1
|
Tammineni ER, Manno C, Oza G, Figueroa L. Skeletal muscle disorders as risk factors for type 2 diabetes. Mol Cell Endocrinol 2025; 599:112466. [PMID: 39848431 PMCID: PMC11886953 DOI: 10.1016/j.mce.2025.112466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/27/2024] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
The incidence and prevalence of muscular disorders and of type 2 diabetes (T2D) is increasing and both represent highly significant healthcare problems, both economically and compromising quality of life. Interestingly, skeletal muscle dysfunction and T2D share some commonalities including dysregulated glucose homeostasis, increased oxidative stress, dyslipidemia, and cytokine alterations. Several lines of evidence have hinted to a relationship between skeletal muscle dysfunction and T2D. For instance, T2D affects skeletal muscle morphology, functionality, and overall health through altered protein metabolism, impaired mitochondrial function, and ultimately cell viability. Conversely, humans suffering from myopathies and their experimental models demonstrated increased incidence of T2D through altered muscle glucose disposal function due to abnormal calcium homeostasis, compromised mitochondrial function, dyslipidemia, increased inflammatory cytokines and fiber size alterations and disproportions. Lifestyle modifications are essential for improving and maintaining mobility and metabolic health in individuals suffering from myopathies along with T2D. In this review, we updated current literature evidence on clinical incidence of T2D in inflammatory, mitochondrial, metabolic myopathies, and muscular dystrophies and further discussed the molecular basis of these skeletal muscle disorders leading to T2D.
Collapse
Affiliation(s)
| | - Carlo Manno
- Department of Physiology and Biophysics, Rush University, Chicago, USA
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Queretaro, Mexico
| | - Lourdes Figueroa
- Department of Physiology and Biophysics, Rush University, Chicago, USA
| |
Collapse
|
2
|
Guillermain C, Tirard S, Bannwarth S, Procaccio V. ["Mitochondrial medicine" in the light of the fourth national plan for rare diseases (PNMR4): The example of the MITOMICS project]. Med Sci (Paris) 2025; 41:173-179. [PMID: 40028956 DOI: 10.1051/medsci/2025016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
The aim of the MITOMICS project is to establish a clinical database of patients diagnosed with mitochondrial diseases, combined with a « multiomics » integrated approach in order to gain a better understanding of the molecular mechanisms underlying these diseases, and ultimately, to offer better patient care. The MITOMICS project thus contributes to the consolidation of a French "mitochondrial medicine", a notion that deserves to be examined. With the upcoming launch of the fourth national plan for rare diseases, it is an example of the study and management of rare and ultrarare diseases in France. This article traces the emergence of mitochondrial medicine since the early 1960s. It presents its main characteristics (genocentrism, strong techno-dependence), as well as its major technical and theoretical limitations, with a view to developing personalized mitochondrial medicine for the years to come.
Collapse
Affiliation(s)
- Clémence Guillermain
- Centre François Viète d'épistémologie et d'histoire des sciences et des techniques, Nantes Université, Nantes, France
| | - Stéphane Tirard
- Centre François Viète d'épistémologie et d'histoire des sciences et des techniques, Nantes Université, Nantes, France
| | - Sylvie Bannwarth
- Service de génétique médicale, Centre de référence des maladies mitochondriales, CHU Nice, Université Cote d'Azur, CNRS UMR 7284, Inserm U1081, Institut de recherche sur le cancer et le vieillissement (IRCAN), Nice, France
| | - Vincent Procaccio
- Service de génétique, Institut de biologie en santé, CHU Angers, Université d'Angers, Inserm U1083, CNRS UMR 6015, MITOVASC, Équipe Mitolab, Structure fédérative de recherche Interactions cellulaires et applications (SFR ICAT), Angers, France
| |
Collapse
|
3
|
Heath O, Feichtinger RG, Achleitner MT, Hofbauer P, Mayr D, Merkevicius K, Spenger J, Steinbrücker K, Steindl C, Tiefenthaler E, Mayr JA, Wortmann SB. Mitochondrial disorder diagnosis and management- what the pediatric neurologist wants to know. Eur J Paediatr Neurol 2025; 54:75-88. [PMID: 39793294 DOI: 10.1016/j.ejpn.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 01/13/2025]
Abstract
Childhood-onset mitochondrial disorders are rare genetic diseases that often manifest with neurological impairment due to altered mitochondrial structure or function. To date, pathogenic variants in 373 genes across the nuclear and mitochondrial genomes have been linked to mitochondrial disease, but the ensuing genetic and clinical complexity of these disorders poses considerable challenges to their diagnosis and management. Nevertheless, despite the current lack of curative treatment, recent advances in next generation sequencing and -omics technologies have laid the foundation for precision mitochondrial medicine through enhanced diagnostic accuracy and greater insight into pathomechanisms. This holds promise for the development of targeted treatments in this group of patients. Against a backdrop of inherent challenges and recent technological advances in mitochondrial medicine, this review discusses the current diagnostic approach to a child with suspected mitochondrial disease and outlines management considerations of particular relevance to paediatric neurologists. We highlight the importance of mitochondrial expertise centres in providing the laboratory infrastructure needed to supplement uninformative first line genomic testing with focused and/or further unbiased investigations where needed, as well as coordinating an integrated multidisciplinary model of care that is paramount to the management of patients affected by these conditions.
Collapse
Affiliation(s)
- Oliver Heath
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - René G Feichtinger
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Melanie T Achleitner
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Peter Hofbauer
- Department of Production, Landesapotheke Salzburg, Hospital Pharmacy, Salzburg, Austria
| | - Doris Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Kajus Merkevicius
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria; Clinic of Paediatrics, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania; Institute of Biosciences, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Johannes Spenger
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Katja Steinbrücker
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Carina Steindl
- Institut für Klinische Psychologie der UK für Psychiatrie, Psychotherapie und Psychosomatik der PMU, Salzburg, Austria
| | - Elke Tiefenthaler
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Johannes A Mayr
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Saskia B Wortmann
- University Children's Hospital, Paracelsus Medical University (PMU), Salzburg, Austria; Amalia Children's Hospital, Department of Paediatrics, Radboudumc, Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Darras BT, Volpe JJ. Muscle Involvement and Restricted Disorders. VOLPE'S NEUROLOGY OF THE NEWBORN 2025:1074-1121.e18. [DOI: 10.1016/b978-0-443-10513-5.00037-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Yu W, Wu W, Zhao D, Zhang R, Shao K, Liu H, Yan C, Lin P. Idebenone ameliorates statin-induced myotoxicity in atherosclerotic ApoE-/- mice by reducing oxidative stress and improving mitochondrial function. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167157. [PMID: 38582266 DOI: 10.1016/j.bbadis.2024.167157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/23/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Statins are the first line of choice for the treatment for atherosclerosis, but their use can cause myotoxicity, a common side effect that may require dosage reduction or discontinuation. The exact mechanism of statin-induced myotoxicity is unknown. Previous research has demonstrated that the combination of idebenone and statin yielded superior anti-atherosclerotic outcomes. Here, we investigated the mechanism of statin-induced myotoxicity in atherosclerotic ApoE-/- mice and whether idebenone could counteract it. After administering simvastatin to ApoE-/- mice, we observed a reduction in plaque formation as well as a decrease in their exercise capacity. We observed elevated levels of lactic acid and creatine kinase, along with a reduction in the cross-sectional area of muscle fibers, an increased presence of ragged red fibers, heightened mitochondrial crista lysis, impaired mitochondrial complex activity, and decreased levels of CoQ9 and CoQ10. Two-photon fluorescence imaging revealed elevated H2O2 levels in the quadriceps, indicating increased oxidative stress. Proteomic analysis indicated that simvastatin inhibited the tricarboxylic acid cycle. Idebenone treatment not only further reduced plaque formation but also ameliorated the impaired exercise capacity caused by simvastatin. Our study represents the inaugural comprehensive investigation into the mechanisms underlying statin-induced myotoxicity. We have demonstrated that statins inhibit CoQ synthesis, impair mitochondrial complex functionality, and elevate oxidative stress, ultimately resulting in myotoxic effects. Furthermore, our research marks the pioneering identification of idebenone's capability to mitigate statin-induced myotoxicity by attenuating oxidative stress, thereby safeguarding mitochondrial complex functionality. The synergistic use of idebenone and statin not only enhances the effectiveness against atherosclerosis but also mitigates statin-induced myotoxicity.
Collapse
Affiliation(s)
- Wenfei Yu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China; University of Health and Rehabilitation Sciences, No. 17, Shandong Road, Shinan district, Qingdao City, Shandong Province, China
| | - Wenjing Wu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Dandan Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Rui Zhang
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Kai Shao
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong 266000, China
| | - Haoyang Liu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China
| | - Pengfei Lin
- Department of Neurology, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, China.
| |
Collapse
|
6
|
Iu ECY, So H, Chan CB. Mitochondrial defects in sporadic inclusion body myositis-causes and consequences. Front Cell Dev Biol 2024; 12:1403463. [PMID: 38808223 PMCID: PMC11130370 DOI: 10.3389/fcell.2024.1403463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Sporadic inclusion body myositis (sIBM) is a distinct subcategory of Idiopathic Inflammatory Myopathies (IIM), characterized by unique pathological features such as muscle inflammation, rimmed vacuoles, and protein aggregation within the myofibers. Although hyperactivation of the immune system is widely believed as the primary cause of IIM, it is debated whether non-immune tissue dysfunction might contribute to the disease's onset as patients with sIBM are refractory to conventional immunosuppressant treatment. Moreover, the findings that mitochondrial dysfunction can elicit non-apoptotic programmed cell death and the subsequent immune response further support this hypothesis. Notably, abnormal mitochondrial structure and activities are more prominent in the muscle of sIBM than in other types of IIM, suggesting the presence of defective mitochondria might represent an overlooked contributor to the disease onset. The large-scale mitochondrial DNA deletion, aberrant protein aggregation, and slowed organelle turnover have provided mechanistic insights into the genesis of impaired mitochondria in sIBM. This article reviews the disease hallmarks of sIBM, the plausible contributors of mitochondrial damage in the sIBM muscle, and the immunological responses associated with mitochondrial perturbations. Additionally, the potential application of mitochondrial-targeted chemicals as a new treatment strategy to sIBM is explored and discussed.
