1
|
Chang AJ, Roth R, Bougioukli E, Ruber T, Keller SS, Drane DL, Gross RE, Welsh J, Abrol A, Calhoun V, Karakis I, Kaestner E, Weber B, McDonald C, Gleichgerrcht E, Bonilha L. MRI-based deep learning can discriminate between temporal lobe epilepsy, Alzheimer's disease, and healthy controls. COMMUNICATIONS MEDICINE 2023; 3:33. [PMID: 36849746 PMCID: PMC9970972 DOI: 10.1038/s43856-023-00262-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/10/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Radiological identification of temporal lobe epilepsy (TLE) is crucial for diagnosis and treatment planning. TLE neuroimaging abnormalities are pervasive at the group level, but they can be subtle and difficult to identify by visual inspection of individual scans, prompting applications of artificial intelligence (AI) assisted technologies. METHOD We assessed the ability of a convolutional neural network (CNN) algorithm to classify TLE vs. patients with AD vs. healthy controls using T1-weighted magnetic resonance imaging (MRI) scans. We used feature visualization techniques to identify regions the CNN employed to differentiate disease types. RESULTS We show the following classification results: healthy control accuracy = 81.54% (SD = 1.77%), precision = 0.81 (SD = 0.02), recall = 0.85 (SD = 0.03), and F1-score = 0.83 (SD = 0.02); TLE accuracy = 90.45% (SD = 1.59%), precision = 0.86 (SD = 0.03), recall = 0.86 (SD = 0.04), and F1-score = 0.85 (SD = 0.04); and AD accuracy = 88.52% (SD = 1.27%), precision = 0.64 (SD = 0.05), recall = 0.53 (SD = 0.07), and F1 score = 0.58 (0.05). The high accuracy in identification of TLE was remarkable, considering that only 47% of the cohort had deemed to be lesional based on MRI alone. Model predictions were also considerably better than random permutation classifications (p < 0.01) and were independent of age effects. CONCLUSIONS AI (CNN deep learning) can classify and distinguish TLE, underscoring its potential utility for future computer-aided radiological assessments of epilepsy, especially for patients who do not exhibit easily identifiable TLE associated MRI features (e.g., hippocampal sclerosis).
Collapse
Affiliation(s)
- Allen J Chang
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Rebecca Roth
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eleni Bougioukli
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Theodor Ruber
- Department of Epileptology, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Simon S Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Daniel L Drane
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University Hospital, Atlanta, GA, USA
| | - James Welsh
- Department of Neurology, Medical University of South Carolina, Charleston, SC, USA
| | - Anees Abrol
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Vince Calhoun
- School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ioannis Karakis
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Erik Kaestner
- Department of Psychology, University of California, San Diego, CA, USA
| | - Bernd Weber
- Institute of Experimental Epileptology and Cognition Research, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Carrie McDonald
- Department of Psychology, University of California, San Diego, CA, USA
| | | | - Leonardo Bonilha
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
2
|
Choudhury A, Samanta S, Pratihar S, Bandyopadhyay O. Multilevel segmentation of Hippocampus images using global steered quantum inspired firefly algorithm. APPL INTELL 2022. [DOI: 10.1007/s10489-021-02688-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Matovu D, Cavalheiro EA. Differences in Evolution of Epileptic Seizures and Topographical Distribution of Tissue Damage in Selected Limbic Structures Between Male and Female Rats Submitted to the Pilocarpine Model. Front Neurol 2022; 13:802587. [PMID: 35449517 PMCID: PMC9017681 DOI: 10.3389/fneur.2022.802587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Epidemiological evidence shows that clinical features and comorbidities in temporal lobe epilepsy (TLE) may have different manifestations depending on the sex of patients. However, little is known about how sex-related mechanisms can interfere with the processes underlying the epileptic phenomenon. The findings of this study show that male rats with epilepsy in the pilocarpine model have longer-lasting and more severe epileptic seizures, while female rats have a higher frequency of epileptic seizures and a greater number of seizure clusters. Significant sex-linked pathological changes were also observed: epileptic brains of male and female rats showed differences in mass reduction of 41.8% in the amygdala and 18.2% in the olfactory bulb, while loss of neuronal cells was present in the hippocampus (12.3%), amygdala (18.1%), and olfactory bulb (7.5%). Another important sex-related finding was the changes in non-neuronal cells with increments for the hippocampus (36.1%), amygdala (14.7%), and olfactory bulb (37%). Taken together, our study suggests that these neuropathological changes may underlie the differences in the clinical features of epileptic seizures observed in male and female rats.
