT; and O'Neal Comprehensive Cancer Center (E.-Y.E.A.), University of Alabama at Birmingham, Birmingham, AL
| | - Eun-Young Erin Ahn
- University of Utah School of Medicine, University of Utah (J.L.), Salt Lake City, UT; Department of Pathology, Division of Molecular and Cellular Pathology (L.V., E.-Y.E.A.), University of Alabama at Birmingham, Birmingham, AL; Division of Medical Genetics (L.D.B.), Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT; Utah Center for Genetic Discovery, Eccles Institute of Human Genetics (M.V.), University of Utah School of Medicine; Department of Pathology (R.M.), University of Utah School of Medicine, Salt Lake City, UT; Division of Integrated Oncology and Genetics (R.M., C.E.M.), Molecular Genetics, ARUP Laboratories, Salt Lake City, UT; Division of Pediatric Neurology (F.F.), University of Utah School of Medicine, Salt Lake City, UT; and O'Neal Comprehensive Cancer Center (E.-Y.E.A.), University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
22
|
Barbieri R, Nizzari M, Zanardi I, Pusch M, Gavazzo P. Voltage-Gated Sodium Channel Dysfunctions in Neurological Disorders. Life (Basel) 2023; 13:life13051191. [PMID: 37240836 DOI: 10.3390/life13051191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
The pore-forming subunits (α subunits) of voltage-gated sodium channels (VGSC) are encoded in humans by a family of nine highly conserved genes. Among them, SCN1A, SCN2A, SCN3A, and SCN8A are primarily expressed in the central nervous system. The encoded proteins Nav1.1, Nav1.2, Nav1.3, and Nav1.6, respectively, are important players in the initiation and propagation of action potentials and in turn of the neural network activity. In the context of neurological diseases, mutations in the genes encoding Nav1.1, 1.2, 1.3 and 1.6 are responsible for many forms of genetic epilepsy and for Nav1.1 also of hemiplegic migraine. Several pharmacological therapeutic approaches targeting these channels are used or are under study. Mutations of genes encoding VGSCs are also involved in autism and in different types of even severe intellectual disability (ID). It is conceivable that in these conditions their dysfunction could indirectly cause a certain level of neurodegenerative processes; however, so far, these mechanisms have not been deeply investigated. Conversely, VGSCs seem to have a modulatory role in the most common neurodegenerative diseases such as Alzheimer's, where SCN8A expression has been shown to be negatively correlated with disease severity.
Collapse
Affiliation(s)
| | - Mario Nizzari
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| | - Ilaria Zanardi
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| | - Michael Pusch
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| | - Paola Gavazzo
- Institute of Biophysics, Via de Marini 6, 16149 Genova, Italy
| |
Collapse
|
23
|
Matricardi S, Cestèle S, Trivisano M, Kassabian B, Leroudier N, Vittorini R, Nosadini M, Cesaroni E, Siliquini S, Marinaccio C, Longaretti F, Podestà B, Operto FF, Luisi C, Sartori S, Boniver C, Specchio N, Vigevano F, Marini C, Mantegazza M. Gain of function SCN1A disease-causing variants: Expanding the phenotypic spectrum and functional studies guiding the choice of effective antiseizure medication. Epilepsia 2023; 64:1331-1347. [PMID: 36636894 DOI: 10.1111/epi.17509] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023]
Abstract
OBJECTIVE This study was undertaken to refine the spectrum of SCN1A epileptic disorders other than Dravet syndrome (DS) and genetic epilepsy with febrile seizures plus (GEFS+) and optimize antiseizure management by correlating phenotype-genotype relationship and functional consequences of SCN1A variants in a cohort of patients. METHODS Sixteen probands carrying SCN1A pathogenic variants were ascertained via a national collaborative network. We also performed a literature review including individuals with SCN1A variants causing non-DS and non-GEFS+ phenotypes and compared the features of the two cohorts. Whole cell patch clamp experiments were performed for three representative SCN1A pathogenic variants. RESULTS Nine of the 16 probands (56%) had de novo pathogenic variants causing developmental and epileptic encephalopathy (DEE) with seizure onset at a median age of 2 months and severe intellectual disability. Seven of the 16 probands (54%), five with inherited and two with de novo variants, manifested focal epilepsies with mild or no intellectual disability. Sodium channel blockers never worsened seizures, and 50% of patients experienced long periods of seizure freedom. We found 13 SCN1A missense variants; eight of them were novel and never reported. Functional studies of three representative variants showed a gain of channel function. The literature review led to the identification of 44 individuals with SCN1A variants and non-DS, non-GEFS+ phenotypes. The comparison with our cohort highlighted that DEE phenotypes are a common feature. SIGNIFICANCE The boundaries of SCN1A disorders are wide and still expanding. In our cohort, >50% of patients manifested focal epilepsies, which are thus a frequent feature of SCN1A pathogenic variants beyond DS and GEFS+. SCN1A testing should therefore be included in the diagnostic workup of pediatric, familial and nonfamilial, focal epilepsies. Alternatively, non-DS/non-GEFS+ phenotypes might be associated with gain of channel function, and sodium channel blockers could control seizures by counteracting excessive channel function. Functional analysis evaluating the consequences of pathogenic SCN1A variants is thus relevant to tailor the appropriate antiseizure medication.
Collapse
Affiliation(s)
- Sara Matricardi
- Child Neurology and Psychiatry Unit, "G. Salesi" Children's Hospital, Ospedali Riuniti Ancona, Ancona, Italy
- Department of Pediatrics, University of Chieti, Chieti, Italy
| | - Sandrine Cestèle
- Côte d'Azur University, Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full member of European Reference Network EpiCARE, Rome, Italy
| | - Benedetta Kassabian
- Neurology Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | - Nathalie Leroudier
- Côte d'Azur University, Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
| | - Roberta Vittorini
- Child and Adolescence Neuropsychiatry Service, Department of Child Pathology and Cure, Regina Margherita Children's Hospital, Turin, Italy
| | - Margherita Nosadini
- Pediatric Neurology and Neurophysiology Unit, Department of Women and Children's Health, University of Padua, Padua, Italy
| | - Elisabetta Cesaroni
- Child Neurology and Psychiatry Unit, "G. Salesi" Children's Hospital, Ospedali Riuniti Ancona, Ancona, Italy
| | - Sabrina Siliquini
- Child Neurology and Psychiatry Unit, "G. Salesi" Children's Hospital, Ospedali Riuniti Ancona, Ancona, Italy
| | - Cristina Marinaccio
- Child and Adolescence Neuropsychiatry Service, Department of Child Pathology and Cure, Regina Margherita Children's Hospital, Turin, Italy
| | - Francesca Longaretti
- Child and Adolescence Neuropsychiatry Service, S. Croce and Carle Hospital, Cuneo, Italy
| | - Barbara Podestà
- Child and Adolescence Neuropsychiatry Service, S. Croce and Carle Hospital, Cuneo, Italy
| | - Francesca Felicia Operto
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery, and Dentistry, University of Salerno, Salerno, Italy
| | - Concetta Luisi
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full member of European Reference Network EpiCARE, Rome, Italy
- Neurology Unit, Department of Neuroscience, University of Padua, Padua, Italy
| | - Stefano Sartori
- Pediatric Neurology and Neurophysiology Unit, Department of Women and Children's Health, University of Padua, Padua, Italy
| | - Clementina Boniver
- Pediatric Neurology and Neurophysiology Unit, Department of Women and Children's Health, University of Padua, Padua, Italy
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesù Children's Hospital, IRCCS, Full member of European Reference Network EpiCARE, Rome, Italy
| | - Federico Vigevano
- Neurology Unit, Department of Neuroscience, Bambino Gesù, IRCCS Children's Hospital, Full member of European Reference Network EpiCARE, Rome, Italy
| | - Carla Marini
- Child Neurology and Psychiatry Unit, "G. Salesi" Children's Hospital, Ospedali Riuniti Ancona, Ancona, Italy
| | - Massimo Mantegazza
- Côte d'Azur University, Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), Valbonne-Sophia Antipolis, France
- Inserm, Valbonne-Sophia Antipolis, France
| |
Collapse
|
24
|
Donnan AM, Schneider AL, Russ-Hall S, Churilov L, Scheffer IE. Rates of Status Epilepticus and Sudden Unexplained Death in Epilepsy in People With Genetic Developmental and Epileptic Encephalopathies. Neurology 2023; 100:e1712-e1722. [PMID: 36750385 PMCID: PMC10115508 DOI: 10.1212/wnl.0000000000207080] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 01/05/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The genetic developmental and epileptic encephalopathies (DEEs) comprise a large group of severe epilepsy syndromes, with a wide phenotypic spectrum. Currently, the rates of convulsive status epilepticus (CSE), nonconvulsive status epilepticus (NCSE), and sudden unexplained death in epilepsy (SUDEP) in these diseases are not well understood. We aimed to describe the proportions of patients with frequently observed genetic DEEs who developed CSE, NCSE, mortality, and SUDEP. Understanding the risks of these serious presentations in each genetic DEE will enable earlier diagnosis and appropriate management. METHODS In this retrospective analysis of patients with a genetic DEE, we estimated the proportions with CSE, NCSE, and SUDEP and the overall and SUDEP-specific mortality rates for each genetic diagnosis. We included patients with a pathogenic variant in the genes SCN1A, SCN2A, SCN8A, SYNGAP1, NEXMIF, CHD2, PCDH19, STXBP1, GRIN2A, KCNT1, and KCNQ2 and with Angelman syndrome (AS). RESULTS The cohort comprised 510 individuals with a genetic DEE, in whom we observed CSE in 47% and NCSE in 19%. The highest proportion of CSE occurred in patients with SCN1A-associated DEEs, including 181/203 (89%; 95% CI 84-93) patients with Dravet syndrome and 8/15 (53%; 95% CI 27-79) non-Dravet SCN1A-DEEs. CSE was also notable in patients with pathogenic variants in KCNT1 (6/10; 60%; 95% CI 26-88) and SCN2A (8/15; 53%; 95% CI 27-79). NCSE was common in patients with non-Dravet SCN1A-DEEs (8/15; 53%; 95% CI 27-79) and was notable in patients with CHD2-DEEs (6/14; 43%; 95% CI 18-71) and AS (6/19; 32%; 95% CI 13-57). There were 42/510 (8%) deaths among the cohort, producing a mortality rate of 6.1 per 1,000 person-years (95% CI 4.4-8.3). Cases of SUDEP accounted for 19/42 (48%) deaths. Four genes were associated with SUDEP: SCN1A, SCN2A, SCN8A, and STXBP1. The estimated SUDEP rate was 2.8 per 1,000 person-years (95% CI 1.6-4.3). DISCUSSION We showed that proportions of patients with CSE, NCSE, and SUDEP differ for commonly encountered genetic DEEs. The estimates for each genetic DEE studied will inform early diagnosis and management of status epilepticus and SUDEP and inform disease-specific counseling for patients and families in this high-risk group of conditions.