Collapse
Affiliation(s)
- Elsie Chit Yu Iu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ho So
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
7
|
Sandroni PB, Schroder MA, Hawkins HT, Bailon JD, Huang W, Hagen JT, Montgomery M, Hong SJ, Chin AL, Zhang J, Rodrigo MC, Kim B, Simpson PC, Schisler JC, Ellis JM, Fisher-Wellman KH, Jensen BC. The alpha-1A adrenergic receptor regulates mitochondrial oxidative metabolism in the mouse heart. J Mol Cell Cardiol 2024; 187:101-117. [PMID: 38331556 PMCID: PMC10861168 DOI: 10.1016/j.yjmcc.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024]
Abstract
AIMS The sympathetic nervous system regulates numerous critical aspects of mitochondrial function in the heart through activation of adrenergic receptors (ARs) on cardiomyocytes. Mounting evidence suggests that α1-ARs, particularly the α1A subtype, are cardioprotective and may mitigate the deleterious effects of chronic β-AR activation by shared ligands. The mechanisms underlying these adaptive effects remain unclear. Here, we tested the hypothesis that α1A-ARs adaptively regulate cardiomyocyte oxidative metabolism in both the uninjured and infarcted heart. METHODS We used high resolution respirometry, fatty acid oxidation (FAO) enzyme assays, substrate-specific electron transport chain (ETC) enzyme assays, transmission electron microscopy (TEM) and proteomics to characterize mitochondrial function comprehensively in the uninjured hearts of wild type and α1A-AR knockout mice and defined the effects of chronic β-AR activation and myocardial infarction on selected mitochondrial functions. RESULTS We found that isolated cardiac mitochondria from α1A-KO mice had deficits in fatty acid-dependent respiration, FAO, and ETC enzyme activity. TEM revealed abnormalities of mitochondrial morphology characteristic of these functional deficits. The selective α1A-AR agonist A61603 enhanced fatty-acid dependent respiration, fatty acid oxidation, and ETC enzyme activity in isolated cardiac mitochondria. The β-AR agonist isoproterenol enhanced oxidative stress in vitro and this adverse effect was mitigated by A61603. A61603 enhanced ETC Complex I activity and protected contractile function following myocardial infarction. CONCLUSIONS Collectively, these novel findings position α1A-ARs as critical regulators of cardiomyocyte metabolism in the basal state and suggest that metabolic mechanisms may underlie the protective effects of α1A-AR activation in the failing heart.
Collapse
Affiliation(s)
- Peyton B Sandroni
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Melissa A Schroder
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Hunter T Hawkins
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Julian D Bailon
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Wei Huang
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - James T Hagen
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America; East Carolina University Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - McLane Montgomery
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America; East Carolina University Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - Seok J Hong
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Andrew L Chin
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Jiandong Zhang
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; Department of Medicine, Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Manoj C Rodrigo
- Cytokinetics, Inc., South San Francisco, CA, United States of America
| | - Boa Kim
- McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Paul C Simpson
- Department of Medicine and Research Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States of America; Cardiovascular Research Institute, University of California, San Francisco, CA, United States of America
| | - Jonathan C Schisler
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Jessica M Ellis
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America; East Carolina University Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - Kelsey H Fisher-Wellman
- Department of Physiology, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America; East Carolina University Diabetes and Obesity Institute, East Carolina University, Brody School of Medicine, Greenville, NC, United States of America
| | - Brian C Jensen
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; McAllister Heart Institute, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America; Department of Medicine, Division of Cardiology, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America.
| |
Collapse
|
8
|
Yu W, Li Z, Wu W, Zhao D, Yan C, Lin P. Insights into the mechanisms of telbivudine-induced myopathy associated with mitochondrial dysfunction. Chem Biol Interact 2023; 383:110692. [PMID: 37659625 DOI: 10.1016/j.cbi.2023.110692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
As a nucleotide analogue (NA), telbivudine was widely used in the treatment for chronic hepatitis B (CHB) by interfering with reverse transcriptase of hepatitis B virus. However, the use of NAs for hepatitis B treatment has been accompanied by numerous reports highlighting the occurrence of neuromyopathy, particularly in the case of telbivudine. This study aimed to investigate the underlying mechanisms responsible for telbivudine-induced myopathy. We established animal and cell models of telbivudine-induced myopathy using C57BL/6 mice and C2C12 cells, respectively. Our findings revealed that telbivudine significantly reduced mitochondrial DNA (mtDNA) copy number and caused increase of oxidative stress. Telbivudine treatment significantly inhibited mitochondrial complex I and IV expression, impairing the oxidative phosphorylation function of the respiratory chain. Modified Gomori trichrome (MGT) staining of the muscle sections displayed an increase in ragged red fibers (RRFs), indicating abnormal mitochondrial accumulation. In conclusion, our study provides compelling evidence suggesting that telbivudine-induced myopathy is associated with mitochondrial toxicity and impaired energy metabolism. The observed muscle pathology, depletion of mtDNA, elevation of oxidative stress and altered mitochondrial function support the hypothesis that telbivudine disrupts mitochondrial homeostasis, ultimately leading to muscle damage. This may be also a common mechanism for NAs to cause neuromyopathy.
Collapse
Affiliation(s)
- Wenfei Yu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China; University of Health and Rehabilitation Sciences, No. 17, Shandong Road, Shinan District, Qingdao City, Shandong Province, China
| | - Zhuxun Li
- Shandong University Cheeloo College of Medicine, Jinan, 250012, Shandong Province, China
| | - Wenjing Wu
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Dandan Zhao
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China
| | - Pengfei Lin
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
9
|
Jacobs HT. A century of mitochondrial research, 1922-2022. Enzymes 2023; 54:37-70. [PMID: 37945177 DOI: 10.1016/bs.enz.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Although recognized earlier as subcellular entities by microscopists, mitochondria have been the subject of functional studies since 1922, when their biochemical similarities with bacteria were first noted. In this overview I trace the history of research on mitochondria from that time up to the present day, focussing on the major milestones of the overlapping eras of mitochondrial biochemistry, genetics, pathology and cell biology, and its explosion into new areas in the past 25 years. Nowadays, mitochondria are considered to be fully integrated into cell physiology, rather than serving specific functions in isolation.
Collapse
Affiliation(s)
- Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Department of Environment and Genetics, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
10
|
Vanisova M, Stufkova H, Kohoutova M, Rakosnikova T, Krizova J, Klempir J, Rysankova I, Roth J, Zeman J, Hansikova H. Mitochondrial organization and structure are compromised in fibroblasts from patients with Huntington's disease. Ultrastruct Pathol 2022; 46:462-475. [PMID: 35946926 DOI: 10.1080/01913123.2022.2100951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Huntington´s disease (HD) is a progressive neurodegenerative disease with onset in adulthood that leads to a complete disability and death in approximately 20 years after onset of symptoms. HD is caused by an expansion of a CAG triplet in the gene for huntingtin. Although the disease causes most damage to striatal neurons, other parts of the nervous system and many peripheral tissues are also markedly affected. Besides huntingtin malfunction, mitochondrial impairment has been previously described as an important player in HD. This study focuses on mitochondrial structure and function in cultivated skin fibroblasts from 10 HD patients to demonstrate mitochondrial impairment in extra-neuronal tissue. Mitochondrial structure, mitochondrial fission, and cristae organization were significantly disrupted and signs of elevated apoptosis were found. In accordance with structural changes, we also found indicators of functional alteration of mitochondria. Mitochondrial disturbances presented in fibroblasts from HD patients confirm that the energy metabolism damage in HD is not localized only to the central nervous system, but also may play role in the pathogenesis of HD in peripheral tissues. Skin fibroblasts can thus serve as a suitable cellular model to make insight into HD pathobiochemical processes and for the identification of possible targets for new therapies.