Collapse
Affiliation(s)
- Daniel Matovu
- Neuroscience Laboratory, Department of Neurology and Neurosurgery, Escola Paulista de Medicina/UNIFESP, São Paulo, Brazil
| | - Esper A Cavalheiro
- Neuroscience Laboratory, Department of Neurology and Neurosurgery, Escola Paulista de Medicina/UNIFESP, São Paulo, Brazil
| |
Collapse
|
4
|
Jo H, Kim J, Kim D, Hwang Y, Seo D, Hong S, Shon YM. Lateralizing Characteristics of Morphometric Changes to Hippocampus and Amygdala in Unilateral Temporal Lobe Epilepsy with Hippocampal Sclerosis. Medicina (B Aires) 2022; 58:medicina58040480. [PMID: 35454319 PMCID: PMC9029741 DOI: 10.3390/medicina58040480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background andObjective: In the present study, a detailed investigation of substructural volume change in the hippocampus (HC) and amygdala (AMG) was performed and the association with clinical features in patients with mesial temporal lobe epilepsy with hippocampal sclerosis (TLE-HS) determined. Methods: The present study included 22 patients with left-sided TLE-HS (LTLE-HS) and 26 patients with right-sided TLE-HS (RTLE-HS). In addition, 28 healthy controls underwent high-resolution T2-weighted image (T2WI) and T1-weighted image (T1WI) MRI scanning. Subfield analysis of HC and AMG was performed using FreeSurfer version 6.0. Results: Patients with TLE-HS showed a decrease in the volume of substructures in both HC and AMG, and this change was observed on the contralateral side and the ipsilateral side with HS. The volume reduction pattern of substructures showed laterality-dependent characteristics. Patients with LTLE-HS had smaller volumes of the ipsilateral subiculum (SUB), contralateral SUB, and ipsilateral cortical nucleus of AMG than patients with RTLE-HS. Patients with RTLE-HS had reduced ipsilateral cornu ammonis (CA) 2/3 and contralateral cortico-amygdaloid transition area (CAT) volumes. The relationship between clinical variables and subregions was different based on the lateralization of the seizure focus. Focal to bilateral tonic-clonic seizures (FTBTCS) was associated with contralateral and ipsilateral side subregions only in LTLE-HS. The abdominal FAS was associated with the volume reduction of AMG subregions only in LTLE-HS, but the volume reduction was less than in patients without FAS. Conclusions: The results indicate that unilateral TLE-HS is a bilateral disease that shows different laterality-dependent characteristics based on the subfield analysis of HC and AMG. Subfield volumes of HC and AMG were associated with clinical variables, and the more damaged substructures depended on laterality in TLE-HS. These findings support the evidence that LTLE-HS and RTLE-HS are disparate epilepsy entities rather than simply identical syndromes harboring a mesial temporal lesion. In addition, the presence of FAS supports good localization value, and abdominal FAS has a high localization value, especially in patients with LTLE-HS.
Collapse
Affiliation(s)
- Hyunjin Jo
- Samsung Medical Center, Department of Neurology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea; (H.J.); (J.K.); (D.S.); (S.H.)
| | - Jeongsik Kim
- Samsung Medical Center, Department of Neurology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea; (H.J.); (J.K.); (D.S.); (S.H.)
| | - Dongyeop Kim
- Department of Neurology, Seoul Hospital, Ewha Womans University College of Medicine, Seoul 03760, Korea;
| | - Yoonha Hwang
- Department of Neurology, The Catholic University of Korea Eunpyeong St. Mary’s Hospital, Seoul 07345, Korea;
| | - Daewon Seo
- Samsung Medical Center, Department of Neurology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea; (H.J.); (J.K.); (D.S.); (S.H.)
| | - Seungbong Hong
- Samsung Medical Center, Department of Neurology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea; (H.J.); (J.K.); (D.S.); (S.H.)
| | - Young-Min Shon
- Samsung Medical Center, Department of Neurology, Sungkyunkwan University School of Medicine, Seoul 06355, Korea; (H.J.); (J.K.); (D.S.); (S.H.)