Collapse
Affiliation(s)
- Alice M Donnan
- From the Epilepsy Research Centre (A.M.D., A.L.S., S.R.-H., I.E.S.), Department of Medicine, The University of Melbourne, Austin Health; Melbourne Medical School (L.C.), Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville; The Florey Institute of Neurosciences and Mental Health (L.C., I.E.S.), Melbourne; and Department of Paediatrics (I.E.S.), The University of Melbourne, Royal Children's Hospital, and Murdoch Children's Research Institute, Victoria, Australia
| | - Amy L Schneider
- From the Epilepsy Research Centre (A.M.D., A.L.S., S.R.-H., I.E.S.), Department of Medicine, The University of Melbourne, Austin Health; Melbourne Medical School (L.C.), Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville; The Florey Institute of Neurosciences and Mental Health (L.C., I.E.S.), Melbourne; and Department of Paediatrics (I.E.S.), The University of Melbourne, Royal Children's Hospital, and Murdoch Children's Research Institute, Victoria, Australia
| | - Sophie Russ-Hall
- From the Epilepsy Research Centre (A.M.D., A.L.S., S.R.-H., I.E.S.), Department of Medicine, The University of Melbourne, Austin Health; Melbourne Medical School (L.C.), Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville; The Florey Institute of Neurosciences and Mental Health (L.C., I.E.S.), Melbourne; and Department of Paediatrics (I.E.S.), The University of Melbourne, Royal Children's Hospital, and Murdoch Children's Research Institute, Victoria, Australia
| | - Leonid Churilov
- From the Epilepsy Research Centre (A.M.D., A.L.S., S.R.-H., I.E.S.), Department of Medicine, The University of Melbourne, Austin Health; Melbourne Medical School (L.C.), Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville; The Florey Institute of Neurosciences and Mental Health (L.C., I.E.S.), Melbourne; and Department of Paediatrics (I.E.S.), The University of Melbourne, Royal Children's Hospital, and Murdoch Children's Research Institute, Victoria, Australia
| | - Ingrid E Scheffer
- From the Epilepsy Research Centre (A.M.D., A.L.S., S.R.-H., I.E.S.), Department of Medicine, The University of Melbourne, Austin Health; Melbourne Medical School (L.C.), Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville; The Florey Institute of Neurosciences and Mental Health (L.C., I.E.S.), Melbourne; and Department of Paediatrics (I.E.S.), The University of Melbourne, Royal Children's Hospital, and Murdoch Children's Research Institute, Victoria, Australia.
| |
Collapse
|
25
|
Berecki G, Bryson A, Polster T, Petrou S. Biophysical characterization and modelling of SCN1A gain-of-function predicts interneuron hyperexcitability and a predisposition to network instability through homeostatic plasticity. Neurobiol Dis 2023; 179:106059. [PMID: 36868483 DOI: 10.1016/j.nbd.2023.106059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/11/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
SCN1A gain-of-function variants are associated with early onset developmental and epileptic encephalopathies (DEEs) that possess distinct clinical features compared to Dravet syndrome caused by SCN1A loss-of-function. However, it is unclear how SCN1A gain-of-function may predispose to cortical hyper-excitability and seizures. Here, we first report the clinical features of a patient carrying a de novo SCN1A variant (T162I) associated with neonatal-onset DEE, and then characterize the biophysical properties of T162I and three other SCN1A variants associated with neonatal-onset DEE (I236V) and early infantile DEE (P1345S, R1636Q). In voltage clamp experiments, three variants (T162I, P1345S and R1636Q) exhibited changes in activation and inactivation properties that enhanced window current, consistent with gain-of-function. Dynamic action potential clamp experiments utilising model neurons incorporating Nav1.1. channels supported a gain-of-function mechanism for all four variants. Here, the T162I, I236V, P1345S, and R1636Q variants exhibited higher peak firing rates relative to wild type and the T162I and R1636Q variants produced a hyperpolarized threshold and reduced neuronal rheobase. To explore the impact of these variants upon cortical excitability, we used a spiking network model containing an excitatory pyramidal cell (PC) and parvalbumin positive (PV) interneuron population. SCN1A gain-of-function was modelled by enhancing the excitability of PV interneurons and then incorporating three simple forms of homeostatic plasticity that restored pyramidal cell firing rates. We found that homeostatic plasticity mechanisms exerted differential impact upon network function, with changes to PV-to-PC and PC-to-PC synaptic strength predisposing to network instability. Overall, our findings support a role for SCN1A gain-of-function and inhibitory interneuron hyperexcitability in early onset DEE. We propose a mechanism through which homeostatic plasticity pathways can predispose to pathological excitatory activity and contribute to phenotypic variability in SCN1A disorders.
Collapse
Affiliation(s)
- Géza Berecki
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia.
| | - Alexander Bryson
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Neurology, Austin Health, Heidelberg, VIC 3084, Australia
| | - Tilman Polster
- Krankenhaus Mara, Bethel Epilepsy Centre, Department of Epileptology, Medical School, Bielefeld University, Campus Bielefeld-Bethel, Bielefeld, Germany
| | - Steven Petrou
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3052, Australia; Praxis Precision Medicines, Inc., Cambridge, MA 02142, USA; Department of the Florey Institute, University of Melbourne, Parkville, VIC 3050, Australia.
| |
Collapse
|
26
|
Wong JC. Gaining Awareness of Increasingly Persistent SCN1A Mutations. Epilepsy Curr 2023. [DOI: 10.1177/15357597231157484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
[Box: see text]
Collapse
|
27
|
Scheffer IE. The fascinating phenotypic spectrum of SCN1A gain-of-function epilepsies. Epilepsia 2023; 64:1348-1350. [PMID: 36855230 DOI: 10.1111/epi.17562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/02/2023]
Affiliation(s)
- Ingrid E Scheffer
- University of Melbourne, Austin Health and Royal Children's Hospital, Florey and Murdoch Children's Research Institutes, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Bryson A, Petrou S. SCN1A channelopathies: Navigating from genotype to neural circuit dysfunction. Front Neurol 2023; 14:1173460. [PMID: 37139072 PMCID: PMC10149698 DOI: 10.3389/fneur.2023.1173460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
The SCN1A gene is strongly associated with epilepsy and plays a central role for supporting cortical excitation-inhibition balance through the expression of NaV1.1 within inhibitory interneurons. The phenotype of SCN1A disorders has been conceptualized as driven primarily by impaired interneuron function that predisposes to disinhibition and cortical hyperexcitability. However, recent studies have identified SCN1A gain-of-function variants associated with epilepsy, and the presence of cellular and synaptic changes in mouse models that point toward homeostatic adaptations and complex network remodeling. These findings highlight the need to understand microcircuit-scale dysfunction in SCN1A disorders to contextualize genetic and cellular disease mechanisms. Targeting the restoration of microcircuit properties may be a fruitful strategy for the development of novel therapies.
Collapse
Affiliation(s)
- Alexander Bryson
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Alexander Bryson,
| | - Steven Petrou
- Ion Channels and Disease Group, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Praxis Precision Medicines, Inc., Cambridge, MA, United States
| |
Collapse
|
29
|
Milligan CJ, Anderson LL, McGregor IS, Arnold JC, Petrou S. Beyond CBD: Inhibitory effects of lesser studied phytocannabinoids on human voltage-gated sodium channels. Front Physiol 2023; 14:1081186. [PMID: 36891145 PMCID: PMC9986306 DOI: 10.3389/fphys.2023.1081186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction: Cannabis contains cannabidiol (CBD), the main non-psychoactive phytocannabinoid, but also many other phytocannabinoids that have therapeutic potential in the treatment of epilepsy. Indeed, the phytocannabinoids cannabigerolic acid (CBGA), cannabidivarinic acid (CBDVA), cannabichromenic acid (CBCA) and cannabichromene (CBC) have recently been shown to have anti-convulsant effects in a mouse model of Dravet syndrome (DS), an intractable form of epilepsy. Recent studies demonstrate that CBD inhibits voltage-gated sodium channel function, however, whether these other anti-convulsant phytocannabinoids affect these classic epilepsy drug-targets is unknown. Voltage-gated sodium (NaV) channels play a pivotal role in initiation and propagation of the neuronal action potential and NaV1.1, NaV1.2, NaV1.6 and NaV1.7 are associated with the intractable epilepsies and pain conditions. Methods: In this study, using automated-planar patch-clamp technology, we assessed the profile of the phytocannabinoids CBGA, CBDVA, cannabigerol (CBG), CBCA and CBC against these human voltage-gated sodium channels subtypes expressed in mammalian cells and compared the effects to CBD. Results: CBD and CBGA inhibited peak current amplitude in the low micromolar range in a concentration-dependent manner, while CBG, CBCA and CBC revealed only modest inhibition for this subset of sodium channels. CBDVA inhibited NaV1.6 peak currents in the low micromolar range in a concentration-dependent fashion, while only exhibiting modest inhibitory effects on NaV1.1, NaV1.2, and NaV1.7 channels. CBD and CBGA non-selectively inhibited all channel subtypes examined, whereas CBDVA was selective for NaV1.6. In addition, to better understand the mechanism of this inhibition, we examined the biophysical properties of these channels in the presence of each cannabinoid. CBD reduced NaV1.1 and NaV1.7 channel availability by modulating the voltage-dependence of steady-state fast inactivation (SSFI, V0.5 inact), and for NaV1.7 channel conductance was reduced. CBGA also reduced NaV1.1 and NaV1.7 channel availability by shifting the voltage-dependence of activation (V0.5 act) to a more depolarized potential, and for NaV1.7 SSFI was shifted to a more hyperpolarized potential. CBDVA reduced channel availability by modifying conductance, SSFI and recovery from SSFI for all four channels, except for NaV1.2, where V0.5 inact was unaffected. Discussion: Collectively, these data advance our understanding of the molecular actions of lesser studied phytocannabinoids on voltage-gated sodium channel proteins.