Collapse
Affiliation(s)
- Marie Vanisova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Stufkova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Michaela Kohoutova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tereza Rakosnikova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Krizova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiri Klempir
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Irena Rysankova
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jan Roth
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jiri Zeman
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Hansikova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
11
|
Treatment and Management of Hereditary Metabolic Myopathies. Neuromuscul Disord 2022. [DOI: 10.1016/b978-0-323-71317-7.00023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Nguyen H, Sahbaie P, Goba L, Sul J, Suzaki A, Clark JD, Huang TT. Exposure to Gulf War Illness-related agents leads to the development of chronic pain and fatigue. Life Sci 2021; 283:119867. [PMID: 34358550 DOI: 10.1016/j.lfs.2021.119867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 11/25/2022]
Abstract
AIMS A substantial contingent of veterans from the first Gulf War continues to suffer from a number of Gulf War-related illnesses (GWI) affecting the neurological and musculoskeletal systems; the most common symptoms include chronic pain and fatigue. Although animal models have recapitulated several aspects of cognitive impairments in GWI, the pain and fatigue symptoms have not been well documented to allow examination of potential pathogenic mechanisms. MAIN METHODS We used a mouse model of GWI by exposing mice repeatedly to a combination of Gulf War chemicals (pyridostigmine bromide, permethrin, DEET, and chlorpyrifos) and mild immobilization stress, followed by investigating their pain susceptibilities and fatigue symptoms. To assess whether enhanced antioxidant capacity can counter the effects of GW agents, transgenic mice overexpressing extracellular superoxide dismutase (SOD3OE) were also examined. KEY FINDINGS The mouse model recapitulated several aspects of the human illness, including hyperalgesia, impaired descending inhibition of pain, and increased tonic pain. There is a close association between chronic pain and fatigue in GWI patients. Consistent with this observation, the mouse model showed a significant reduction in physical endurance on the treadmill. Examination of skeletal muscles suggested reduction in mitochondrial functions may have contributed to the fatigue symptoms. Furthermore, the negative impacts of GW agents in pain susceptibilities were largely diminished in SOD3OE mice, suggesting that increased oxidative stress was associated with the emergence of these Gulf War symptoms. SIGNIFICANCE the mouse model will be suitable for delineating specific defects in the pain pathways and mechanisms of fatigue in GWI.
Collapse
Affiliation(s)
- Huy Nguyen
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States of America; Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, United States of America; Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, United States of America
| | - Peyman Sahbaie
- Department of Anesthesiology, Stanford University School of Medicine, United States of America; Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, United States of America; Anesthesiology Service, VA Palo Alto Health Care System, United States of America
| | - Lihle Goba
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, United States of America
| | - Julian Sul
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, United States of America
| | - Aoi Suzaki
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, United States of America
| | - J David Clark
- Department of Anesthesiology, Stanford University School of Medicine, United States of America; Anesthesiology Service, VA Palo Alto Health Care System, United States of America
| | - Ting-Ting Huang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, United States of America; Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, United States of America.
| |
Collapse
|
13
|
Løkken N, Khawajazada T, Storgaard JH, Raaschou-Pedersen D, Christensen ME, Hornsyld TM, Krag T, Ørngreen MC, Vissing J. No effect of resveratrol in patients with mitochondrial myopathy: A cross-over randomized controlled trial. J Inherit Metab Dis 2021; 44:1186-1198. [PMID: 33934389 DOI: 10.1002/jimd.12393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 11/06/2022]
Abstract
Mitochondrial myopathies (MM) are caused by mutations that typically affect genes involved in oxidative phosphorylation. Main symptoms are exercise intolerance and fatigue. Currently, there is no specific treatment for MM. Resveratrol (RSV) is a nutritional supplement that in preclinical studies has been shown to stimulate mitochondrial function. We hypothesized that RSV could improve exercise capacity in patients with MM. The study design was randomized, double-blind, cross-over and placebo-controlled. Eleven patients with genetically verified MM were randomized to receive either 1000 mg/day RSV or placebo (P) for 8 weeks followed by a 4-week washout and then the opposite treatment. Primary outcomes were changes in heart rate (HR) during submaximal cycling exercise and peak oxygen utilization (VO2 max) during maximal exercise. Secondary outcomes included reduction in perceived exertion, changes in lactate concentrations, self-rated function (SF-36) and fatigue scores (FSS), activities of electron transport chain complexes I and IV in mononuclear cells and mitochondrial biomarkers in muscle tissue among others. There were no significant differences in primary and secondary outcomes between treatments. Mean HR changes were -0.3 ± 4.3 (RSV) vs 1.8 ± 5.0 bpm (P), P = .241. Mean VO2 max changes were 0.7 ± 1.4 (RSV) vs -0.2 ± 2.3 mL/min/kg (P), P = .203. The study provides evidence that 1000 mg RSV daily is ineffective in improving exercise capacity in adults with MM. These findings indicate that previous in vitro studies suggesting a therapeutic potential for RSV in MM, do not translate into clinically meaningful effects in vivo.
Collapse
Affiliation(s)
- Nicoline Løkken
- Copenhagen Neuromuscular Center, Rigshospitalet, University hospital, Copenhagen, Denmark
| | - Tahmina Khawajazada
- Copenhagen Neuromuscular Center, Rigshospitalet, University hospital, Copenhagen, Denmark
| | - Jesper Helbo Storgaard
- Copenhagen Neuromuscular Center, Rigshospitalet, University hospital, Copenhagen, Denmark
| | | | - Maja Elling Christensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Denmark
| | | | - Thomas Krag
- Copenhagen Neuromuscular Center, Rigshospitalet, University hospital, Copenhagen, Denmark
| | - Mette C Ørngreen
- Copenhagen Neuromuscular Center, Rigshospitalet, University hospital, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Rigshospitalet, University hospital, Copenhagen, Denmark
| |
Collapse
|
14
|
Malekahmadi M, Firouzi S, Rezayi M, Ghazizadeh H, Ranjbar G, Ferns GA, Mobarhan MG. Association of Zinc and Copper Status with Cardiovascular Diseases and their Assessment Methods: A Review Study. Mini Rev Med Chem 2021; 20:2067-2078. [PMID: 32727323 DOI: 10.2174/1389557520666200729160416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 11/22/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality, morbidity, and financial losses and has a high prevalence across the world. Several studies have investigated the association between various CVD types with zinc and copper status as the essential minerals for the human body, proposing contradictory and similar results. This narrative review aimed to survey the correlations between zinc and copper status in the human body and some risk factors of CVD, as well as the assessment methods of zinc and copper status in the human body. According to the reviewed articles, zinc and copper deficiency may increase the risk of coronary heart disease, valvular regurgitation, and myocardial lesions, cardiac hypertrophy. Furthermore, it could lead to the expanded mitochondrial compartments of the heart, acute and chronic heart failure, and elevation of inflammation markers, such as interleukin-1 (IL-1) and IL-6. Two methods are primarily used for the assessment of zinc and copper in the human body, including the direct method (measurement of their concentrations) and indirect method (determining the activity of zinc- and copper-containing enzymes). Both these methods are considered reliable for the assessment of the zinc and copper levels in healthy individuals. Serum or plasma levels of these elements are also commonly used for the assessment of the correlation between zinc and copper status and CVD. But, which one is a more accurate indicator in relation to CVD is not yet clear; therefore, further studies are required in this field.
Collapse
Affiliation(s)
- Mahsa Malekahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Safieh Firouzi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamideh Ghazizadeh
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Golnaz Ranjbar
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
15
|
Mitochondrial DNA A3243G variant-associated retinopathy: Current perspectives and clinical implications. Surv Ophthalmol 2021; 66:838-855. [PMID: 33610586 DOI: 10.1016/j.survophthal.2021.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Cellular function and survival are critically dependent on the proper functionality of the mitochondrion. Neurodegenerative cellular processes including cellular adenosine triphosphate production, intermediary metabolism control, and apoptosis regulation are all mitochondrially mediated. The A to G transition at position 3243 in the mitochondrial MTTL1 gene that encodes for the leucine transfer RNA (m.3243A>G) causes a variety of diseases, including maternally inherited loss of hearing and diabetes syndrome (MIDD), mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS). Ophthalmological findings-including posterior sub-capsular cataract, ptosis, external ophthalmoplegia, and pigmentary retinopathy- have all been associated with the m.3243A>G variant. Pigmentary retinopathy is, however, the most common ocular finding, occurring in 38% to 86% of cases. To date, little is known about the pathogenesis, natural history, and heteroplasmic and phenotypic correlations of m.3243A>G-associated pigmentary retinopathy. We summarize the current understanding of mitochondrial genetics and pathogenesis of some associated diseases. We then review the pathophysiology, histology, clinical features, treatment, and important ocular and systemic phenotypic manifestations of m.3243A>G variant associated retinopathy. Mitochondrial diseases require a multidisciplinary team approach to ensure effective treatment, regular follow-up, and accurate genetic counseling.
Collapse
|
16
|
Miyaue N, Yabe H, Nagai M. Serum growth differentiation factor 15, but not lactate, is elevated in patients with Parkinson's disease. J Neurol Sci 2020; 409:116616. [DOI: 10.1016/j.jns.2019.116616] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022]
|
17
|
Zhang G, Hou Y, Wang Z, Ye Z. Cognitive Profile of Patients With Mitochondrial Chronic Progressive External Ophthalmoplegia. Front Neurol 2020; 11:36. [PMID: 32063883 PMCID: PMC7000654 DOI: 10.3389/fneur.2020.00036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/10/2020] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial chronic progressive external ophthalmoplegia (CPEO) is a major manifestation of human mitochondrial encephalomyopathies. Previous studies have shown cognitive deficits in patients with mitochondrial diseases. However, these studies often included patients with heterogeneous subtypes of mitochondrial diseases. Here, we aimed to provide a better cognitive profile of patients with CPEO by applying a comprehensive battery of neuropsychological assessments in a pure sample of patients with CPEO. We recruited 28 patients with CPEO (19 women, age 16–62 years) and 38 age- and education-matched healthy control subjects (25 women, age 16–60 years). The neuropsychological assessments covered global cognition and five cognitive domains (executive functions, language, working memory, memory, and visuospatial functions). We found that the patients were impaired in global cognition [Montreal Cognitive Assessment (MoCA)], executive functions [Trail Making Test Part B (TMT-B)], and language [Boston Naming Test (BNT)], but not in working memory, memory or visuospatial functions. Moreover, individual patients' performances in the TMT-B (completion time) were predicted by the severity of non-ophthalmoplegia mitochondrial symptoms/signs [Newcastle Mitochondrial Disease Adult Scale (NMDAS)] and duration of the mitochondrial disease (years). Namely, patients with more severe non-ophthalmoplegia mitochondrial symptoms/signs and a longer disease duration took a longer time to complete the TMT-B. No clinical measures predicted individual patients' performances in the BNT.