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & Technology (SAHIST), Sunkyunkwan University, Seoul 06355, Korea
- Correspondence: ; Tel.: +82-2-3410-2701
| |
Collapse
|
5
|
Zhao X, Kang H, Zhou Z, Hu Y, Li J, Li S, Li J, Zhu W. Interhemispheric functional connectivity asymmetry is distinctly affected in left and right mesial temporal lobe epilepsy. Brain Behav 2022; 12:e2484. [PMID: 35166072 PMCID: PMC8933759 DOI: 10.1002/brb3.2484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 11/15/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022] Open
Abstract
INTRODUCTION The differences of functional connectivity (FC) and functional asymmetry between left and right mesial temporal lobe epilepsy with hippocampal sclerosis (LMTLE and RMTLE) have not been completely clarified yet. The purpose of the present study is to investigate the FC changes and the FC asymmetric patterns of MTLE, and to compare the differences in FC and functional asymmetry between LMTLE and RMTLE. METHODS In total, 12 LMTLE, 11 RMTLE patients, and 23 healthy controls (HC) were included. Region of interest (ROI)-based analysis was used to evaluate FC. The right functional connectivity (rFC) and left functional connectivity (lFC) of each ROI were calculated. Asymmetry index (AI) was calculated based on the following formula: AI=100×(rFC-lFC)/[(rFC+lFC)/2]${\rm{AI\ }} = {\rm{\ }}100{\rm{\ }} \times {\rm{\ }}( {{\rm{rFC}} - {\rm{lFC}}} )/[ {( {{\rm{rFC}} + {\rm{lFC}}} )/2} ]$ . Paired t-test and univariate analysis of variance were used to analyze FC asymmetry. Linear correlation analysis was performed between significant FC changes and lateralized ROIs and epilepsy onset age and duration. RESULTS LMTLE and RMTLE patients showed different patterns of alteration in FC and functional asymmetry when compared with controls. RMTLE presented more extensive FC abnormalities than LMTLE. Regions in ipsilateral temporal lobe presented as central regions of abnormalities in both patient groups. In addition, the asymmetric characteristics of FC were reduced in MTLE compared with HC, with even more pronounced reduction for RMTLE group. Meanwhile, ROIs presented FC AI differences among the three groups were mostly involving left temporal lobe (L_hippo, L_amyg, L_TP, L_aMTG, and L_pTFusC). No correlation was found between significant FC changes and lateralized ROIs and epilepsy onset age and duration. CONCLUSION The FC and asymmetric features of MTLE are altered and involve both the temporal lobe and extra-temporal lobe. Furthermore, the altered FC and asymmetric features were distinctly affected in LMTLE and RMTLE compared to controls.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huicong Kang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shihui Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Varatharajaperumal RK, Arkar R, Arunachalam VK, Renganathan R, Varatharajan S, Mehta P, Cherian M. Comparison of T2 relaxometry and PET CT in the evaluation of patients with mesial temporal lobe epilepsy using video EEG as the reference standard. Pol J Radiol 2021; 86:e601-e607. [PMID: 34876941 PMCID: PMC8634420 DOI: 10.5114/pjr.2021.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Our study aimed to compare the sensitivity of T2 relaxometry and positron emission tomography - computed tomography (PET/CT) in patients with a history suggestive of mesial temporal lobe epilepsy using video electroencephalography (EEG) as the reference standard. MATERIAL AND METHODS In our study, 35 patients with a history suggestive of mesial temporal lobe epilepsy were subjected to conventional magnetic resonance imaging (MRI), T2 relaxometry, and PET/CT. The results of each of the studies were compared with video EEG findings. Analyses were performed by using statistical software (SPSS version 20.0 for windows), and the sensitivity of conventional MRI, T2 relaxometry, and PET/CT were calculated. RESULTS The sensitivity of qualitative MRI (atrophy and T2 hyperintensity), quantitative MRI (T2 relaxometry), and PET/CT in lateralizing the seizure focus were 68.6% (n = 24), 85.7% (n = 30), and 88.6% (n = 31), respectively. CONCLUSIONS The sensitivity of MRI in lateralization and localization of seizure focus in temporal lobe epilepsy can be increased by adding the quantitative parameter (T2 relaxometry) with the conventional sequences. T2 Relaxometry is comparable to PET/CT for localization and lateralization of seizure focus and is a useful tool in the workup of TLE patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Pankaj Mehta
- Kovai Medical Centre and Hospital, Coimbatore, India
| | | |
Collapse
|
7
|
Nezami A, Tarhani F, Shoshtari NK. Organic Lesions in the Brain MRI of Children with Febrile Seizure. Curr Med Imaging 2021; 17:148-154. [PMID: 32101131 DOI: 10.2174/1573405616666200226103615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Seizure is the most common neurological disorders in children, where 4-10% of the cases experience at least one seizure before the age of 16. The most frequent causes of seizures in children are fever, epilepsy, infection and brain damage. The aim of this study was to investigate the frequency of organic lesions in MRI of children with seizures unrelated to fever. MATERIALS AND METHODS This cross-sectional study included children presented with fever-unrelated seizures. The MRI was examined by a radiologist to identify abnormal findings in each patient. A researcher-made questionnaire including general information, history of head trauma, obstructed labor and the history of seizure was completed for the patients. RESULTS Of 287 children with fever-related seizure, 127 (45.7%) were male and 151 (54.3%) were female. History of seizure, history of obstructed labor, abnormal MRI, complete delay, use of antiepileptic drug and history of trauma were 22(9.9%), 1 (0.4%), 11(4%), 5(1.8%), 259(93.2%) and 12 (4.3%), respectively. Of 11 patients with abnormal MRI, 4 had MTS lesions, 2 had tumor lesions, 2 had scarring trauma, 1 had an epidural abscess and 1 had meningitis. The frequency of organic lesions had no significant differences based on gender, use of antiepileptic drug and traumatic history, but it had a significant relation with obstructed labor andthehistory of seizure. CONCLUSION The results showed that organic brain lesions in children with fever-unrelated seizure had a significant relationship with the history of seizure and obstructed maternal labor.