Collapse
Affiliation(s)
- Carol J Milligan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Lyndsey L Anderson
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Iain S McGregor
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia.,School of Psychology, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Jonathon C Arnold
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.,Lambert Initiative for Cannabinoid Therapeutics, The University of Sydney, Sydney, NSW, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Brunklaus A, Feng T, Brünger T, Perez-Palma E, Heyne H, Matthews E, Semsarian C, Symonds JD, Zuberi SM, Lal D, Schorge S. Gene variant effects across sodium channelopathies predict function and guide precision therapy. Brain 2022; 145:4275-4286. [PMID: 35037686 PMCID: PMC9897196 DOI: 10.1093/brain/awac006] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/27/2021] [Accepted: 12/10/2021] [Indexed: 11/14/2022] Open
Abstract
Pathogenic variants in the voltage-gated sodium channel gene family lead to early onset epilepsies, neurodevelopmental disorders, skeletal muscle channelopathies, peripheral neuropathies and cardiac arrhythmias. Disease-associated variants have diverse functional effects ranging from complete loss-of-function to marked gain-of-function. Therapeutic strategy is likely to depend on functional effect. Experimental studies offer important insights into channel function but are resource intensive and only performed in a minority of cases. Given the evolutionarily conserved nature of the sodium channel genes, we investigated whether similarities in biophysical properties between different voltage-gated sodium channels can predict function and inform precision treatment across sodium channelopathies. We performed a systematic literature search identifying functionally assessed variants in any of the nine voltage-gated sodium channel genes until 28 April 2021. We included missense variants that had been electrophysiologically characterized in mammalian cells in whole-cell patch-clamp recordings. We performed an alignment of linear protein sequences of all sodium channel genes and correlated variants by their overall functional effect on biophysical properties. Of 951 identified records, 437 sodium channel-variants met our inclusion criteria and were reviewed for functional properties. Of these, 141 variants were epilepsy-associated (SCN1/2/3/8A), 79 had a neuromuscular phenotype (SCN4/9/10/11A), 149 were associated with a cardiac phenotype (SCN5/10A) and 68 (16%) were considered benign. We detected 38 missense variant pairs with an identical disease-associated variant in a different sodium channel gene. Thirty-five out of 38 of those pairs resulted in similar functional consequences, indicating up to 92% biophysical agreement between corresponding sodium channel variants (odds ratio = 11.3; 95% confidence interval = 2.8 to 66.9; P < 0.001). Pathogenic missense variants were clustered in specific functional domains, whereas population variants were significantly more frequent across non-conserved domains (odds ratio = 18.6; 95% confidence interval = 10.9-34.4; P < 0.001). Pore-loop regions were frequently associated with loss-of-function variants, whereas inactivation sites were associated with gain-of-function (odds ratio = 42.1, 95% confidence interval = 14.5-122.4; P < 0.001), whilst variants occurring in voltage-sensing regions comprised a range of gain- and loss-of-function effects. Our findings suggest that biophysical characterisation of variants in one SCN-gene can predict channel function across different SCN-genes where experimental data are not available. The collected data represent the first gain- versus loss-of-function topological map of SCN proteins indicating shared patterns of biophysical effects aiding variant analysis and guiding precision therapy. We integrated our findings into a free online webtool to facilitate functional sodium channel gene variant interpretation (http://SCN-viewer.broadinstitute.org).
Collapse
Affiliation(s)
- Andreas Brunklaus
- Correspondence to: Dr Andreas Brunklaus, MD Fraser of Allander Neurosciences Unit Office Block, Ground Floor, Zone 2 Royal Hospital for Children 1345 Govan Road Glasgow G51 4TF, UK E-mail:
| | | | | | - Eduardo Perez-Palma
- Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Henrike Heyne
- Genomic and Personalized Medicine, Digital Health Center, Hasso Plattner Institute, Potsdam, Germany
- Hasso Plattner Institute, Mount Sinai School of Medicine, New York, NY, USA
- Institute for Molecular Medicine Finland: FIMM, Helsinki, Finland
| | - Emma Matthews
- Atkinson Morley Neuromuscular Centre, St George’s University Hospitals NHS Foundation Trust, London, UK
- Molecular and Clinical Sciences Research Institute, St George’s University of London, London, UK
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, Australia
- Sydney Medical School Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Joseph D Symonds
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Sameer M Zuberi
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Glasgow, UK
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Dennis Lal
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Stanley Center for Psychiatric Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie Schorge
- Correspondence may also be addressed to: Professor Stephanie Schorge, PhD Department of Neuroscience Physiology and Pharmacology UCL, London WC1E 6BT, UK E-mail:
| |
Collapse
|
31
|
Makridis KL, Friedo AL, Kellinghaus C, Losch FP, Schmitz B, Boßelmann C, Kaindl AM. Successful treatment of adult Dravet syndrome patients with cenobamate. Epilepsia 2022; 63:e164-e171. [PMID: 36176237 DOI: 10.1111/epi.17427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 01/11/2023]
Abstract
Dravet syndrome (DS) is a rare, drug-resistant, severe developmental and epileptic encephalopathy caused by pathogenic variants in the α subunit of the voltage-gated sodium channel gene SCN1A. Hyperexcitability in DS results from loss of function in inhibitory interneurons. Thus sodium channel blockers are usually contraindicated in patients with DS as they may lead to disease aggravation. Cenobamate (CNB) is a novel antiseizure medication (ASM) with promising rates of seizure freedom in patients with focal-onset, drug-resistant epilepsy. CNB blocks persistent sodium currents by promoting the inactive states of sodium channels. In a multi-center study, we analyzed retrospectively the effect of an add-on therapy of CNB in adult patients with DS. We report four adult patients with DS in whom the use of CNB resulted in a significant seizure reduction of more than 80%, with a follow-up of up to 542 days. CNB was the first drug in these patients that resulted in a long-lasting and significant seizure reduction. No severe adverse events occurred. We highlight CNB as an ASM that may lead to a clinically meaningful reduction of seizure frequency in adult patients with DS. It is unclear, however, if all patients with DS benefit, requiring further investigation and functional experiments.
Collapse
Affiliation(s)
- Konstantin L Makridis
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Cell and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Epilepsy Center for Children and Adolescents, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna-Lena Friedo
- Epilepsy Center Berlin-Brandenburg, Epilepsieklinik Tabor, Bernau, Germany
| | | | | | - Bettina Schmitz
- Department of Neurology, Vivantes Humboldt-Klinikum, Berlin, Germany
| | - Christian Boßelmann
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Angela M Kaindl
- Department of Pediatric Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Chronically Sick Children, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute of Cell and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,German Epilepsy Center for Children and Adolescents, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
32
|
Brunklaus A, Brünger T, Feng T, Fons C, Lehikoinen A, Panagiotakaki E, Vintan MA, Symonds J, Andrew J, Arzimanoglou A, Delima S, Gallois J, Hanrahan D, Lesca G, MacLeod S, Marjanovic D, McTague A, Nuñez-Enamorado N, Perez-Palma E, Scott Perry M, Pysden K, Russ-Hall SJ, Scheffer IE, Sully K, Syrbe S, Vaher U, Velayutham M, Vogt J, Weiss S, Wirrell E, Zuberi SM, Lal D, Møller RS, Mantegazza M, Cestèle S. The gain of function SCN1A disorder spectrum: novel epilepsy phenotypes and therapeutic implications. Brain 2022; 145:3816-3831. [PMID: 35696452 PMCID: PMC9679167 DOI: 10.1093/brain/awac210] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/14/2022] [Accepted: 05/26/2022] [Indexed: 11/29/2022] Open
Abstract
Brain voltage-gated sodium channel NaV1.1 (SCN1A) loss-of-function variants cause the severe epilepsy Dravet syndrome, as well as milder phenotypes associated with genetic epilepsy with febrile seizures plus. Gain of function SCN1A variants are associated with familial hemiplegic migraine type 3. Novel SCN1A-related phenotypes have been described including early infantile developmental and epileptic encephalopathy with movement disorder, and more recently neonatal presentations with arthrogryposis. Here we describe the clinical, genetic and functional evaluation of affected individuals. Thirty-five patients were ascertained via an international collaborative network using a structured clinical questionnaire and from the literature. We performed whole-cell voltage-clamp electrophysiological recordings comparing sodium channels containing wild-type versus variant NaV1.1 subunits. Findings were related to Dravet syndrome and familial hemiplegic migraine type 3 variants. We identified three distinct clinical presentations differing by age at onset and presence of arthrogryposis and/or movement disorder. The most severely affected infants (n = 13) presented with congenital arthrogryposis, neonatal onset epilepsy in the first 3 days of life, tonic seizures and apnoeas, accompanied by a significant movement disorder and profound intellectual disability. Twenty-one patients presented later, between 2 weeks and 3 months of age, with a severe early infantile developmental and epileptic encephalopathy and a movement disorder. One patient presented after 3 months with developmental and epileptic encephalopathy only. Associated SCN1A variants cluster in regions of channel inactivation associated with gain of function, different to Dravet syndrome variants (odds ratio = 17.8; confidence interval = 5.4-69.3; P = 1.3 × 10-7). Functional studies of both epilepsy and familial hemiplegic migraine type 3 variants reveal alterations of gating properties in keeping with neuronal hyperexcitability. While epilepsy variants result in a moderate increase in action current amplitude consistent with mild gain of function, familial hemiplegic migraine type 3 variants induce a larger effect on gating properties, in particular the increase of persistent current, resulting in a large increase of action current amplitude, consistent with stronger gain of function. Clinically, 13 out of 16 (81%) gain of function variants were associated with a reduction in seizures in response to sodium channel blocker treatment (carbamazepine, oxcarbazepine, phenytoin, lamotrigine or lacosamide) without evidence of symptom exacerbation. Our study expands the spectrum of gain of function SCN1A-related epilepsy phenotypes, defines key clinical features, provides novel insights into the underlying disease mechanisms between SCN1A-related epilepsy and familial hemiplegic migraine type 3, and identifies sodium channel blockers as potentially efficacious therapies. Gain of function disease should be considered in early onset epilepsies with a pathogenic SCN1A variant and non-Dravet syndrome phenotype.