Collapse
Affiliation(s)
- Guanyu Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yue Hou
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zheng Ye
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
18
|
Fila M, Pawłowska E, Blasiak J. Mitochondria in migraine pathophysiology - does epigenetics play a role? Arch Med Sci 2019; 15:944-956. [PMID: 31360189 PMCID: PMC6657237 DOI: 10.5114/aoms.2019.86061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/06/2018] [Indexed: 12/15/2022] Open
Abstract
The approximately three times higher rate of migraine prevalence in women than men may result from the mitochondrial transmission of this disease. Studies with imaging techniques suggest disturbances in mitochondrial metabolism in specific regions of the brain in migraine patients. Migraine shares some clinical features with several mitochondrial diseases and many other disorders include migraine headaches. Epigenetic regulation of mitochondrial DNA (mtDNA) is a matter of debate and there are some conflicting results, especially on mtDNA methylation. Micro RNAs (miRNAs) and long-noncoding RNA (lncRNAs) have been detected in mitochondria. The regulation of the miRNA-lncRNA axis can be important for mitochondrial physiology and its impairment can result in a disease phenotype. Further studies on the role of mitochondrial epigenetic modifications in migraine are needed, but they require new methods and approaches.
Collapse
Affiliation(s)
- Michał Fila
- Department of Neurology, Polish Mother Memorial Hospital, Research Institute, Lodz, Poland
| | | | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| |
Collapse
|
19
|
Maldonado EM, Taha F, Rahman J, Rahman S. Systems Biology Approaches Toward Understanding Primary Mitochondrial Diseases. Front Genet 2019; 10:19. [PMID: 30774647 PMCID: PMC6367241 DOI: 10.3389/fgene.2019.00019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/14/2019] [Indexed: 12/14/2022] Open
Abstract
Primary mitochondrial diseases form one of the most common and severe groups of genetic disease, with a birth prevalence of at least 1 in 5000. These disorders are multi-genic and multi-phenotypic (even within the same gene defect) and span the entire age range from prenatal to late adult onset. Mitochondrial disease typically affects one or multiple high-energy demanding organs, and is frequently fatal in early life. Unfortunately, to date there are no known curative therapies, mostly owing to the rarity and heterogeneity of individual mitochondrial diseases, leading to diagnostic odysseys and difficulties in clinical trial design. This review aims to discuss recent advances and challenges of systems approaches for the study of primary mitochondrial diseases. Although there has been an explosion in the generation of omics data, few studies have progressed toward the integration of multiple levels of omics. It is evident that the integration of different types of data to create a more complete representation of biology remains challenging, perhaps due to the scarcity of available integrative tools and the complexity inherent in their use. In addition, "bottom-up" systems approaches have been adopted for use in the iterative cycle of systems biology: from data generation to model prediction and validation. Primary mitochondrial diseases, owing to their complex nature, will most likely benefit from a multidisciplinary approach encompassing clinical, molecular and computational studies integrated together by systems biology to elucidate underlying pathomechanisms for better diagnostics and therapeutic discovery. Just as next generation sequencing has rapidly increased diagnostic rates from approximately 5% up to 60% over two decades, more recent advancing technologies are encouraging; the generation of multi-omics, the integration of multiple types of data, and the ability to predict perturbations will, ultimately, be translated into improved patient care.
Collapse
Affiliation(s)
- Elaina M. Maldonado
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Fatma Taha
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Joyeeta Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
20
|
Aw WC, Towarnicki SG, Melvin RG, Youngson NA, Garvin MR, Hu Y, Nielsen S, Thomas T, Pickford R, Bustamante S, Vila-Sanjurjo A, Smyth GK, Ballard JWO. Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genet 2018; 14:e1007735. [PMID: 30399141 PMCID: PMC6219761 DOI: 10.1371/journal.pgen.1007735] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/02/2018] [Indexed: 02/07/2023] Open
Abstract
Diet may be modified seasonally or by biogeographic, demographic or cultural shifts. It can differentially influence mitochondrial bioenergetics, retrograde signalling to the nuclear genome, and anterograde signalling to mitochondria. All these interactions have the potential to alter the frequencies of mtDNA haplotypes (mitotypes) in nature and may impact human health. In a model laboratory system, we fed four diets varying in Protein: Carbohydrate (P:C) ratio (1:2, 1:4, 1:8 and 1:16 P:C) to four homoplasmic Drosophila melanogaster mitotypes (nuclear genome standardised) and assayed their frequency in population cages. When fed a high protein 1:2 P:C diet, the frequency of flies harbouring Alstonville mtDNA increased. In contrast, when fed the high carbohydrate 1:16 P:C food the incidence of flies harbouring Dahomey mtDNA increased. This result, driven by differences in larval development, was generalisable to the replacement of the laboratory diet with fruits having high and low P:C ratios, perturbation of the nuclear genome and changes to the microbiome. Structural modelling and cellular assays suggested a V161L mutation in the ND4 subunit of complex I of Dahomey mtDNA was mildly deleterious, reduced mitochondrial functions, increased oxidative stress and resulted in an increase in larval development time on the 1:2 P:C diet. The 1:16 P:C diet triggered a cascade of changes in both mitotypes. In Dahomey larvae, increased feeding fuelled increased β-oxidation and the partial bypass of the complex I mutation. Conversely, Alstonville larvae upregulated genes involved with oxidative phosphorylation, increased glycogen metabolism and they were more physically active. We hypothesise that the increased physical activity diverted energy from growth and cell division and thereby slowed development. These data further question the use of mtDNA as an assumed neutral marker in evolutionary and population genetic studies. Moreover, if humans respond similarly, we posit that individuals with specific mtDNA variations may differentially metabolise carbohydrates, which has implications for a variety of diseases including cardiovascular disease, obesity, and perhaps Parkinson's Disease.
Collapse
Affiliation(s)
- Wen C. Aw
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Samuel G. Towarnicki
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Richard G. Melvin
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Neil A. Youngson
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Michael R. Garvin
- School of Biological Sciences, Washington State University, Pullman, Washington, United States of America
| | - Yifang Hu
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Shaun Nielsen
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Torsten Thomas
- Centre for Marine Bio-Innovation and School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Russell Pickford
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Center, The University of New South Wales, Sydney, NSW, Australia
| | - Sonia Bustamante
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Center, The University of New South Wales, Sydney, NSW, Australia
| | - Antón Vila-Sanjurjo
- Grupo GIBE, Bioloxía Celular e Molecular, Facultade de Ciencias, Universidade da Coruña (UDC), Campus Zapateira s/n, A Coruña, Spain
| | - Gordon K. Smyth
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - J. William O. Ballard
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
21
|
Di Martino S, Tramonti C, Unti E, Del Gamba C, Bonuccelli U, Rossi B, Ceravolo R, Chisari C. Aerobic rehabilitation program for improving muscle function in Parkinson’s disease. Restor Neurol Neurosci 2018; 36:13-20. [DOI: 10.3233/rnn-170738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Siria Di Martino
- Unit of Neurorehabilitation, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Caterina Tramonti
- Unit of Neurorehabilitation, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Elisa Unti
- Unit of Neurology, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Claudia Del Gamba
- Unit of Neurology, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Unit of Neurology, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Bruno Rossi
- Unit of Neurorehabilitation, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Unit of Neurology, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Carmelo Chisari
- Unit of Neurorehabilitation, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
22
|
Darras BT, Volpe JJ. Muscle Involvement and Restricted Disorders. VOLPE'S NEUROLOGY OF THE NEWBORN 2018:922-970.e15. [DOI: 10.1016/b978-0-323-42876-7.00033-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Cheung LTY, Manthey AL, Lai JSM, Chiu K. Targeted Delivery of Mitochondrial Calcium Channel Regulators: The Future of Glaucoma Treatment? Front Neurosci 2017; 11:648. [PMID: 29213227 PMCID: PMC5702640 DOI: 10.3389/fnins.2017.00648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/07/2017] [Indexed: 11/18/2022] Open
Affiliation(s)
- Leanne T Y Cheung
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Abby L Manthey
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Jimmy S M Lai
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Kin Chiu
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| |
Collapse
|
24
|
Eydt K, Davies KM, Behrendt C, Wittig I, Reichert AS. Cristae architecture is determined by an interplay of the MICOS complex and the F 1F O ATP synthase via Mic27 and Mic10. MICROBIAL CELL 2017; 4:259-272. [PMID: 28845423 PMCID: PMC5568431 DOI: 10.15698/mic2017.08.585] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The inner boundary and the cristae membrane are connected by pore-like structures termed crista junctions (CJs). The MICOS complex is required for CJ formation and enriched at CJs. Here, we address the roles of the MICOS subunits Mic27 and Mic10. We observe a positive genetic interaction between Mic27 and Mic60 and deletion of Mic27 results in impaired formation of CJs and altered cristae membrane curvature. Mic27 acts in an antagonistic manner to Mic60 as it promotes oligomerization of the F1FO-ATP synthase and partially restores CJ formation in cells lacking Mic60. Mic10 impairs oligomerization of the F1FO-ATP synthase similar to Mic60. Applying complexome profiling, we observed that deletion of Mic27 destabilizes the MICOS complex but does not impair formation of a high molecular weight Mic10 subcomplex. Moreover, this Mic10 subcomplex comigrates with the dimeric F1FO-ATP synthase in a Mic27-independent manner. Further, we observed a chemical crosslink of Mic10 to Mic27 and of Mic10 to the F1FO-ATP synthase subunit e. We corroborate the physical interaction of the MICOS complex and the F1FO-ATP synthase. We propose a model in which part of the F1FO-ATP synthase is linked to the MICOS complex via Mic10 and Mic27 and by that is regulating CJ formation.