Collapse
Affiliation(s)
- Alireza Nezami
- Department of Cardiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fariba Tarhani
- Department of Cardiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | |
Collapse
|
8
|
Yaakub SN, Tangwiriyasakul C, Abela E, Koutroumanidis M, Elwes RDC, Barker GJ, Richardson MP. Heritability of alpha and sensorimotor network changes in temporal lobe epilepsy. Ann Clin Transl Neurol 2020; 7:667-676. [PMID: 32333640 PMCID: PMC7261746 DOI: 10.1002/acn3.51032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Electroencephalography (EEG) features in the alpha band have been shown to differ between people with epilepsy and healthy controls. Here, in a group of patients with mesial temporal lobe epilepsy (mTLE), we seek to confirm these EEG features, and using simultaneous functional magnetic resonance imaging, we investigate whether brain networks related to the alpha rhythm differ between patients and healthy controls. Additionally, we investigate whether alpha abnormalities are found as an inherited endophenotype in asymptomatic relatives. METHODS We acquired scalp EEG and simultaneous EEG and functional magnetic resonance imaging in 24 unrelated patients with unilateral mTLE, 23 asymptomatic first-degree relatives of patients with mTLE, and 32 healthy controls. We compared peak alpha power and frequency from electroencephalographic data in patients and relatives to healthy controls. We identified brain networks associated with alpha oscillations and compared these networks in patients and relatives to healthy controls. RESULTS Patients had significantly reduced peak alpha frequency (PAF) across all parietal and occipital electrodes. Asymptomatic relatives also had significantly reduced PAF over 14 of 17 parietal and occipital electrodes. Both patients and asymptomatic relatives showed a combination of increased activation and a failure of deactivation in relation to alpha oscillations compared to healthy controls in the sensorimotor network. INTERPRETATION Genetic factors may contribute to the shift in PAF and alterations in brain networks related to alpha oscillations. These may not entirely be a consequence of anti-epileptic drugs, seizures or hippocampal sclerosis and deserve further investigation as mechanistic contributors to mTLE.
Collapse
Affiliation(s)
- Siti N Yaakub
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, King's College London, Psychology & Neuroscience, London, UK.,School of Biomedical Engineering & Imaging Sciences, King's College London & Guy's and St Thomas' PET Centre, King's College London, London, UK
| | - Chayanin Tangwiriyasakul
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, King's College London, Psychology & Neuroscience, London, UK
| | - Eugenio Abela
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, King's College London, Psychology & Neuroscience, London, UK.,Department of Clinical Neurophysiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Michalis Koutroumanidis
- Department of Clinical Neurophysiology and Epilepsies, Guy's and St. Thomas' NHS Foundation Trust, St. Thomas' Hospital, London, UK
| | - Robert D C Elwes
- Department of Clinical Neurophysiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mark P Richardson
- Department of Basic & Clinical Neuroscience, Institute of Psychiatry, King's College London, Psychology & Neuroscience, London, UK.,Department of Clinical Neurophysiology, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
9
|
Long L, Galovic M, Chen Y, Postma T, Vos SB, Xiao F, Wu W, Song Y, Huang S, Koepp M, Xiao B. Shared hippocampal abnormalities in sporadic temporal lobe epilepsy patients and their siblings. Epilepsia 2020; 61:735-746. [PMID: 32196657 DOI: 10.1111/epi.16477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To examine the shared familial contribution to hippocampal and extrahippocampal morphological abnormalities in patients with sporadic temporal lobe epilepsy (TLE) and their unaffected siblings. METHODS We collected clinical, electrophysiological, and T1-weighted magnetic resonance imaging (MRI) data of 18 sporadic patients with TLE without lesions other than hippocampal sclerosis (12 right, 6 left), their 18 unaffected full siblings, and 18 matched healthy volunteers. We compared between-group differences in cortical thickness and volumes of five subcortical areas (hippocampus, amygdala, thalamus, putamen, and pallidum). We determined the subregional extent of hippocampal abnormalities using surface shape analysis. All our imaging results were corrected for multiple comparisons using random field theory. RESULTS We detected smaller hippocampal volumes in patients (right TLE: median right hippocampus 1.92 mL, interquartile range [IQR] 1.39-2.62, P < .001; left TLE: left hippocampus 2.05 mL, IQR 1.99-2.33, P = .01) and their unaffected siblings (right hippocampus 2.65 mL, IQR 2.32-2.80, P < .001; left hippocampus 2.39 mL, IQR 2.18-2.53, P < .001) compared to healthy controls (right hippocampus 2.94 mL, IQR 2.77-3.24; left hippocampus 2.71 mL, IQR 2.37-2.89). Surface shape analysis showed that patients with TLE had bilateral subregional atrophy in both hippocampi (right > left). Similar but less-pronounced subregional atrophy was detected in the right hippocampus of unaffected siblings. Patients with TLE had reduced cortical thickness in bilateral premotor/prefrontal cortices and the right precentral gyrus. Siblings did not show abnormalities in cortical or subcortical areas other than the hippocampus. SIGNIFICANCE Our results demonstrate a shared vulnerability of the hippocampus in both patients with TLE and their unaffected siblings, pointing to a contribution of familial factors to hippocampal atrophy. This neuroimaging trait could represent an endophenotype of TLE, which might precede the onset of epilepsy in some individuals.