Collapse
Affiliation(s)
- Andreas Brunklaus
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK
| | - Tobias Brünger
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Tony Feng
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK
| | - Carmen Fons
- Pediatric Neurology Department, CIBERER-ISCIII, Sant Joan de Déu Universitary Hospital, Institut de Recerca Sant Joan de Déu, Member of the ERN EpiCARE, Barcelona, Spain
| | - Anni Lehikoinen
- Pediatric Neurology Department, Kuopio University Hospital, Member of the ERN EpiCARE, Kuopio, Finland
| | - Eleni Panagiotakaki
- Department of Paediatric Clinical Epileptology, sleep disorders and functional neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL) and Inserm U1028/CNRS UMR5292, Lyon, France
| | - Mihaela-Adela Vintan
- ‘Iuliu Hatieganu’ University of Medicine and Pharmacy, Faculty of Medicine, Department of Neuroscience, Neurology and Pediatric Neurology, Victor Babes, 43, 400012 Cluj-Napoca, Romania
| | - Joseph Symonds
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK
| | - James Andrew
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK
| | - Alexis Arzimanoglou
- Pediatric Neurology Department, CIBERER-ISCIII, Sant Joan de Déu Universitary Hospital, Institut de Recerca Sant Joan de Déu, Member of the ERN EpiCARE, Barcelona, Spain
- Department of Paediatric Clinical Epileptology, sleep disorders and functional neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL) and Inserm U1028/CNRS UMR5292, Lyon, France
| | - Sarah Delima
- Indiana University School of Medicine, IU Health Riley Hospital for Children, Department of Neurology, Division of Pediatric Neurology, Indianapolis, IN, USA
| | - Julie Gallois
- Louisiana State University Health Sciences Center School of Medicine, New Orleans, LA, USA
| | - Donncha Hanrahan
- Department of Paediatric Neurology, Royal Belfast Hospital for Sick Children, Belfast, UK
| | - Gaetan Lesca
- Department of Medical Genetics, Lyon University Hospital, Member of the ERN EpiCARE, Université Claude Bernard Lyon 1, Lyon, France
| | - Stewart MacLeod
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK
| | - Dragan Marjanovic
- The Danish Epilepsy Centre, Member of the ERN EpiCARE, Dianalund, Denmark
| | - Amy McTague
- Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital for Children, Member of the ERN EpiCARE, London, UK
| | | | - Eduardo Perez-Palma
- Universidad del Desarrollo, Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana, Santiago, Chile
| | - M Scott Perry
- Jane and John Justin Neurosciences Center, Cook Children’s Medical Center, Ft Worth, TX, USA
| | - Karen Pysden
- Paediatric Neurology Department, Leeds Teaching Hospitals, Leeds General Infirmary, Leeds, UK
| | - Sophie J Russ-Hall
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
- Murdoch Children’s Research Institute and Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Melbourne, Australia
| | - Krystal Sully
- Baylor College of Medicine, Houston, TX, USA
- Texas Children’s Hospital, Houston, TX, USA
| | - Steffen Syrbe
- Division of Pediatric Epileptology, Center for Pediatrics and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ulvi Vaher
- Children’s Clinic of Tartu University Hospital, Faculty of Medicine of Tartu University, Member of the ERN EpiCARE, Tartu, Estonia
| | | | - Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women’s and Children’s Hospital, Birmingham, UK
| | - Shelly Weiss
- Division of Neurology, SickKids, University of Toronto, Toronto, Canada
| | - Elaine Wirrell
- Divisions of Epilepsy and Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Sameer M Zuberi
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Member of the ERN EpiCARE, Glasgow, UK
| | - Dennis Lal
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
- Stanley Center for Psychiatric Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rikke S Møller
- The Danish Epilepsy Centre, Member of the ERN EpiCARE, Dianalund, Denmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Massimo Mantegazza
- Université Côte d’Azur, 06560 Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), 06560 Valbonne-Sophia Antipolis, France
- Inserm, 06560 Valbonne-Sophia Antipolis, France
| | - Sandrine Cestèle
- Université Côte d’Azur, 06560 Valbonne-Sophia Antipolis, France
- CNRS UMR7275, Institute of Molecular and Cellular Pharmacology (IPMC), 06560 Valbonne-Sophia Antipolis, France
| |
Collapse
|
33
|
Concise Review: Stem Cell Models of SCN1A-Related Encephalopathies—Current Perspective and Future Therapies. Cells 2022; 11:cells11193119. [PMID: 36231081 PMCID: PMC9561991 DOI: 10.3390/cells11193119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations in the SCN1A gene can cause a variety of phenotypes, ranging from mild forms, such as febrile seizures and generalized epilepsy with febrile seizures plus, to severe, such as Dravet and non-Dravet developmental epileptic encephalopathies. Until now, more than two thousand pathogenic variants of the SCN1A gene have been identified and different pathogenic mechanisms (loss vs. gain of function) described, but the precise molecular mechanisms responsible for the deficits exhibited by patients are not fully elucidated. Additionally, the phenotypic variability proves the involvement of other genetic factors in its final expression. This is the reason why animal models and cell line models used to explore the molecular pathology of SCN1A-related disorders are only of limited use. The results of studies based on such models cannot be directly translated to affected individuals because they do not address each patient’s unique genetic background. The generation of functional neurons and glia for patient-derived iPSCs, together with the generation of isogenic controls using CRISPR/Cas technology, and finally, the 3D brain organoid models, seem to be a good way to solve this problem. Here, we review SCN1A-related encephalopathies, as well as the stem cell models used to explore their molecular basis.
Collapse
|
34
|
Fang Z, Xie L, Li X, Gui J, Yang X, Han Z, Luo H, Huang D, Chen H, Cheng L, Jiang L. Severe epilepsy phenotype with SCN1A missense variants located outside the sodium channel core region: Relationship between functional results and clinical phenotype. Seizure 2022; 101:109-116. [PMID: 35944423 DOI: 10.1016/j.seizure.2022.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/17/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Most SCN1A missense variants located outside the sodium channel core region show a mild phenotype. However, there are exceptions, because of which it is challenging to determine the correlation between genotype and phenotype. In this study, we aimed to determine whether functional study could be used to determine disease severity in cases with such variants, and elucidate possible genotype-phenotype relationships. METHODS Forty-seven patients with SCN1A missense variants were recruited, and one with a Dravet syndrome phenotype with an SCN1A missense variant (c.3811T>C/ p.W1271R) located outside the core region was screened with electrophysiological tests. We also reviewed functional SCN1A studies on patients with inconsistent phenotypes and genotypes, and studied the relationship between electrophysiological measurements and clinical phenotype. RESULTS Patch clamp experiments showed that the W1271R variant caused significantly reduced sodium current, decreased channel voltage sensitivity, loss of channel availability, and prolonged recovery time from inactivation compared with wild type (WT), which ultimately caused a change in loss of function (LOF). Twelve cases of severe SCN1A-related epilepsy with missense variants located outside the channel core region were also included from the functional studies. Nine patients with missense SCN1A variants showed complete (3/9) or partial (6/9) physiological LOF. Two missense SCN1A variants caused physiological gain-and-loss of function (G-LOF), and one caused decreased excitability (DE). CONCLUSIONS Not all missense variants located outside the core region cause a mild phenotype. Although current functional studies in heterologous expression systems do not accurately reflect disease severity caused by SCN1A missense variants, they could be an effective model for generation of data to study the initial effects of SCN1A missense variants.
Collapse
Affiliation(s)
- Zhixu Fang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing 400014, China
| | - Lingling Xie
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing 400014, China
| | - Xue Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing 400014, China
| | - Jianxiong Gui
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing 400014, China
| | - Xiaoyue Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing 400014, China
| | - Ziyao Han
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing 400014, China
| | - Hanyu Luo
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing 400014, China
| | - Dishu Huang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing 400014, China
| | - Hengsheng Chen
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing 400014, China
| | - Li Cheng
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing 400014, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing 400014, China.
| |
Collapse
|
35
|
Xie C, Liu F, He H, He F, Mao L, Wang X, Yin F, Peng J. Novel HCN1 Mutations Associated With Epilepsy and Impacts on Neuronal Excitability. Front Mol Neurosci 2022; 15:870182. [PMID: 35845605 PMCID: PMC9280081 DOI: 10.3389/fnmol.2022.870182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channel plays a critical role in regulating the resting membrane potential and integrating synaptic transmission. Variants of HCN1 have been recognized as causes of epilepsy, and mutant HCN1 channels could act with loss-of-function (LOF), loss- and gain-of-function (LOF and GOF) and gain-of-function (GOF) mechanisms. However, phenotypes and pathogenesis of HCN1-related epilepsy are still poorly understood. This study enrolled five epileptic cases carrying five different HCN1 variants: two pathogenic variants (I380F and S710Rfs*71), two likely pathogenic variants (E240G and A395G), and a paternally inherited variant (V572A). Four variants were novel. Electrophysiological experiments revealed impaired biophysical properties of the identified mutants, including current densities and activation/deactivation kinetics. Moreover, three variants exerted effects on the biophysical properties of wild-type HCN1 channels in heterozygous conditions. Immunofluorescence experiments showed that two variants reduced the protein expression of HCN1channels in neurons. Neurons expressing E240G (GOF) variant showed increased input resistance. However, the variant of I380F (LOF) increased the neuronal firing rate, thus leading to neuronal hyperexcitability. In conclusion, the present study expands the genotypic and phenotypic spectrum of patients with HCN1-related epilepsy and clarifies the underlying mechanisms. We reported five new cases including four unreported likely/pathogenic variants. We provided assessments of biophysical function for each variant, which could help patients to receive individual therapy in the future. We confirmed that HCN1 variants contributed to neuronal hyperexcitability by regulating input resistance and the action potential firing rate, and we have shown that they can affect protein expression in neurons for the first time.