Collapse
Affiliation(s)
- Katharina Eydt
- Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, Germany.,Mitochondrial Biology, Buchmann Institute of Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Karen M Davies
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany. Present address: Molecular Biophysics and Integrative Bio-Imaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Christina Behrendt
- Institute of Biochemistry and Molecular Biology I, Medical Faculty Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Ilka Wittig
- Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, Germany.,Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Andreas S Reichert
- Cluster of Excellence Macromolecular Complexes, Goethe University Frankfurt, Max-von-Laue-Str. 15, Frankfurt am Main, Germany.,Mitochondrial Biology, Buchmann Institute of Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,Institute of Biochemistry and Molecular Biology I, Medical Faculty Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
25
|
DeBrosse C, Nanga RPR, Wilson N, D'Aquilla K, Elliott M, Hariharan H, Yan F, Wade K, Nguyen S, Worsley D, Parris-Skeete C, McCormick E, Xiao R, Cunningham ZZ, Fishbein L, Nathanson KL, Lynch DR, Stallings VA, Yudkoff M, Falk MJ, Reddy R, McCormack SE. Muscle oxidative phosphorylation quantitation using creatine chemical exchange saturation transfer (CrCEST) MRI in mitochondrial disorders. JCI Insight 2016; 1:e88207. [PMID: 27812541 DOI: 10.1172/jci.insight.88207] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Systemic mitochondrial energy deficiency is implicated in the pathophysiology of many age-related human diseases. Currently available tools to estimate mitochondrial oxidative phosphorylation (OXPHOS) capacity in skeletal muscle in vivo lack high anatomic resolution. Muscle groups vary with respect to their contractile and metabolic properties. Therefore, muscle group-specific estimates of OXPHOS would be advantageous. To address this need, a noninvasive creatine chemical exchange saturation transfer (CrCEST) MRI technique has recently been developed, which provides a measure of free creatine. After exercise, skeletal muscle can be imaged with CrCEST in order to make muscle group-specific measurements of OXPHOS capacity, reflected in the recovery rate (τCr) of free Cr. In this study, we found that individuals with genetic mitochondrial diseases had significantly (P = 0.026) prolonged postexercise τCr in the medial gastrocnemius muscle, suggestive of less OXPHOS capacity. Additionally, we observed that lower resting CrCEST was associated with prolonged τPCr, with a Pearson's correlation coefficient of -0.42 (P = 0.046), consistent with previous hypotheses predicting that resting creatine levels may correlate with 31P magnetic resonance spectroscopy-based estimates of OXPHOS capacity. We conclude that CrCEST can noninvasively detect changes in muscle creatine content and OXPHOS capacity, with high anatomic resolution, in individuals with mitochondrial disorders.
Collapse
Affiliation(s)
- Catherine DeBrosse
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ravi Prakash Reddy Nanga
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Neil Wilson
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin D'Aquilla
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark Elliott
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hari Hariharan
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Felicia Yan
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia
| | - Kristin Wade
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia
| | - Sara Nguyen
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia
| | - Diana Worsley
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia
| | | | - Elizabeth McCormick
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rui Xiao
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Lauren Fishbein
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania.,Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania
| | - David R Lynch
- Department of Neurology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Virginia A Stallings
- Division of Gastroenterology, Hepatology, and Nutrition, The Children's Hospital of Philadelphia.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marc Yudkoff
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marni J Falk
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shana E McCormack
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
26
|
Affiliation(s)
- Steven G. Pavlakis
- Communications should be addressed to: Dr. Pavlakis; Department of Pediatrics and Neurology; Brooklyn Hospital Center; Maynard Building; Brooklyn; New York City, New York.
| | | |
Collapse
|
27
|
Gehrig SM, Mihaylova V, Frese S, Mueller SM, Ligon-Auer M, Spengler CM, Petersen JA, Lundby C, Jung HH. Altered skeletal muscle (mitochondrial) properties in patients with mitochondrial DNA single deletion myopathy. Orphanet J Rare Dis 2016; 11:105. [PMID: 27473873 PMCID: PMC4966582 DOI: 10.1186/s13023-016-0488-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/21/2016] [Indexed: 12/13/2022] Open
Abstract
Background Mitochondrial myopathy severely affects skeletal muscle structure and function resulting in defective oxidative phosphorylation. However, the major pathomechanisms and therewith effective treatment approaches remain elusive. Therefore, the aim of the present study was to investigate disease-related impairments in skeletal muscle properties in patients with mitochondrial myopathy. Accordingly, skeletal muscle biopsies were obtained from six patients with moleculargenetically diagnosed mitochondrial myopathy (one male and five females, 53 ± 9 years) and eight age- and gender-matched healthy controls (two males and six females, 58 ± 14 years) to determine mitochondrial respiratory capacity of complex I-V, mitochondrial volume density and fiber type distribution. Results Mitochondrial volume density (4.0 ± 0.5 vs. 5.1 ± 0.8 %) as well as respiratory capacity of complex I-V were lower (P < 0.05) in mitochondrial myopathy and associated with a higher (P < 0.001) proportion of type II fibers (65.2 ± 3.6 vs. 44.3 ± 5.9 %). Additionally, mitochondrial volume density and maximal oxidative phosphorylation capacity correlated positively (P < 0.05) to peak oxygen uptake. Conclusion Mitochondrial myopathy leads to impaired mitochondrial quantity and quality and a shift towards a more glycolytic skeletal muscle phenotype.
Collapse
Affiliation(s)
- Saskia Maria Gehrig
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.,Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Violeta Mihaylova
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Sebastian Frese
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Sandro Manuel Mueller
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Maria Ligon-Auer
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Christina M Spengler
- Zurich Center for Integrative Human Physiology (ZIHP), Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Exercise Physiology Lab, Institute of Human Movement Sciences, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jens A Petersen
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Carsten Lundby
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Hans H Jung
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland. .,Zurich Center for Integrative Human Physiology (ZIHP), Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
28
|
Abstract
The molecular basis of migraine is still not completely understood. An impairment of mitochondrial oxidative metabolism might play a role in the pathophysiology of this disease, by influencing neuronal information processing. Biochemical assays of platelets and muscle biopsies performed in migraine sufferers have shown a decreased activity of the respiratory chain enzymes. Studies with phosphorus magnetic resonance spectroscopy (31P-MRS) have demonstrated an impairment of the brain oxidative energy metabolism both during and between migraine attacks. However, molecular genetic studies have not detected specific mitochondrial DNA (mtDNA) mutations in patients with migraine, although other studies suggest that particular genetic markers (i.e. neutral polymorphisms or secondary mtDNA mutations) might be present in some migraine sufferers. Further studies are still needed to clarify if migraine is associated with unidentified mutations on the mtDNA or on nuclear genes that code mitochondrial proteins. In this paper, we review morphological, biochemical, imaging and genetic studies which bear on the hypothesis that migraine may be related to mitochondrial dysfunction at least in some individuals.
Collapse
Affiliation(s)
- M Sparaco
- Department of Neurology and Headache Centre, Hospital G. Rummo Benevento, Benevento, Italy.
| | | | | | | | | |
Collapse
|
29
|
Isakova EP, Deryabina YI, Leonovich OA, Zylkova MV, Biriukova IK. Study of the Accumulation of Rec A from Bacillus subtilis in the Mitochondria of a Recombinant Strain of the Yeast Yarovia lipolytica. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Ho J, Pacaud D, Rakic M, Khan A. Diabetes in pediatric patients with Kearns-Sayre syndrome: clinical presentation of 2 cases and a review of pathophysiology. Can J Diabetes 2015; 38:225-8. [PMID: 25092642 DOI: 10.1016/j.jcjd.2014.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/04/2014] [Accepted: 04/07/2014] [Indexed: 10/24/2022]
Abstract
Kearns-Sayre syndrome (KSS), resulting from a mitochondrial DNA deletion, is a rare cause of diabetes in children. We report 2 pediatric cases of KSS associated with diabetes that presented with hyperosmolar hyperglycemia with minimal ketosis. Both patients were treated initially with isotonic fluid resuscitation followed by intravenous insulin infusion. The first case was a boy of Blackfoot Aboriginal ancestry who presented with failure to thrive, developmental delay and Fanconi syndrome and was diagnosed with KSS at 3 years of age. At 4 years he presented with a cough and left upper lobe lung infiltrate as well as a hyperosmolar hyperglycemic episode. He subsequently required multiple daily insulin injections. This patient developed cardiomyopathy and died at the age of 10 years. The second case was a 6-year-old boy of Asian ancestry who presented with ataxia exacerbated by intercurrent illnesses, decreased exercise tolerance, gross motor and fine motor delays, anorexia and recurrent episodes of vomiting associated with dehydration, and he was subsequently diagnosed with KSS. At 11 years of age, the patient developed hyperosmolar hyperglycemia, and after treatment for it, he required multiple daily insulin injections. He died of end stage congestive heart failure secondary to cardiomyopathy at 13 years of age. These 2 cases are presented to describe the possible pathophysiology of mitochondrial diabetes and to emphasize the need to monitor for the development of diabetes in patients with known mitochondrial disease and also to be aware of possible mitochondrial disease in pediatric patients who present with hyperglycemia in the context of multisystem involvement.