Collapse
Affiliation(s)
- Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Marian Galovic
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, UK.,Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Yayu Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tjardo Postma
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Sjoerd B Vos
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, UK.,Centre for Medical Image Computing, University College London, London, UK
| | - Fenglai Xiao
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Wenyue Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanmin Song
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, China
| | - Sha Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,MRI Unit, Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Park S, Kim WJ, Lee SK, Chang JW. Central Nervous System Infection-Related Isolated Hippocampal Atrophy as Another Subtype of Medial Temporal Lobe Epilepsy with Hippocampal Atrophy: A Comparison to Conventional Medial Temporal Lobe Epilepsy with Hippocampal Atrophy. J Clin Neurol 2020; 16:688-695. [PMID: 33029977 PMCID: PMC7541999 DOI: 10.3988/jcn.2020.16.4.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022] Open
Affiliation(s)
- Soochul Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Won-Joo Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Neuro-Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Rosal Lustosa Í, Soares JI, Biagini G, Lukoyanov NV. Neuroplasticity in Cholinergic Projections from the Basal Forebrain to the Basolateral Nucleus of the Amygdala in the Kainic Acid Model of Temporal Lobe Epilepsy. Int J Mol Sci 2019; 20:ijms20225688. [PMID: 31766245 PMCID: PMC6887742 DOI: 10.3390/ijms20225688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
The amygdala is a cerebral region whose function is compromised in temporal lobe epilepsy (TLE). Patients with TLE present cognitive and emotional dysfunctions, of which impairments in recognizing facial expressions have been clearly attributed to amygdala damage. However, damage to the amygdala has been scarcely addressed, with the majority of studies focusing on the hippocampus. The aim of this study was to evaluate epilepsy-related plasticity of cholinergic projections to the basolateral nucleus (BL) of the amygdala. Adult rats received kainic acid (KA) injections and developed status epilepticus. Weeks later, they showed spontaneous recurrent seizures documented by behavioral observations. Changes in cholinergic innervation of the BL were investigated by using an antibody against the vesicular acetylcholine transporter (VAChT). In KA-treated rats, it was found that (i) the BL shrunk to 25% of its original size (p < 0.01 vs. controls, Student’s t-test), (ii) the density of vesicular acetylcholine transporter-immunoreactive (VAChT-IR) varicosities was unchanged, (iii) the volumes of VAChT-IR cell bodies projecting to the BL from the horizontal limb of the diagonal band of Broca, ventral pallidum, and subcommissural part of the substantia innominata were significantly increased (p < 0.05, Bonferroni correction). These results illustrate significant changes in the basal forebrain cholinergic cells projecting to the BL in the presence of spontaneous recurrent seizures.
Collapse
Affiliation(s)
- Ítalo Rosal Lustosa
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Joana I. Soares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular da Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
- Programa Doutoral em Neurociências, Universidade do Porto, 4200-319 Porto, Portugal
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: (G.B.); (N.V.L.)
| | - Nikolai V. Lukoyanov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular da Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
- Correspondence: (G.B.); (N.V.L.)