Collapse
Affiliation(s)
- Changning Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Fangyun Liu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Hailan He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Leilei Mao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaole Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Development Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Development Disabilities Research Center, Changsha, China
- *Correspondence: Jing Peng,
| |
Collapse
|
36
|
A nutraceutical product, extracted from Cannabis sativa, modulates voltage-gated sodium channel function. J Cannabis Res 2022; 4:30. [PMID: 35689251 PMCID: PMC9185959 DOI: 10.1186/s42238-022-00136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/08/2022] [Indexed: 11/24/2022] Open
Abstract
Background Purified cannabidiol (CBD), a non-psychoactive phytocannabinoid, has gained regulatory approval to treat intractable childhood epilepsies. Despite this, artisanal and commercial CBD-dominant hemp-based products continue to be used by epilepsy patients. Notably, the CBD doses used in these latter products are much lower than that found to be effective in reducing seizures in clinical trials with purified CBD. This might be because these CBD-dominant hemp products contain other bioactive compounds, including phytocannabinoids and terpenes, which may exert unique effects on epilepsy-relevant drug targets. Voltage-gated sodium (NaV) channels are vital for initiation of neuronal action potential propagation and genetic mutations in these channels result in epilepsy phenotypes. Recent studies suggest that NaV channels are inhibited by purified CBD. However, the effect of cannabis-based products on the function of NaV channels is unknown. Methods Using automated-planar patch-clamp technology, we profile a hemp-derived nutraceutical product (NP) against human NaV1.1–NaV1.8 expressed in mammalian cells to examine effects on the biophysical properties of channel conductance, steady-state fast inactivation and recovery from fast inactivation. Results NP modifies peak current amplitude of the NaV1.1–NaV1.7 subtypes and has variable effects on the biophysical properties for all channel subtypes tested. NP potently inhibits NaV channels revealing half-maximal inhibitory concentration (IC50) values of between 1.6 and 4.2 μg NP/mL. Purified CBD inhibits NaV1.1, NaV1.2, NaV1.6 and NaV1.7 to reveal IC50 values in the micromolar range. The CBD content of the product equates to IC50 values (93–245 nM), which are at least an order of magnitude lower than purified CBD. Unlike NP, hemp seed oil vehicle alone did not inhibit NaV channels, suggesting that the inhibitory effects of NP are independent of hemp seed oil. Conclusions This CBD-dominant NP potently inhibits NaV channels. Future study of the individual elements of NP, including phytocannabinoids and terpenes, may reveal a potent individual component or that its components interact to modulate NaV channels. Supplementary Information The online version contains supplementary material available at 10.1186/s42238-022-00136-x.
Collapse
|
37
|
Tanenhaus A, Stowe T, Young A, McLaughlin J, Aeran R, Lin IW, Li J, Hosur R, Chen M, Leedy J, Chou T, Pillay S, Vila MC, Kearney JA, Moorhead M, Belle A, Tagliatela S. Cell-Selective Adeno-Associated Virus-Mediated SCN1A Gene Regulation Therapy Rescues Mortality and Seizure Phenotypes in a Dravet Syndrome Mouse Model and Is Well Tolerated in Nonhuman Primates. Hum Gene Ther 2022; 33:579-597. [PMID: 35435735 PMCID: PMC9242722 DOI: 10.1089/hum.2022.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dravet syndrome (DS) is a developmental and epileptic encephalopathy caused by monoallelic loss-of-function variants in the SCN1A gene. SCN1A encodes for the alpha subunit of the voltage-gated type I sodium channel (NaV1.1), the primary voltage-gated sodium channel responsible for generation of action potentials in GABAergic inhibitory interneurons. In these studies, we tested the efficacy of an adeno-associated virus serotype 9 (AAV9) SCN1A gene regulation therapy, AAV9-REGABA-eTFSCN1A, designed to target transgene expression to GABAergic inhibitory neurons and reduce off-target expression within excitatory cells, in the Scn1a+/- mouse model of DS. Biodistribution and preliminary safety were evaluated in nonhuman primates (NHPs). AAV9-REGABA-eTFSCN1A was engineered to upregulate SCN1A expression levels within GABAergic inhibitory interneurons to correct the underlying haploinsufficiency and circuit dysfunction. A single bilateral intracerebroventricular (ICV) injection of AAV9-REGABA-eTFSCN1A in Scn1a+/- postnatal day 1 mice led to increased SCN1A mRNA transcripts, specifically within GABAergic inhibitory interneurons, and NaV1.1 protein levels in the brain. This was associated with a significant decrease in the occurrence of spontaneous and hyperthermia-induced seizures, and prolonged survival for over a year. In NHPs, delivery of AAV9-REGABA-eTFSCN1A by unilateral ICV injection led to widespread vector biodistribution and transgene expression throughout the brain, including key structures involved in epilepsy and cognitive behaviors, such as hippocampus and cortex. AAV9-REGABA-eTFSCN1A was well tolerated, with no adverse events during administration, no detectable changes in clinical observations, no adverse findings in histopathology, and no dorsal root ganglion-related toxicity. Our results support the clinical development of AAV9-REGABA-eTFSCN1A (ETX101) as an effective and targeted disease-modifying approach to SCN1A+ DS.
Collapse
Affiliation(s)
- Annie Tanenhaus
- Encoded Therapeutics, Inc., South San Francisco, California, USA
| | - Timothy Stowe
- Encoded Therapeutics, Inc., South San Francisco, California, USA
| | - Andrew Young
- Encoded Therapeutics, Inc., South San Francisco, California, USA
| | - John McLaughlin
- Encoded Therapeutics, Inc., South San Francisco, California, USA
| | - Rangoli Aeran
- Encoded Therapeutics, Inc., South San Francisco, California, USA
| | - I. Winnie Lin
- Encoded Therapeutics, Inc., South San Francisco, California, USA
| | - Jianmin Li
- Encoded Therapeutics, Inc., South San Francisco, California, USA
| | | | - Ming Chen
- Encoded Therapeutics, Inc., South San Francisco, California, USA
| | - Jennifer Leedy
- Encoded Therapeutics, Inc., South San Francisco, California, USA
| | - Tiffany Chou
- Encoded Therapeutics, Inc., South San Francisco, California, USA
| | - Sirika Pillay
- Encoded Therapeutics, Inc., South San Francisco, California, USA
| | | | - Jennifer A. Kearney
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Martin Moorhead
- Encoded Therapeutics, Inc., South San Francisco, California, USA
| | - Archana Belle
- Encoded Therapeutics, Inc., South San Francisco, California, USA
| | - Stephanie Tagliatela
- Encoded Therapeutics, Inc., South San Francisco, California, USA.,Correspondence: Stephanie Tagliatela, Encoded Therapeutics, Inc., 341 Oyster Point Boulevard, South San Francisco, CA 94080, USA.
| |
Collapse
|
38
|
Zuberi SM, Wirrell E, Yozawitz E, Wilmshurst JM, Specchio N, Riney K, Pressler R, Auvin S, Samia P, Hirsch E, Galicchio S, Triki C, Snead OC, Wiebe S, Cross JH, Tinuper P, Scheffer IE, Perucca E, Moshé SL, Nabbout R. ILAE classification and definition of epilepsy syndromes with onset in neonates and infants: Position statement by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022; 63:1349-1397. [PMID: 35503712 DOI: 10.1111/epi.17239] [Citation(s) in RCA: 407] [Impact Index Per Article: 135.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022]
Abstract
The International League Against Epilepsy (ILAE) Task Force on Nosology and Definitions proposes a classification and definition of epilepsy syndromes in the neonate and infant with seizure onset up to 2 years of age. The incidence of epilepsy is high in this age group and epilepsy is frequently associated with significant comorbidities and mortality. The licensing of syndrome specific antiseizure medications following randomized controlled trials and the development of precision, gene-related therapies are two of the drivers defining the electroclinical phenotypes of syndromes with onset in infancy. The principal aim of this proposal, consistent with the 2017 ILAE Classification of the Epilepsies, is to support epilepsy diagnosis and emphasize the importance of classifying epilepsy in an individual both by syndrome and etiology. For each syndrome, we report epidemiology, clinical course, seizure types, electroencephalography (EEG), neuroimaging, genetics, and differential diagnosis. Syndromes are separated into self-limited syndromes, where there is likely to be spontaneous remission and developmental and epileptic encephalopathies, diseases where there is developmental impairment related to both the underlying etiology independent of epileptiform activity and the epileptic encephalopathy. The emerging class of etiology-specific epilepsy syndromes, where there is a specific etiology for the epilepsy that is associated with a clearly defined, relatively uniform, and distinct clinical phenotype in most affected individuals as well as consistent EEG, neuroimaging, and/or genetic correlates, is presented. The number of etiology-defined syndromes will continue to increase, and these newly described syndromes will in time be incorporated into this classification. The tables summarize mandatory features, cautionary alerts, and exclusionary features for the common syndromes. Guidance is given on the criteria for syndrome diagnosis in resource-limited regions where laboratory confirmation, including EEG, MRI, and genetic testing, might not be available.