Collapse
Affiliation(s)
- Josephine Ho
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Danièle Pacaud
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Maja Rakic
- University of Calgary, Bachelor of Health Sciences Program, Faculty of Medicine, Calgary, Alberta, Canada
| | - Aneal Khan
- Metabolic Clinic, Department of Medical Genetics and Pediatrics, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
31
|
Thapa D, Nichols CE, Lewis SE, Shepherd DL, Jagannathan R, Croston TL, Tveter KJ, Holden AA, Baseler WA, Hollander JM. Transgenic overexpression of mitofilin attenuates diabetes mellitus-associated cardiac and mitochondria dysfunction. J Mol Cell Cardiol 2015; 79:212-23. [PMID: 25463274 PMCID: PMC4302057 DOI: 10.1016/j.yjmcc.2014.11.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/23/2014] [Accepted: 11/07/2014] [Indexed: 11/20/2022]
Abstract
Mitofilin, also known as heart muscle protein, is an inner mitochondrial membrane structural protein that plays a central role in maintaining cristae morphology and structure. It is a critical component of the mitochondrial contact site and cristae organizing system (MICOS) complex which is important for mitochondrial architecture and cristae morphology. Our laboratory has previously reported alterations in mitochondrial morphology and proteomic make-up during type 1 diabetes mellitus, with mitofilin being significantly down-regulated in interfibrillar mitochondria (IFM). The goal of this study was to investigate whether overexpression of mitofilin can limit mitochondrial disruption associated with the diabetic heart through restoration of mitochondrial morphology and function. A transgenic mouse line overexpressing mitofilin was generated and mice injected intraperitoneally with streptozotocin using a multi low-dose approach. Five weeks following diabetes mellitus onset, cardiac contractile function was assessed. Restoration of ejection fraction and fractional shortening was observed in mitofilin diabetic mice as compared to wild-type controls (P<0.05 for both). Decrements observed in electron transport chain (ETC) complex I, III, IV and V activities, state 3 respiration, lipid peroxidation as well as mitochondria membrane potential in type 1 diabetic IFM were restored in mitofilin diabetic mice (P<0.05 for all). Qualitative analyses of electron micrographs revealed restoration of mitochondrial cristae structure in mitofilin diabetic mice as compared to wild-type controls. Furthermore, measurement of mitochondrial internal complexity using flow cytometry displayed significant reduction in internal complexity in diabetic IFM which was restored in mitofilin diabetic IFM (P<0.05). Taken together these results suggest that transgenic overexpression of mitofilin preserves mitochondrial structure, leading to restoration of mitochondrial function and attenuation of cardiac contractile dysfunction in the diabetic heart.
Collapse
Affiliation(s)
- Dharendra Thapa
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - Cody E Nichols
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - Sara E Lewis
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - Danielle L Shepherd
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - Rajaganapathi Jagannathan
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - Tara L Croston
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - Kevin J Tveter
- West Virginia University School of Medicine, Department of Surgery, Morgantown, WV 26506, USA
| | - Anthony A Holden
- West Virginia University School of Medicine, Department of Surgery, Morgantown, WV 26506, USA
| | - Walter A Baseler
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA
| | - John M Hollander
- West Virginia University School of Medicine, Division of Exercise Physiology, Center for Cardiovascular and Respiratory Sciences, Morgantown, WV 26506, USA.
| |
Collapse
|
32
|
Patrushev MV, Kamenski PA, Mazunin IO. Mutations in mitochondrial DNA and approaches for their correction. BIOCHEMISTRY (MOSCOW) 2014; 79:1151-60. [DOI: 10.1134/s0006297914110029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Domenis DR, Granzotti RB, Sobreira CF, Dantas RO. Pharyngeal transit in patients with chronic progressive external ophthalmoplegia. INTERNATIONAL JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2014; 17:384-389. [PMID: 25142449 DOI: 10.3109/17549507.2014.941935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PURPOSE A common presentation of mitochondrial myopathies is chronic progressive external ophthalmoplegia (CPEO). Dysphagia is a complaint in about 50% of cases. METHOD This investigation evaluated pharyngeal transit in patients with CPEO. Videofluoroscopic swallowing evaluation was performed with paste, liquid and solid boluses in 14 patients with CPEO and in 16 normal volunteers. RESULT There was no difference between patients and volunteers in the duration of pharyngeal swallowing events with the liquid bolus. Compared to control participants, patients with CPEO had significantly shorter duration of pharyngeal transit for paste and solid boluses, of pharyngeal clearance for paste bolus, and of upper oesophageal sphincter transit for paste and solid boluses. Spontaneous multiple swallows and effortful swallows were performed by patients but not by the volunteers. CONCLUSION It was concluded that patients with CPEO have shorter pharyngeal transit duration of paste and solid boluses than normal volunteers, which may be a consequence of a spontaneous smaller bolus volume in each swallow and/or effortful swallows.
Collapse
|
34
|
Roos-Araujo D, Stuart S, Lea RA, Haupt LM, Griffiths LR. Epigenetics and migraine; complex mitochondrial interactions contributing to disease susceptibility. Gene 2014; 543:1-7. [PMID: 24704026 DOI: 10.1016/j.gene.2014.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 04/01/2014] [Indexed: 02/08/2023]
Abstract
Migraine is a common neurological disorder classified by the World Health Organisation (WHO) as one of the top twenty most debilitating diseases in the developed world. Current therapies are only effective for a proportion of sufferers and new therapeutic targets are desperately needed to alleviate this burden. Recently the role of epigenetics in the development of many complex diseases including migraine has become an emerging topic. By understanding the importance of acetylation, methylation and other epigenetic modifications, it then follows that this modification process is a potential target to manipulate epigenetic status with the goal of treating disease. Bisulphite sequencing and methylated DNA immunoprecipitation have been used to demonstrate the presence of methylated cytosines in the human D-loop of mitochondrial DNA (mtDNA), proving that the mitochondrial genome is methylated. For the first time, it has been shown that there is a difference in mtDNA epigenetic status between healthy controls and those with disease, especially for neurodegenerative and age related conditions. Given co-morbidities with migraine and the suggestive link between mitochondrial dysfunction and the lowered threshold for triggering a migraine attack, mitochondrial methylation may be a new avenue to pursue. Creative thinking and new approaches are needed to solve complex problems and a systems biology approach, where multiple layers of information are integrated is becoming more important in complex disease modelling.
Collapse
Affiliation(s)
- Deidré Roos-Araujo
- Genomics Research Centre, Institute for Biomedical Health and Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Shani Stuart
- Genomics Research Centre, Institute for Biomedical Health and Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Rod A Lea
- Genomics Research Centre, Institute for Biomedical Health and Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Larisa M Haupt
- Genomics Research Centre, Institute for Biomedical Health and Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute for Biomedical Health and Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia.
| |
Collapse
|
35
|
Weiduschat N, Kaufmann P, Mao X, Engelstad KM, Hinton V, DiMauro S, De Vivo D, Shungu D. Cerebral metabolic abnormalities in A3243G mitochondrial DNA mutation carriers. Neurology 2014; 82:798-805. [PMID: 24477106 DOI: 10.1212/wnl.0000000000000169] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To establish cerebral metabolic features associated with the A3243G mitochondrial DNA mutation with proton magnetic resonance spectroscopic imaging ((1)H MRSI) and to assess their potential as prognostic biomarkers. METHODS In this prospective cohort study, we investigated 135 clinically heterogeneous A3243G mutation carriers and 30 healthy volunteers (HVs) with (1)H MRSI. Mutation carriers included 45 patients with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS); 11 participants who would develop the MELAS syndrome during follow-up (converters); and 79 participants who would not develop the MELAS syndrome during follow-up (nonconverters). The groups were compared with respect to MRSI metabolic indices of 1) anaerobic energy metabolism (lactate), 2) neuronal integrity (N-acetyl-l-aspartate [NAA]), 3) mitochondrial function (NAA; lactate), 4) cell energetics (total creatine), and 5) membrane biosynthesis and turnover (total choline [tCho]). RESULTS Consistent with prior studies, the patients with MELAS had higher lactate (p < 0.001) and lower NAA levels (p = 0.01) than HVs. Unexpectedly, converters showed higher NAA (p = 0.042), tCho (p = 0.004), and total creatine (p = 0.002), in addition to higher lactate levels (p = 0.032), compared with HVs. Compared with nonconverters, converters had higher tCho (p = 0.015). Clinically, converters and nonconverters did not differ at baseline. Lactate and tCho levels were reliable biomarkers for predicting the risk of individual mutation carriers to develop the MELAS phenotype. CONCLUSIONS (1)H MRSI assessment of cerebral metabolism in A3243G mutation carriers shows promise in identifying disease biomarkers as well as individuals at risk of developing the MELAS phenotype.