| |
Collapse
|
12
|
Stefanatou M, Gatzonis S, Peskostas A, Paraskevas G, Koutroumanidis M. Drug-responsive versus drug-refractory mesial temporal lobe epilepsy: a single-center prospective outcome study. Postgrad Med 2019; 131:479-485. [PMID: 31513436 DOI: 10.1080/00325481.2019.1663126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objectives: To evaluate clinical, electrophysiological, and neuroradiological factors which correlate with the prognosis in patients with mesial temporal lobe epilepsy (MTLE). Methods: This was a single-center prospective outcome study in patients with MTLE. The patients' family history, clinical characteristics, neurophysiological data (electroencephalography - EEG), neuroimaging, antiepileptic therapy, and outcome were collected and analyzed. The population was divided into four groups depending on the frequency of the seizures when they attended their last follow up. All variables and outcome measures were compared between the four groups. Results: In total 83 consecutive patients were included within the four groups. Group 1 (seizure-free) consisted of 7 patients, (9%), Group 2 (rare seizures) consisted of 15 patients (18%), Group 3 (often seizures) consisted of 30 patients (36%), and Group 4 (very often seizures) consisted of 31 patients (37%). The groups did not differ significantly in demographic characteristics. There was a strong positive correlation between resistance to therapy and sleep activation on EEG (p = 0.005), occurrence of focal to bilateral seizures (p = 0.007), automatisms (p = 0.004), and the number of previously used antiepileptic drugs (AEDs) (p = 0.002). There was no association between febrile convulsions (FC), hippocampal sclerosis (HS), and the outcome that was found. Conclusion: MTLE is a heterogeneous syndrome. Establishing the factors responsible for, and associated with, drug resistance is important for optimal management and treatment, as early identification of drug resistance should then ensure a timely referral for surgical treatment is made. This prospective study shows that sleep activation on EEG, ictal automatisms, occurrence of focal to bilateral tonic-clonic seizures, and increased number of tried AEDs are negative prognostic factors.
Collapse
Affiliation(s)
- Maria Stefanatou
- 1st Department of Neurology, National and Kapodistrian University of Athens, Aeginition Hospital , Athens , Greece.,Department of Clinical Neurophysiology and Epilepsies, Guy's and St. Thomas' NHS Foundation Trust , London , UK
| | - Stylianos Gatzonis
- 1st Department of Neurosurgery, Epilepsy Centre, National and Kapodistrian University of Athens, "Evangelismos" Hospital , Athens , Greece
| | - Antonis Peskostas
- Department of Statistics and Insurance Science, University of Piraeus , Piraeus , Greece
| | - George Paraskevas
- 1st Department of Neurology, National and Kapodistrian University of Athens, Aeginition Hospital , Athens , Greece
| | - Michael Koutroumanidis
- Department of Clinical Neurophysiology and Epilepsies, Guy's and St. Thomas' NHS Foundation Trust , London , UK
| |
Collapse
|
13
|
Xue-Ping W, Hai-Jiao W, Li-Na Z, Xu D, Ling L. Risk factors for drug-resistant epilepsy: A systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e16402. [PMID: 31348240 PMCID: PMC6708813 DOI: 10.1097/md.0000000000016402] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Drug resistant epilepsy (DRE) is very common among children and adults and studies had found some related risk factors for DRE, while the results were not consistent. The aim of this study was to identify risk factors for drug-resistant epilepsy. METHODS Three electronic databases (Medline, Embase and Cochrane library) were searched to identify studies with a cohort design reporting on epidemiologic evidence regarding risk factors for DRE. RESULTS The pooled prevalence of DRE in newly diagnosed epilepsy patients was 25% (95% CI 17-32%). Abnormal electroencephalography (EEG) (both slow wave and epileptiform discharges) (RR 2.80; 95% CI 1.95-4.0), status epilepticus (SE) (RR 11.60; 95% CI 7.39-18.22), symptomatic etiology (RR 3.36; 95% CI 2.53-4.46), multiple seizure types (RR 3.66; 95% CI 2.37-5.64) and febrile seizures (RR 3.43; 95% CI 1.95-6.02) were identified as strong risk factors for DRE. In addition, firm conclusions cannot be drawn for poor short-term outcomes of therapy, neurodevelopment delay and high initial seizure frequency for the heterogeneity of study results. The predictive effect of focus onset seizure was not stable after removing one study and switching the effect model. Age of onset was not risk factors for DRE. CONCLUSIONS The current meta-analysis identified potential risk factors for DRE. The results may contribute to better prevention strategies and treatments for DRE.
Collapse
|
14
|
Wang K, Hu W, Liu T, Zhao X, Han C, Xia X, Zhang J, Wang F, Meng F. Metabolic covariance networks combining graph theory measuring aberrant topological patterns in mesial temporal lobe epilepsy. CNS Neurosci Ther 2019; 25:396-408. [PMID: 30298594 PMCID: PMC6488969 DOI: 10.1111/cns.13073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/08/2018] [Accepted: 09/14/2018] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE We aimed to study the networks' mechanism of metabolic covariance networks in mesial temporal lobe epilepsy (mTLE), through examining the brain value of fluorine-18-fluorodeoxyglucose positron emission tomography (18 F-FDG-PET). METHODS 18 F-FDG-PET images from 16 patients with mTLE were analyzed using local and global metabolic covariance network (MCN) approaches, including whole metabolic pattern analysis (WMPA), hippocampus-based (h-) MCN, whole brain (w-) MCN, and edge-based connectivity analysis (EBCA). RESULTS WMPA showed a typical ipsilateral hypometabolism and contralateral hypermetabolism pattern to epileptic zones in mTLE. h-MCN revealed decreased hippocampus-based synchronization in contralateral regions. w-MCN exhibited a disrupted metabolic network with globally increased small-world properties and regionally decreased nodal metrics in the ipsilateral hemisphere. Hippocampus (h)-EBCA and whole brain EBCA (w-EBCA) both detected a reduced-connectivity dominated metabolic covariant network. Moreover, the reduced interhemisphere connectivity seemingly played a major role in the aberrant epileptic topological pattern. CONCLUSION From a metabolic point of view, we demonstrated the damaging effects with reduced contralateral intranetwork metrics properties and the compensatory effects in contralateral intranetworks with increased network properties. However, the import role of significant reduced interhemisphere connection has rarely been reported in other mTLE studies. Taken together, 18 F-FDG-PET MCN analysis provides new evidence that the mTLE is a system neurological disorder with disrupted networks.