Collapse
Affiliation(s)
- Sameer M Zuberi
- Paediatric Neurosciences Research Group, Royal Hospital for Children, Institute of Health & Wellbeing, Collaborating Centre of European Reference Network EpiCARE, University of Glasgow, Glasgow, UK
| | - Elaine Wirrell
- Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Elissa Yozawitz
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Montefiore Medical Center, Bronx, New York, USA
| | - Jo M Wilmshurst
- Department of Paediatric Neurology, Red Cross War Memorial Children's Hospital, Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesu' Children's Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy
| | - Kate Riney
- Neurosciences Unit, Queensland Children's Hospital, South Brisbane, Queensland, Australia
- Faculty of Medicine, University of Queensland, St Lucia, Queensland, Australia
| | - Ronit Pressler
- Clinical Neuroscience, UCL- Great Ormond Street Institute of Child Health, London, UK
- Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Member of European Reference Network EpiCARE, London, UK
| | - Stephane Auvin
- AP-HP, Hôpital Robert-Debré, INSERM NeuroDiderot, DMU Innov-RDB, Neurologie Pédiatrique, Member of European Reference Network EpiCARE, Université de Paris, Paris, France
| | - Pauline Samia
- Department of Paediatrics and Child Health, Aga Khan University, Nairobi, Kenya
| | - Edouard Hirsch
- Neurology Epilepsy Unit "Francis Rohmer", INSERM 1258, FMTS, Strasbourg University, Strasbourg, France
| | - Santiago Galicchio
- Child Neurology Department, Victor J Vilela Child Hospital of Rosario, Santa Fe, Argentina
| | - Chahnez Triki
- Child Neurology Department, LR19ES15 Neuropédiatrie, Sfax Medical School, University of Sfax, Sfax, Tunisia
| | - O Carter Snead
- Pediatric Neurology, Hospital for Sick Children, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Samuel Wiebe
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - J Helen Cross
- Programme of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, Great Ormond Street Hospital for Children, Member of European Reference Network EpiCARE, London, UK
- Young Epilepsy, Lingfield, UK
| | - Paolo Tinuper
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche, Bologna, Italy
| | - Ingrid E Scheffer
- Austin Health and Royal Children's Hospital, Florey Institute, Murdoch Children's Research Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Emilio Perucca
- Department of Neuroscience, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Solomon L Moshé
- Isabelle Rapin Division of Child Neurology, Saul R. Korey Department of Neurology, Bronx, New York, USA
- Departments of Neuroscience and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
- Montefiore Medical Center, Bronx, New York, USA
| | - Rima Nabbout
- Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker-Enfants Malades University Hospital, APHP, Member of European Reference Network EpiCARE, Institut Imagine, INSERM, UMR 1163, Université Paris cité, Paris, France
| |
Collapse
|
39
|
Genetics and gene therapy in Dravet syndrome. Epilepsy Behav 2022; 131:108043. [PMID: 34053869 DOI: 10.1016/j.yebeh.2021.108043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/02/2021] [Accepted: 05/02/2021] [Indexed: 12/17/2022]
Abstract
Dravet syndrome is a well-established electro-clinical condition first described in 1978. A main genetic cause was identified with the discovery of a loss-of-function SCN1A variant in 2001. Mechanisms underlying the phenotypic variations have subsequently been a main topic of research. Various genetic modifiers of clinical severities have been elucidated through many rigorous studies on genotype-phenotype correlations and the recent advances in next generation sequencing technology. Furthermore, a deeper understanding of the regulation of gene expression and remarkable progress on genome-editing technology using the CRISPR-Cas9 system provide significant opportunities to overcome hurdles of gene therapy, such as enhancing NaV1.1 expression. This article reviews the current understanding of genetic pathology and the status of research toward the development of gene therapy for Dravet syndrome. This article is part of the Special Issue "Severe Infantile Epilepsies".
Collapse
|
40
|
Zontek A, Paprocka J. Gastrointestinal and Autonomic Symptoms-How to Improve the Diagnostic Process in Panayiotopoulos Syndrome? CHILDREN (BASEL, SWITZERLAND) 2022; 9:814. [PMID: 35740751 PMCID: PMC9222198 DOI: 10.3390/children9060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
One of the most common epileptic disorders in the pediatric population is Panayiotopoulos syndrome. Clinical manifestations of this idiopathic illness include predominantly autonomic symptoms and dysfunction of the cardiorespiratory system. Another feature constitutes prolonged seizures that usually occur at sleep. It is crucial to differentiate the aforementioned disease from other forms of epilepsy, especially occipital and structural epilepsy and non-epileptic disorders. The diagnostic process is based on medical history, clinical examination, neuroimaging and electroencephalography-though results of the latter may be unspecific. Patients with Panayiotopoulos syndrome (PS) do not usually require treatment, as the course of the disease is, in most cases, mild, and the prognosis is good. The purpose of this review is to underline the role of central autonomic network dysfunction in the development of Panayiotopoulos syndrome, as well as the possibility of using functional imaging techniques, especially functional magnetic resonance imaging (fMRI), in the diagnostic process. These methods could be crucial for understanding the pathogenesis of PS. More data arerequired to create algorithms that will be able to predict the exposure to various complications of PS. It also concerns the importance of electroencephalography (EEG) as a tool to distinguish Panayiotopoulos syndrome from other childhood epileptic syndromes and non-epileptic disorders.
Collapse
Affiliation(s)
- Aneta Zontek
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
41
|
Chen C, Fang F, Wang X, Lv J, Wang X, Jin H. Phenotypic and Genotypic Characteristics of SCN1A Associated Seizure Diseases. Front Mol Neurosci 2022; 15:821012. [PMID: 35571373 PMCID: PMC9096348 DOI: 10.3389/fnmol.2022.821012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Although SCN1A variants result in a wide range of phenotypes, genotype-phenotype associations are not well established. We aimed to explore the phenotypic characteristics of SCN1A associated seizure diseases and establish genotype-phenotype correlations. We retrospectively analyzed clinical data and results of genetic testing in 41 patients carrying SCN1A variants. Patients were divided into two groups based on their clinical manifestations: the Dravet Syndrome (DS) and non-DS groups. In the DS group, the age of seizure onset was significantly earlier and ranged from 3 to 11 months, with a median age of 6 months, than in the non-DS group, where it ranged from 7 months to 2 years, with a median age of 10 and a half months. In DS group, onset of seizures in 11 patients was febrile, in seven was afebrile, in two was febrile/afebrile and one patient developed fever post seizure. In the non-DS group, onset in all patients was febrile. While in the DS group, three patients had unilateral clonic seizures at onset, and the rest had generalized or secondary generalized seizures at onset, while in the non-DS group, all patients had generalized or secondary generalized seizures without unilateral clonic seizures. The duration of seizure in the DS group was significantly longer and ranged from 2 to 70 min (median, 20 min), than in the non-DS group where it ranged from 1 to 30 min (median, 5 min). Thirty-one patients harbored de novo variants, and nine patients had inherited variants. Localization of missense variants in the voltage sensor region (S4) or pore-forming region (S5–S6) was seen in seven of the 11 patients in the DS group and seven of the 17 patients in the non-DS group. The phenotypes of SCN1A-related seizure disease were diverse and spread over a continuous spectrum from mild to severe. The phenotypes demonstrate commonalities and individualistic differences and are not solely determined by variant location or type, but also due to functional changes, genetic modifiers as well as other known and unknown factors.
Collapse
|
42
|
Absalom NL, Liao VWY, Johannesen KMH, Gardella E, Jacobs J, Lesca G, Gokce-Samar Z, Arzimanoglou A, Zeidler S, Striano P, Meyer P, Benkel-Herrenbrueck I, Mero IL, Rummel J, Chebib M, Møller RS, Ahring PK. Gain-of-function and loss-of-function GABRB3 variants lead to distinct clinical phenotypes in patients with developmental and epileptic encephalopathies. Nat Commun 2022; 13:1822. [PMID: 35383156 PMCID: PMC8983652 DOI: 10.1038/s41467-022-29280-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/08/2022] [Indexed: 12/23/2022] Open
Abstract
Many patients with developmental and epileptic encephalopathies present with variants in genes coding for GABAA receptors. These variants are presumed to cause loss-of-function receptors leading to reduced neuronal GABAergic activity. Yet, patients with GABAA receptor variants have diverse clinical phenotypes and many are refractory to treatment despite the availability of drugs that enhance GABAergic activity. Here we show that 44 pathogenic GABRB3 missense variants segregate into gain-of-function and loss-of-function groups and respective patients display distinct clinical phenotypes. The gain-of-function cohort (n = 27 patients) presented with a younger age of seizure onset, higher risk of severe intellectual disability, focal seizures at onset, hypotonia, and lower likelihood of seizure freedom in response to treatment. Febrile seizures at onset are exclusive to the loss-of-function cohort (n = 47 patients). Overall, patients with GABRB3 variants that increase GABAergic activity have more severe developmental and epileptic encephalopathies. This paradoxical finding challenges our current understanding of the GABAergic system in epilepsy and how patients should be treated.
Collapse
Affiliation(s)
- Nathan L Absalom
- Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.,School of Science, Western Sydney University, Sydney, NSW, Australia
| | - Vivian W Y Liao
- Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Katrine M H Johannesen
- Department of Epilepsy Genetics and Personalized Treatment, Member of the ERN EpiCARE, The Danish Epilepsy Centre, Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Treatment, Member of the ERN EpiCARE, The Danish Epilepsy Centre, Dianalund, Denmark.,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Julia Jacobs
- Department of Neuropediatrics and Muscle Disorders, Medical Center-University of Freiburg, Freiburg, Germany.,Department of Paediatrics and Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Gaetan Lesca
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France.,Institut Neuromyogène, CNRS UMR 5310 - INSERM U1217, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Zeynep Gokce-Samar
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France
| | - Alexis Arzimanoglou
- Department of Paediatric Clinical Epileptology, Sleep Disorders and Functional Neurology, Member of the ERN EpiCARE, University Hospitals of Lyon (HCL), Lyon, France
| | - Shimriet Zeidler
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands
| | - Pasquale Striano
- IRCCS Institute "Giannina Gaslini", Genova, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genova, Italy
| | - Pierre Meyer
- Pediatric Neurology Department, Phymedexp, Montpellier University, Inserm, CRNS, Montpellier University Hospital, Montpellier, France
| | - Ira Benkel-Herrenbrueck
- Sana-Krankenhaus Düsseldorf-Gerresheim, Academic Teaching Hospital der Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Inger-Lise Mero
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Jutta Rummel
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
| | - Mary Chebib
- Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Treatment, Member of the ERN EpiCARE, The Danish Epilepsy Centre, Dianalund, Denmark. .,Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.
| | - Philip K Ahring
- Brain and Mind Centre, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
43
|
Marco-Hernández AV, Caro-Llopis A, Rubio Sánchez P, Martínez Martínez JC, Tomás Vila M, Monfort S, Martínez F. Extending the Phenotype Related to SCN1A Gene: Arthrogryposis, Movement Disorders, and Malformations of Cortical Development. J Child Neurol 2022; 37:340-350. [PMID: 35072530 DOI: 10.1177/08830738211072694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Expand the knowledge about the clinical phenotypes associated with pathogenic or likely pathogenic variants in the SCN1A gene. METHODS The study was carried out in 15 patients with SCN1A variants. The complete phenotype of the patients was evaluated. A systematic search was carried out in the scientific literature for those unexpected symptoms. RESULTS Ten patients showed a missense variant, whereas the remaining showed different loss-of-function variants. Twelve (80%) had Dravet syndrome. Two (13.3%) had Epilepsy with febrile seizures plus. Three (20%) presented an atypical phenotype. One of them was developmental and epileptic encephalopathy with arthrogryposis, the other Dravet syndrome and movement disorder, and lastly one patient had Dravet syndrome and malformations of the cortical development. CONCLUSION The exhaustive assessment of patients with pathogenic alterations detected in massive sequencing can help us to expand the phenotype, understand the etiopathogenesis associated with each genetic abnormality, and thus improve the prognosis and management of future patients.