Collapse
Affiliation(s)
- Nora Weiduschat
- From the Department of Radiology (N.W., X.M., D.S.), Weill Cornell Medical College, New York; and Department of Neurology (P.K., K.M.E., V.H., S.D., D.D.V.), Columbia University College of Physicians and Surgeons, New York, NY
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gardner K, Hall PA, Chinnery PF, Payne BAI. HIV treatment and associated mitochondrial pathology: review of 25 years of in vitro, animal, and human studies. Toxicol Pathol 2013; 42:811-22. [PMID: 24067671 DOI: 10.1177/0192623313503519] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Antiretroviral therapy has dramatically reduced mortality in human immunodeficiency virus (HIV) infection. In 1988, the suggestion that the first antiretroviral drug, zidovudine, was the potential cause of muscle pathology in HIV-infected persons resulted in structural and biochemical patient studies demonstrating acquired mitochondrial dysfunction. Assessment of subsequent nucleoside analog reverse transcriptase inhibitor (NRTI) antiretroviral drugs has indicated that mitochondria are a common target of NRTI toxicity in multiple tissues, leading to a wide variety of pathology ranging from lipodystrophy to neuropathy. Overwhelmingly, these complications have emerged during post-licensing human studies. Subsequent animal and in vitro studies have then elucidated the potential pathological mechanisms, suggesting that NRTI-associated mitochondrial toxicity arises principally from inhibition of the sole mitochondrial DNA (mtDNA) polymerase gamma, leading to a reduction in mtDNA content (depletion). Millions of patients have been treated with mitochondrially toxic NRTIs and these drugs remain the backbone of antiretroviral rollout in much of sub-Saharan Africa. Here we describe the 25-year history of antiretroviral associated mitochondrial pathology and critically review the strength of evidence linking clinical, histopathological, and molecular data. We discuss recently described novel mechanisms of NRTI-associated mitochondrial damage and whether or not recently licensed NRTIs may be considered free from mitochondrial toxicity.
Collapse
Affiliation(s)
- Kristian Gardner
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Peter A Hall
- AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield, Cheshire, UK
| | - Patrick F Chinnery
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| | - Brendan A I Payne
- Institute of Genetic Medicine, Newcastle University, Newcastle-upon-Tyne, UK
| |
Collapse
|
37
|
Abstract
There has been considerable progress during the past 24 years in the molecular genetics of mitochondrial DNA and related nuclear DNA mutations, and more than 100 nerve biopsies from hereditary neuropathies related to mitochondrial cytopathy have been accurately examined. Neuropathies were first reported in diseases related to point mutations of mitochondrial DNA, but they proved to be a prominent feature of the phenotype in mitochondrial disorders caused by defects in nuclear DNA, particularly in 3 genes: polymerase gamma 1 (POLG1), mitofusin 2 (MFN2), and ganglioside-induced differentiation-associated protein 1 (GDAP1). Most patients have sensory-motor neuropathy, sometimes associated with ophthalmoplegia, ataxia, seizures, parkinsonism, myopathy, or visceral disorders. Some cases are caused by consanguinity, but most are sporadic with various phenotypes mimicking a wide range of other etiologies. Histochemistry on muscle biopsy, as well as identification of crystalloid inclusions at electron microscopy, may provide a diagnostic clue to mitochondriopathy, but nerve biopsy is often less informative. Nevertheless, enlarged mitochondria containing distorted or amputated cristae are highly suggestive, particularly when located in the Schwann cell cytoplasm. Also noticeable are clusters of regenerating myelinated fibers surrounded by concentric Schwann cell processes, and such onion bulb-like formations are frequently observed in neuropathies caused by GDAP1 mutations.
Collapse
|
38
|
A possible role for mitochondrial dysfunction in migraine. Mol Genet Genomics 2012; 287:837-44. [DOI: 10.1007/s00438-012-0723-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 09/22/2012] [Indexed: 10/27/2022]
|
39
|
Körner C, Barrera M, Dukanovic J, Eydt K, Harner M, Rabl R, Vogel F, Rapaport D, Neupert W, Reichert AS. The C-terminal domain of Fcj1 is required for formation of crista junctions and interacts with the TOB/SAM complex in mitochondria. Mol Biol Cell 2012; 23:2143-55. [PMID: 22496419 PMCID: PMC3364178 DOI: 10.1091/mbc.e11-10-0831] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The molecular mechanisms determining mitochondrial architecture are largely unclear. The C-terminal domain of Fcj1 and the TOB complex are shown to interact. Both are important for determining cristae morphology. The results explain how crista junctions are positioned at the outer membrane, assigning novel functions to both Fcj1 and the TOB complex. Crista junctions (CJs) are tubular invaginations of the inner membrane of mitochondria that connect the inner boundary with the cristae membrane. These architectural elements are critical for mitochondrial function. The yeast inner membrane protein Fcj1, called mitofilin in mammals, was reported to be preferentially located at CJs and crucial for their formation. Here we investigate the functional roles of individual domains of Fcj1. The most conserved part of Fcj1, the C-terminal domain, is essential for Fcj1 function. In its absence, formation of CJ is strongly impaired and irregular, and stacked cristae are present. This domain interacts with full-length Fcj1, suggesting a role in oligomer formation. It also interacts with Tob55 of the translocase of outer membrane β-barrel proteins (TOB)/sorting and assembly machinery (SAM) complex, which is required for the insertion of β-barrel proteins into the outer membrane. The association of the TOB/SAM complex with contact sites depends on the presence of Fcj1. The biogenesis of β-barrel proteins is not significantly affected in the absence of Fcj1. However, down-regulation of the TOB/SAM complex leads to altered cristae morphology and a moderate reduction in the number of CJs. We propose that the C-terminal domain of Fcj1 is critical for the interaction of Fcj1 with the TOB/SAM complex and thereby for stabilizing CJs in close proximity to the outer membrane. These results assign novel functions to both the C-terminal domain of Fcj1 and the TOB/SAM complex.
Collapse
Affiliation(s)
- Christian Körner
- Adolf-Butenandt-Institut für Physiologische Chemie, Ludwig-Maximilians-Universität, and Center for Integrated Protein Science München, 81377 München, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kamalden TA, Ji D, Osborne NN. Rotenone-Induced Death of RGC-5 Cells is Caspase Independent, Involves the JNK and p38 Pathways and is Attenuated by Specific Green Tea Flavonoids. Neurochem Res 2012; 37:1091-101. [DOI: 10.1007/s11064-012-0713-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 12/21/2022]
|
41
|
Ross JM. Visualization of mitochondrial respiratory function using cytochrome c oxidase/succinate dehydrogenase (COX/SDH) double-labeling histochemistry. J Vis Exp 2011:e3266. [PMID: 22143245 DOI: 10.3791/3266] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Mitochondrial DNA (mtDNA) defects are an important cause of disease and may underlie aging and aging-related alterations (1,2). The mitochondrial theory of aging suggests a role for mtDNA mutations, which can alter bioenergetics homeostasis and cellular function, in the aging process (3). A wealth of evidence has been compiled in support of this theory (1,4), an example being the mtDNA mutator mouse (5); however, the precise role of mtDNA damage in aging is not entirely understood (6,7). Observing the activity of respiratory enzymes is a straightforward approach for investigating mitochondrial dysfunction. Complex IV, or cytochrome c oxidase (COX), is essential for mitochondrial function. The catalytic subunits of COX are encoded by mtDNA and are essential for assembly of the complex (Figure 1). Thus, proper synthesis and function are largely based on mtDNA integrity (2). Although other respiratory complexes could be investigated, Complexes IV and II are the most amenable to histochemical examination (8,9). Complex II, or succinate dehydrogenase (SDH), is entirely encoded by nuclear DNA (Figure 1), and its activity is typically not affected by impaired mtDNA, although an increase might indicate mitochondrial biogenesis (10-12). The impaired mtDNA observed in mitochondrial diseases, aging, and age-related diseases often leads to the presence of cells with low or absent COX activity (2,12-14). Although COX and SDH activities can be investigated individually, the sequential double-labeling method (15,16) has proved to be advantageous in locating cells with mitochondrial dysfunction (12,17-21). Many of the optimal constitutions of the assay have been determined, such as substrate concentration, electron acceptors/donors, intermediate electron carriers, influence of pH, and reaction time (9,22,23). 3,3'-diaminobenzidine (DAB) is an effective and reliable electron donor (22). In cells with functioning COX, the brown indamine polymer product will localize in mitochondrial cristae and saturate cells (22). Those cells with dysfunctional COX will therefore not be saturated by the DAB product, allowing for the visualization of SDH activity by reduction of nitroblue tetrazolium (NBT), an electron acceptor, to a blue formazan end product (9,24). Cytochrome c and sodium succinate substrates are added to normalize endogenous levels between control and diseased/mutant tissues (9). Catalase is added as a precaution to avoid possible contaminating reactions from peroxidase activity (9,22). Phenazine methosulfate (PMS), an intermediate electron carrier, is used in conjunction with sodium azide, a respiratory chain inhibitor, to increase the formation of the final reaction products (9,25). Despite this information, some critical details affecting the result of this seemly straightforward assay, in addition to specificity controls and advances in the technique, have not yet been presented.