Collapse
Affiliation(s)
- Kai‐Liang Wang
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
| | - Wei Hu
- Department of NeurologyUniversity of FloridaGainesvilleFlorida
| | - Ting‐Hong Liu
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
| | - Xiao‐Bin Zhao
- Department of Nuclear Medicine, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chun‐Lei Han
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
| | - Xiao‐Tong Xia
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jian‐Guo Zhang
- Beijing Key Laboratory of NeurostimulationBeijingChina
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Feng Wang
- Department of NeurosurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Fan‐Gang Meng
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Beijing Key Laboratory of NeurostimulationBeijingChina
| |
Collapse
|
15
|
Degeneration of cholinergic basal forebrain nuclei after focally evoked status epilepticus. Neurobiol Dis 2019; 121:76-94. [DOI: 10.1016/j.nbd.2018.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/14/2022] Open
|
16
|
Park CH, Ohn SH. A challenge of predicting seizure frequency in temporal lobe epilepsy using neuroanatomical features. Neurosci Lett 2018; 692:115-121. [PMID: 30408498 DOI: 10.1016/j.neulet.2018.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Abstract
The pathological and clinical characteristics of temporal lobe epilepsy (TLE) tend to be affected by epileptic seizures, specifically represented by seizure lateralization and frequency. Although the lateralization of the epileptogenic zone can be clarified in terms of neuroanatomical damage, there have been conflicting findings on the relationship between seizure frequency and neuroanatomical damage. In this study we sought to examine the relationship in the framework of machine learning-based predictive modeling. We acquired 60 grey matter (GM) anatomical features from structural MRI data and 46 white matter (WM) anatomical features from diffusion-weighted MRI data for 42 TLE patients and 45 healthy controls and applied the random forests method to the neuroanatomical features. We demonstrated that, whereas the neuroanatomical features were promising markers for the discrimination of the TLE patients from the healthy controls, the separation between the TLE patients with low and high seizure frequency on the basis of the neuroanatomical features was challenging. When we applied feature selection techniques for the construction of the predictive models, a greater number of features were selected as being relevant to the distinction of the TLE patients from the healthy controls than to the classification of the TLE patients according to seizure frequency. Furthermore, we adopted model-based clustering analysis and showed that seizure frequency-based subgroups were not matched well with neuroanatomy-based subgroups in the TLE patients. We propose that the challenge of predicting seizure frequency using neuroanatomical features could be attributable to considerable inter-individual variability in neuroanatomical damage among seizure frequency-based subgroups.
Collapse
Affiliation(s)
- Chang-Hyun Park
- Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Suk Hoon Ohn
- Department of Physical Medicine and Rehabilitation, College of Medicine, Hallym University, Anyang, Gyeonggi, Republic of Korea.