Collapse
Affiliation(s)
| | | | - Pilar Rubio Sánchez
- Neurophysiology Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | - Miguel Tomás Vila
- Neuropediatric Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Sandra Monfort
- Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Francisco Martínez
- Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
44
|
Kaneko K, Currin CB, Goff KM, Wengert ER, Somarowthu A, Vogels TP, Goldberg EM. Developmentally regulated impairment of parvalbumin interneuron synaptic transmission in an experimental model of Dravet syndrome. Cell Rep 2022; 38:110580. [PMID: 35354025 PMCID: PMC9003081 DOI: 10.1016/j.celrep.2022.110580] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/09/2022] [Accepted: 03/06/2022] [Indexed: 11/25/2022] Open
Abstract
Dravet syndrome is a neurodevelopmental disorder characterized by epilepsy, intellectual disability, and sudden death due to pathogenic variants in SCN1A with loss of function of the sodium channel subunit Nav1.1. Nav1.1-expressing parvalbumin GABAergic interneurons (PV-INs) from young Scn1a+/− mice show impaired action potential generation. An approach assessing PV-IN function in the same mice at two time points shows impaired spike generation in all Scn1a+/− mice at postnatal days (P) 16–21, whether deceased prior or surviving to P35, with normalization by P35 in surviving mice. However, PV-IN synaptic transmission is dysfunctional in young Scn1a+/− mice that did not survive and in Scn1a+/− mice ≥ P35. Modeling confirms that PV-IN axonal propagation is more sensitive to decreased sodium conductance than spike generation. These results demonstrate dynamic dysfunction in Dravet syndrome: combined abnormalities of PV-IN spike generation and propagation drives early disease severity, while ongoing dysfunction of synaptic transmission contributes to chronic pathology. Dravet syndrome is caused by variants in SCN1A with loss of function of Nav1.1 sodium channels. Kaneko et al. use the “mini-slice” to record at two developmental time points. Impaired spike generation of Nav1.1-expressing PV interneurons in Scn1a+/− mice is transient, while abnormalities of PV interneuron synaptic transmission persist.
Collapse
Affiliation(s)
- Keisuke Kaneko
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Abramson Research Center, Philadelphia, PA 19104, USA
| | - Christopher B Currin
- The Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
| | - Kevin M Goff
- Medical Scientist Training Program (MSTP), The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Eric R Wengert
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Abramson Research Center, Philadelphia, PA 19104, USA
| | - Ala Somarowthu
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Abramson Research Center, Philadelphia, PA 19104, USA
| | - Tim P Vogels
- The Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Austria
| | - Ethan M Goldberg
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Abramson Research Center, Philadelphia, PA 19104, USA; Neuroscience Graduate Group, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
45
|
Brunklaus A, Pérez-Palma E, Ghanty I, Xinge J, Brilstra E, Ceulemans B, Chemaly N, de Lange I, Depienne C, Guerrini R, Mei D, Møller RS, Nabbout R, Regan BM, Schneider AL, Scheffer IE, Schoonjans AS, Symonds JD, Weckhuysen S, Kattan MW, Zuberi SM, Lal D. Development and Validation of a Prediction Model for Early Diagnosis of SCN1A-Related Epilepsies. Neurology 2022; 98:e1163-e1174. [PMID: 35074891 PMCID: PMC8935441 DOI: 10.1212/wnl.0000000000200028] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/03/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Pathogenic variants in the neuronal sodium channel α1 subunit gene (SCN1A) are the most frequent monogenic cause of epilepsy. Phenotypes comprise a wide clinical spectrum, including severe childhood epilepsy; Dravet syndrome, characterized by drug-resistant seizures, intellectual disability, and high mortality; and the milder genetic epilepsy with febrile seizures plus (GEFS+), characterized by normal cognition. Early recognition of a child's risk for developing Dravet syndrome vs GEFS+ is key for implementing disease-modifying therapies when available before cognitive impairment emerges. Our objective was to develop and validate a prediction model using clinical and genetic biomarkers for early diagnosis of SCN1A-related epilepsies. METHODS We performed a retrospective multicenter cohort study comprising data from patients with SCN1A-positive Dravet syndrome and patients with GEFS+ consecutively referred for genetic testing (March 2001-June 2020) including age at seizure onset and a newly developed SCN1A genetic score. A training cohort was used to develop multiple prediction models that were validated using 2 independent blinded cohorts. Primary outcome was the discriminative accuracy of the model predicting Dravet syndrome vs other GEFS+ phenotypes. RESULTS A total of 1,018 participants were included. The frequency of Dravet syndrome was 616/743 (83%) in the training cohort, 147/203 (72%) in validation cohort 1, and 60/72 (83%) in validation cohort 2. A high SCN1A genetic score (133.4 [SD 78.5] vs 52.0 [SD 57.5]; p < 0.001) and young age at onset (6.0 [SD 3.0] vs 14.8 [SD 11.8] months; p < 0.001) were each associated with Dravet syndrome vs GEFS+. A combined SCN1A genetic score and seizure onset model separated Dravet syndrome from GEFS+ more effectively (area under the curve [AUC] 0.89 [95% CI 0.86-0.92]) and outperformed all other models (AUC 0.79-0.85; p < 0.001). Model performance was replicated in both validation cohorts 1 (AUC 0.94 [95% CI 0.91-0.97]) and 2 (AUC 0.92 [95% CI 0.82-1.00]). DISCUSSION The prediction model allows objective estimation at disease onset whether a child will develop Dravet syndrome vs GEFS+, assisting clinicians with prognostic counseling and decisions on early institution of precision therapies (http://scn1a-prediction-model.broadinstitute.org/). CLASSIFICATION OF EVIDENCE This study provides Class II evidence that a combined SCN1A genetic score and seizure onset model distinguishes Dravet syndrome from other GEFS+ phenotypes.
Collapse
Affiliation(s)
- Andreas Brunklaus
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA.
| | - Eduardo Pérez-Palma
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ismael Ghanty
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ji Xinge
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Eva Brilstra
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Berten Ceulemans
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Nicole Chemaly
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Iris de Lange
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Christel Depienne
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Renzo Guerrini
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Davide Mei
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Rikke S Møller
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Rima Nabbout
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Brigid M Regan
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Amy L Schneider
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Ingrid E Scheffer
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - An-Sofie Schoonjans
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Joseph D Symonds
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Sarah Weckhuysen
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Michael W Kattan
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Sameer M Zuberi
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| | - Dennis Lal
- From the Pediatric Neurosciences Research Group (A.B., I.G., J.D.S., S.M.Z.), Royal Hospital for Children, Glasgow; Institute of Health and Wellbeing (A.B., I.G., J.D.S., S.M.Z.), University of Glasgow, UK; Centro de Genética y Genómica, Facultad de Medicina Clínica Alemana (E.P.-P.), Universidad del Desarrollo, Santiago, Chile; Genomic Medicine Institute, Lerner Research Institute (E.P.-P., D.L.), Department of Quantitative Health Sciences (J.X., M.W.K.), and Epilepsy Center, Neurological Institute (D.L.), Cleveland Clinic, OH; Department of Genetics (E.B., I.d.L.), University Medical Centre, Utrecht, the Netherlands; Department of Child Neurology (B.C., A.-S.S.), University Hospital Antwerp, Belgium; Reference Centre for Rare Epilepsies, Department of Pediatric Neurology (N.C., R.N.), Hôpital Necker-Enfants Malades, Université de Paris, France; Institute of Human Genetics (C.D.), University Hospital Essen, University of Duisburg-Essen, Germany; Neuroscience Department (R.G., D.M.), Children's Hospital A. Meyer-University of Florence, Italy; The Danish Epilepsy Centre (R.S.M.), Dianalund, Denmark; Institute for Regional Health Services (R.S.M.), University of Southern Denmark, Odense; Department of Medicine, Epilepsy Research Centre, Austin Health (B.M.R., A.L.S., I.E.S.), and Florey and Murdoch Children's Research Institutes, Royal Children's Hospital (I.E.S.), University of Melbourne, Australia; Applied and Translational Neurogenomics Group (S.W.), VIB-Center for Molecular Neurology, VIB, Antwerp; Neurology Department (S.W.), University Hospital Antwerp; Institute Born-Bunge (S.W.), University of Antwerp, Belgium; Cologne Center for Genomics (D.L.), University of Cologne, Germany; and Stanley Center for Psychiatric Genetics (D.L.), Broad Institute of MIT and Harvard, Cambridge, MA
| |
Collapse
|
46
|
Hui JB, Silva JCH, Pelaez MC, Sévigny M, Venkatasubramani JP, Plumereau Q, Chahine M, Proulx CD, Sephton CF, Dutchak PA. NPRL2 Inhibition of mTORC1 Controls Sodium Channel Expression and Brain Amino Acid Homeostasis. eNeuro 2022; 9:ENEURO.0317-21.2022. [PMID: 35165201 PMCID: PMC8896560 DOI: 10.1523/eneuro.0317-21.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
Genetic mutations in nitrogen permease regulator-like 2 (NPRL2) are associated with a wide spectrum of familial focal epilepsies, autism, and sudden unexpected death of epileptics (SUDEP), but the mechanisms by which NPRL2 contributes to these effects are not well known. NPRL2 is a requisite subunit of the GAP activity toward Rags 1 (GATOR1) complex, which functions as a negative regulator of mammalian target of rapamycin complex 1 (mTORC1) kinase when intracellular amino acids are low. Here, we show that loss of NPRL2 expression in mouse excitatory glutamatergic neurons causes seizures before death, consistent with SUDEP in humans with epilepsy. Additionally, the absence of NPRL2 expression increases mTORC1-dependent signal transduction and significantly alters amino acid homeostasis in the brain. Loss of NPRL2 reduces dendritic branching and increases the strength of electrically stimulated action potentials (APs) in neurons. The increased AP strength is consistent with elevated expression of epilepsy-linked, voltage-gated sodium channels in the NPRL2-deficient brain. Targeted deletion of NPRL2 in primary neurons increases the expression of sodium channel Scn1A, whereas treatment with the pharmacological mTORC1 inhibitor called rapamycin prevents Scn1A upregulation. These studies demonstrate a novel role of NPRL2 and mTORC1 signaling in the regulation of sodium channels, which can contribute to seizures and early lethality.