Collapse
Affiliation(s)
- Jaime M Ross
- Department of Neuroscience, Karolinska Institutet
| |
Collapse
|
42
|
Khanchel-Lakhoua F, Nsiri E, Labbène N, Koubâa W, Khayat O, Ben Gamra O, El Khedim A, Chadli-Debbiche A. [An unusual lesion of the nasopharynx: oncocytic metaplasia]. Ann Pathol 2011; 31:396-8. [PMID: 21982249 DOI: 10.1016/j.annpat.2011.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 10/07/2010] [Accepted: 06/16/2011] [Indexed: 10/17/2022]
Abstract
Oncocytic metaplasia of the nasopharynx is an exceptional lesion which exact etiopathogenesis, although largely discussed, still remains controversial. The purpose of this paper is to present the epidemiological characteristics and clinical signs of this lesion and to study its pathogenesis and its therapeutic modalities. We report two cases that occurred respectively in a 53- and 60-year-old woman. The first presented with pharyngeal dysesthesia and otalgia. The endoscopic examination revealed an irregularity of the posterior wall of the nasopharynx. The second patient presented with tinnitus, discomfort of the left ear and bilateral hearing loss. Endoscopic exam revealed a bilateral structural abnormality to the eardrum. Microscopy showed focal oncocytic metaplasia of the nasopharynx mucosa in both cases. There was a positive outcare for both patients after excisional biopsy. Oncocytic metaplasia seems to be in relation to the stimulation of sympathic neuropeptidergic nerve fibers which target epithelial, connective, endothelial and lymphoid cells.
Collapse
|
43
|
Domenis DR, Okubo PMCI, Sobreira C, Dantas RO. Esophageal contractions in patients with chronic progressive external ophthalmoplegia. Dig Dis Sci 2011; 56:2343-8. [PMID: 21399928 DOI: 10.1007/s10620-011-1631-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 02/14/2011] [Indexed: 12/09/2022]
Abstract
BACKGROUND Chronic progressive external ophthalmoplegia is a mitochondrial myopathy that causes muscular or multisystem symptoms and has dysphagia as one manifestation. AIM To evaluate esophageal contractions in patients with chronic progressive external ophthalmoplegia. METHODS We studied 14 patients with chronic progressive external ophthalmoplegia and 16 asymptomatic volunteers. The diagnosis of the disease was established by the clinical picture and by mitochondrial DNA analysis in skeletal muscle. We used the manometric method with a perfusion catheter that recorded the esophageal contractions at 2, 7, 12, 17, and 22 cm from the lower esophageal sphincter (LES). All subjects performed in the supine position 20 swallows of a 5-ml bolus of water at room temperature, ten every 30 s and ten every 10 s. RESULTS The amplitude, duration, and area under the curve of contractions at 17 and 22 cm from the LES were lower in patients than in volunteers for swallows performed at 10-s and 30-s intervals (P<0.01). There was no difference in contractions at 7 and 2 cm, except for the contractions at 2 cm after swallows performed at 30-s intervals. The interval between the onset of contractions between 7 and 2 cm and between 22 and 2 cm was lower in patients than in volunteers, with swallows performed every 10 s and every 30 s. CONCLUSION There is impairment of esophageal contractions in patients with chronic progressive external ophthalmoplegia, mainly in the proximal esophageal body.
Collapse
Affiliation(s)
- Danielle Ramos Domenis
- Medical School of Ribeirão Preto, University of São Paulo, and Department of Ophthalmology, Otolaryngology and Head and Neck Surgery, University Hospital of Ribeirão Preto USP, Ribeirão Preto, SP, Brazil.
| | | | | | | |
Collapse
|
44
|
Abstract
Understanding mitochondrial role in normal physiology and pathological conditions has proven to be of high importance as mitochondrial dysfunction is connected with a number of disorders as well as some of the most common diseases (e.g. diabetes or Parkinson's disease). Modeling mitochondrial dysfunction has been difficult mainly due to unique features of mitochondrial genetics. Here we discuss some of the most important mouse models generated so far and lessons learned from them.
Collapse
Affiliation(s)
- S A Dogan
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | |
Collapse
|
45
|
Dimauro S. A history of mitochondrial diseases. J Inherit Metab Dis 2011; 34:261-76. [PMID: 20490929 DOI: 10.1007/s10545-010-9082-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/08/2010] [Accepted: 03/15/2010] [Indexed: 12/12/2022]
Abstract
This articles reviews the development of mitochondrial medicine from the premolecular era (1962-1988), when mitochondrial diseases were defined on the basis of clinical examination, muscle biopsy, and biochemical criteria, through the molecular era, when the full complexity of these disorders became evident. In a chronological order, I have followed the introduction of new pathogenic concepts that have shaped a rational genetic classification of these clinically heterogeneous disorders. Thus, mitochondrial DNA (mtDNA)-related diseases can be divided into two main groups: those that impair mitochondrial protein synthesis in toto, and those that affect specific respiratory chain proteins. Mutations in nuclear DNA can affect components of respiratory chain complexes (direct hits) or assembly proteins (indirect hits), but they can also impair mtDNA integrity (multiple mtDNA mutations), replication (mtDNA depletion), or mtDNA translation. Besides these disorders that affect the respiratory chain directly, defects in other mitochondrial functions may also affect oxidative phosphorylation, including problems in mitochondrial protein import, alterations of the inner mitochondrial membrane lipid composition, and defects of mitochondrial dynamics. The enormous and still ongoing progress in our understanding of mitochondrial medicine was made possible by the intense collaboration of an international cadre of "mitochondriacs." Having published my first paper on a patient with mitochondrial myopathy 37 years ago (DiMauro et al., 1973), I feel qualified to write a history of the mitochondrial diseases, a fascinating, still evolving, and continuously puzzling area of medicine. In each section, I follow a chronological order of the salient discoveries and I show only the portraits of distinguished deceased mitochondriacs and those whose names became eponyms of mitochondrial diseases.
Collapse
Affiliation(s)
- Salvatore Dimauro
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
46
|
Fieschi C, Rasura M, Anzini A, Castro S, Gianfilippo G, Valesini G, Violi F, Zanette E. A diagnostic approach to ischemic stroke in young and middle-aged adults. Eur J Neurol 2011. [DOI: 10.1111/j.1468-1331.1996.tb00225.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Lang C, Brenner P, HeuB D, Engelhardt A, Reichmann H, Seibel P, Neundörfer B. Neuropsychological status of mitochondrial encephalomyopathies. Eur J Neurol 2011; 2:171-6. [DOI: 10.1111/j.1468-1331.1995.tb00112.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Abstract
In this review, we trace the origins and follow the development of mitochondrial medicine from the premolecular era (1962-1988) based on clinical clues, muscle morphology, and biochemistry into the molecular era that started in 1988 and is still advancing at a brisk pace. We have tried to stress conceptual advances, such as endosymbiosis, uniparental inheritance, intergenomic signaling and its defects, and mitochondrial dynamics. We hope that this historical review also provides an update on mitochondrial medicine, although we fully realize that the speed of progress in this area makes any such endeavor akin to writing on water.
Collapse
Affiliation(s)
- Salvatore DiMauro
- Columbia University Medical Center, College of Physicians & Surgeons, 630 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
49
|
Anflous-Pharayra K, Lee N, Armstrong DL, Craigen WJ. VDAC3 has differing mitochondrial functions in two types of striated muscles. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1807:150-6. [PMID: 20875390 PMCID: PMC2998388 DOI: 10.1016/j.bbabio.2010.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/16/2010] [Accepted: 09/20/2010] [Indexed: 10/19/2022]
Abstract
Voltage-dependent anion channel (VDAC) is an abundant mitochondrial outer membrane protein. In mammals, three VDAC isoforms have been characterized. We have previously reported alterations in the function of mitochondria when assessed in situ in different muscle types in VDAC1 deficient mice (Anflous et al., 2001). In the present report we extend the study to VDAC3 deficient muscles and measure the respiratory enzyme activity in both VDAC1 and VDAC3 deficient muscles. While in the heart the absence of VDAC3 causes a decrease in the apparent affinity of in situ mitochondria for ADP, in the gastrocnemius, a mixed glycolytic/oxidative muscle, the affinity of in situ mitochondria for ADP remains unchanged. The absence of VDAC1 causes multiple defects in respiratory complex activities in both types of muscle. However, in VDAC3 deficient mice the defect is restricted to the heart and only to complex IV. These functional alterations correlate with structural aberrations of mitochondria. These results demonstrate that, unlike VDAC1, there is muscle-type specificity for VDAC3 function and therefore in vivo these two isoforms may fulfill different physiologic functions.
Collapse
Affiliation(s)
- Keltoum Anflous-Pharayra
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
50
|
Martin-Negrier ML, Sole G, Jardel C, Vital C, Ferrer X, Vital A. TWINKLE gene mutation: report of a French family with an autosomal dominant progressive external ophthalmoplegia and literature review. Eur J Neurol 2010; 18:436-41. [DOI: 10.1111/j.1468-1331.2010.03171.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|