Collapse
Affiliation(s)
- Jeremy B Hui
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| | - Jose Cesar Hernandez Silva
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| | - Mari Carmen Pelaez
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| | - Myriam Sévigny
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| | - Janani Priya Venkatasubramani
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| | - Quentin Plumereau
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| | - Mohamed Chahine
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| | - Christophe D Proulx
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| | - Chantelle F Sephton
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| | - Paul A Dutchak
- Department of Psychiatry and Neuroscience, CERVO Brain Research Centre, Université Laval, Quebec City, Quebec G1J 2G3, Canada
| |
Collapse
|
47
|
Xu C, Zhang Y, Gozal D, Carney P. Channelopathy of Dravet Syndrome and Potential Neuroprotective Effects of Cannabidiol. J Cent Nerv Syst Dis 2021; 13:11795735211048045. [PMID: 34992485 PMCID: PMC8724990 DOI: 10.1177/11795735211048045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dravet syndrome (DS) is a channelopathy, neurodevelopmental, epileptic encephalopathy characterized by seizures, developmental delay, and cognitive impairment that includes susceptibility to thermally induced seizures, spontaneous seizures, ataxia, circadian rhythm and sleep disorders, autistic-like behaviors, and premature death. More than 80% of DS cases are linked to mutations in genes which encode voltage-gated sodium channel subunits, SCN1A and SCN1B, which encode the Nav1.1α subunit and Nav1.1β1 subunit, respectively. There are other gene mutations encoding potassium, calcium, and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels related to DS. One-third of patients have pharmacoresistance epilepsy. DS is unresponsive to standard therapy. Cannabidiol (CBD), a non-psychoactive phytocannabinoid present in Cannabis, has been introduced for treating DS because of its anticonvulsant properties in animal models and humans, especially in pharmacoresistant patients. However, the etiological channelopathiological mechanism of DS and action mechanism of CBD on the channels are unclear. In this review, we summarize evidence of the direct and indirect action mechanism of sodium, potassium, calcium, and HCN channels in DS, especially sodium subunits. Some channels' loss-of-function or gain-of-function in inhibitory or excitatory neurons determine the balance of excitatory and inhibitory are associated with DS. A great variety of mechanisms of CBD anticonvulsant effects are focused on modulating these channels, especially sodium, calcium, and potassium channels, which will shed light on ionic channelopathy of DS and the precise molecular treatment of DS in the future.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics; Department of Neuroscience, Uniformed Services University School of Medicine, Bethesda, MD, USA
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Paul Carney
- Departments of Child Health and Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
48
|
Marco Hernández AV, Tomás Vila M, Caro Llopis A, Monfort S, Martinez F. Case Report: Novel Homozygous Likely Pathogenic SCN1A Variant With Autosomal Recessive Inheritance and Review of the Literature. Front Neurol 2021; 12:784892. [PMID: 34917021 PMCID: PMC8669891 DOI: 10.3389/fneur.2021.784892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Dominant pathogenic variations in the SCN1A gene are associated with several neuro developmental disorders with or without epilepsy, including Dravet syndrome (DS). Conversely, there are few published cases with homozygous or compound heterozygous variations in the SCN1A gene. Here, we describe two siblings from a consanguineous pedigree with epilepsy phenotype compatible with genetic epilepsy with febrile seizures plus (GEFS+) associated with the homozygous likely pathogenic variant (NM_001165963.1): c.4513A > C (p.Lys1505Gln). Clinical and genetic data were compared to those of other 10 previously published patients with epilepsy and variants in compound heterozygosity or homozygosity in the SCN1A gene. Most patients (11/12) had missense variants. Patients in whom the variants were located at the cytoplasmic or the extracellular domains frequently presented a less severe phenotype than those in whom they are located at the pore-forming domains. Five of the patients (41.7%) meet clinical criteria for Dravet syndrome (DS), one of them associated acute encephalopathy. Other five patients (41.7%) had a phenotype of epilepsy with febrile seizures plus familial origin, while the two remaining (17%) presented focal epileptic seizures. SCN1A-related epilepsies present in most cases an autosomal dominant inheritance; however, there is growing evidence that some genetic variants only manifest clinical symptoms when they are present in both alleles, following an autosomal recessive inheritance.
Collapse
Affiliation(s)
- Ana Victoria Marco Hernández
- Neuropediatrics Section, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- Genetics Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Miguel Tomás Vila
- Neuropediatrics Section, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Alfonso Caro Llopis
- Genetics Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- Genomics Unit, La Fe Health Research Institute, Valencia, Spain
| | - Sandra Monfort
- Genomics Unit, La Fe Health Research Institute, Valencia, Spain
| | - Francisco Martinez
- Genetics Unit, Hospital Universitari i Politècnic La Fe, Valencia, Spain
- Genomics Unit, La Fe Health Research Institute, Valencia, Spain
| |
Collapse
|
49
|
Abstract
SCN8A epileptic encephalopathy is a devastating epilepsy syndrome caused by mutant SCN8A, which encodes the voltage-gated sodium channel NaV1.6. To date, it is unclear if and how inhibitory interneurons, which express NaV1.6, influence disease pathology. Using both sexes of a transgenic mouse model of SCN8A epileptic encephalopathy, we found that selective expression of the R1872W SCN8A mutation in somatostatin (SST) interneurons was sufficient to convey susceptibility to audiogenic seizures. Patch-clamp electrophysiology experiments revealed that SST interneurons from mutant mice were hyperexcitable but hypersensitive to action potential failure via depolarization block under normal and seizure-like conditions. Remarkably, GqDREADD-mediated activation of WT SST interneurons resulted in prolonged electrographic seizures and was accompanied by SST hyperexcitability and depolarization block. Aberrantly large persistent sodium currents, a hallmark of SCN8A mutations, were observed and were found to contribute directly to aberrant SST physiology in computational modeling and pharmacological experiments. These novel findings demonstrate a critical and previously unidentified contribution of SST interneurons to seizure generation not only in SCN8A epileptic encephalopathy, but epilepsy in general.SIGNIFICANCE STATEMENT SCN8A epileptic encephalopathy is a devastating neurological disorder that results from de novo mutations in the sodium channel isoform Nav1.6. Inhibitory neurons express NaV1.6, yet their contribution to seizure generation in SCN8A epileptic encephalopathy has not been determined. We show that mice expressing a human-derived SCN8A variant (R1872W) selectively in somatostatin (SST) interneurons have audiogenic seizures. Physiological recordings from SST interneurons show that SCN8A mutations lead to an elevated persistent sodium current which drives initial hyperexcitability, followed by premature action potential failure because of depolarization block. Furthermore, chemogenetic activation of WT SST interneurons leads to audiogenic seizure activity. These findings provide new insight into the importance of SST inhibitory interneurons in seizure initiation, not only in SCN8A epileptic encephalopathy, but for epilepsy broadly.
Collapse
|
50
|
Auffenberg E, Hedrich UB, Barbieri R, Miely D, Groschup B, Wuttke TV, Vogel N, Lührs P, Zanardi I, Bertelli S, Spielmann N, Gailus-Durner V, Fuchs H, Hrabě de Angelis M, Pusch M, Dichgans M, Lerche H, Gavazzo P, Plesnila N, Freilinger T. Hyperexcitable interneurons trigger cortical spreading depression in an Scn1a migraine model. J Clin Invest 2021; 131:142202. [PMID: 34546973 PMCID: PMC8553559 DOI: 10.1172/jci142202] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cortical spreading depression (CSD), a wave of depolarization followed by depression of cortical activity, is a pathophysiological process implicated in migraine with aura and various other brain pathologies, such as ischemic stroke and traumatic brain injury. To gain insight into the pathophysiology of CSD, we generated a mouse model for a severe monogenic subtype of migraine with aura, familial hemiplegic migraine type 3 (FHM3). FHM3 is caused by mutations in SCN1A, encoding the voltage-gated Na+ channel NaV1.1 predominantly expressed in inhibitory interneurons. Homozygous Scn1aL1649Q knock-in mice died prematurely, whereas heterozygous mice had a normal lifespan. Heterozygous Scn1aL1649Q knock-in mice compared with WT mice displayed a significantly enhanced susceptibility to CSD. We found L1649Q to cause a gain-of-function effect with an impaired Na+-channel inactivation and increased ramp Na+ currents leading to hyperactivity of fast-spiking inhibitory interneurons. Brain slice recordings using K+-sensitive electrodes revealed an increase in extracellular K+ in the early phase of CSD in heterozygous mice, likely representing the mechanistic link between interneuron hyperactivity and CSD initiation. The neuronal phenotype and premature death of homozygous Scn1aL1649Q knock-in mice was partially rescued by GS967, a blocker of persistent Na+ currents. Collectively, our findings identify interneuron hyperactivity as a mechanism to trigger CSD.
Collapse
Affiliation(s)
- Eva Auffenberg
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Ulrike Bs Hedrich
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Raffaella Barbieri
- Biophysics Institute, Consiglio Nazionale delle Ricerche (CNR), Genoa, Italy
| | - Daniela Miely
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Bernhard Groschup
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Thomas V Wuttke
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Niklas Vogel
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Philipp Lührs
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Ilaria Zanardi
- Biophysics Institute, Consiglio Nazionale delle Ricerche (CNR), Genoa, Italy
| | - Sara Bertelli
- Biophysics Institute, Consiglio Nazionale delle Ricerche (CNR), Genoa, Italy
| | - Nadine Spielmann
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Michael Pusch
- Biophysics Institute, Consiglio Nazionale delle Ricerche (CNR), Genoa, Italy
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Holger Lerche
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Paola Gavazzo
- Biophysics Institute, Consiglio Nazionale delle Ricerche (CNR), Genoa, Italy
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Tobias Freilinger
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Neurology, Klinikum Passau, Passau, Germany
| |
Collapse
|