| |
Collapse
|
17
|
Duarte JTC, Jardim AP, Comper SM, De Marchi LR, Gaça LB, Garcia MTFC, Sandim GB, Assunção-Leme IB, Carrete H, Centeno RS, Lancellotti CLP, Jackowski AP, Cavalheiro EA, Guaranha MSB, Yacubian EMT. The impact of epilepsy duration in a series of patients with mesial temporal lobe epilepsy due to unilateral hippocampal sclerosis. Epilepsy Res 2018; 147:51-57. [DOI: 10.1016/j.eplepsyres.2018.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/04/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
|
18
|
Adler S, Blackwood M, Northam GB, Gunny R, Hong SJ, Bernhardt BC, Bernasconi A, Bernasconi N, Jacques T, Tisdall M, Carmichael DW, Cross JH, Baldeweg T. Multimodal computational neocortical anatomy in pediatric hippocampal sclerosis. Ann Clin Transl Neurol 2018; 5:1200-1210. [PMID: 30349855 PMCID: PMC6186946 DOI: 10.1002/acn3.634] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022] Open
Abstract
Objective In contrast to adult cohorts, neocortical changes in epileptic children with hippocampal damage are not well characterized. Here, we mapped multimodal neocortical markers of epilepsy‐related structural compromise in a pediatric cohort of temporal lobe epilepsy and explored how they relate to clinical factors. Methods We measured cortical thickness, gray–white matter intensity contrast and intracortical FLAIR intensity in 22 patients with hippocampal sclerosis (HS) and 30 controls. Surface‐based linear models assessed between‐group differences in morphological and MR signal intensity markers. Structural integrity of the hippocampus was measured by quantifying atrophy and FLAIR patterns. Linear models were used to evaluate the relationships between hippocampal and neocortical MRI markers and clinical factors. Results In the hippocampus, patients demonstrated ipsilateral atrophy and bilateral FLAIR hyperintensity. In the neocortex, patients showed FLAIR signal hyperintensities and gray–white matter boundary blurring in the ipsilesional mesial and lateral temporal neocortex. In contrast, cortical thinning was minimal and restricted to a small area of the ipsilesional temporal pole. Furthermore, patients with a history of febrile convulsions demonstrated more pronounced FLAIR hyperintensity in the ipsilesional temporal neocortex. Interpretation Pediatric HS patients do not yet demonstrate the widespread cortical thinning present in adult cohorts, which may reflect consequences of a protracted disease process. However, pronounced temporal neocortical FLAIR hyperintensity and blurring of the gray–white matter boundary are already detectable, suggesting that alterations in MR signal intensities may reflect a different underlying pathophysiology that is detectable earlier in the disease and more pervasive in patients with a history of febrile convulsions.
Collapse
Affiliation(s)
- Sophie Adler
- Developmental Neurosciences UCL Great Ormond Street Institute of Child Health University College London London United Kingdom.,Great Ormond Street Hospital for Children London United Kingdom
| | - Mallory Blackwood
- Institute of Neurology University College London London United Kingdom
| | - Gemma B Northam
- Developmental Neurosciences UCL Great Ormond Street Institute of Child Health University College London London United Kingdom
| | - Roxana Gunny
- Great Ormond Street Hospital for Children London United Kingdom
| | - Seok-Jun Hong
- Neuroimaging of Epilepsy Laboratory McConnell Brain Imaging Centre Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Lab McConnell Brain Imaging Centre Montreal Neurological Institute McGill University Montreal Quebec Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory McConnell Brain Imaging Centre Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory McConnell Brain Imaging Centre Montreal Neurological Institute and Hospital McGill University Montreal Quebec Canada
| | - Thomas Jacques
- Developmental Biology and Cancer Programme UCL Great Ormond Street Institute of Child Health University College London London United Kingdom.,Department of Histopathology Great Ormond Street Hospital for Children NHS Foundation Trust London United Kingdom
| | - Martin Tisdall
- Developmental Neurosciences UCL Great Ormond Street Institute of Child Health University College London London United Kingdom.,Great Ormond Street Hospital for Children London United Kingdom
| | - David W Carmichael
- Developmental Neurosciences UCL Great Ormond Street Institute of Child Health University College London London United Kingdom.,Great Ormond Street Hospital for Children London United Kingdom
| | - J Helen Cross
- Developmental Neurosciences UCL Great Ormond Street Institute of Child Health University College London London United Kingdom.,Great Ormond Street Hospital for Children London United Kingdom
| | - Torsten Baldeweg
- Developmental Neurosciences UCL Great Ormond Street Institute of Child Health University College London London United Kingdom.,Great Ormond Street Hospital for Children London United Kingdom
| |
Collapse
|
19
|
Jafari-Khouzani K, Elisevich K, Wasade VS, Soltanian-Zadeh H. Contribution of Quantitative Amygdalar MR FLAIR Signal Analysis for Lateralization of Mesial Temporal Lobe Epilepsy. J Neuroimaging 2018; 28:666-675. [PMID: 30066349 DOI: 10.1111/jon.12549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/10/2018] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE This study evaluates the contribution of an automated amygdalar fluid-attenuated inversion recovery (FLAIR) signal analysis for the lateralization of mesial temporal lobe epilepsy (mTLE). METHODS Sixty-nine patients (27 M, 42 F) who had undergone surgery and achieved an Engel class Ia postoperative outcome were identified as a pure cohort of mTLE cases. Forty-six nonepileptic subjects comprised the control group. The amygdala was segmented in T1-weighted images using an atlas-based segmentation. The right/left ratios of amygdalar FLAIR mean and standard deviation were calculated for each subject. A linear classifier (ie, discriminator line) was designed for lateralization using the FLAIR features and a boundary domain, within which lateralization was assumed to be less definitive, was established using the same features from control subjects. Hippocampal FLAIR and volume analysis was performed for comparison. RESULTS With the boundary domain in place, lateralization accuracy was found to be 70% with hippocampal FLAIR and 67% with hippocampal volume. Taking amygdalar analysis into account, 22% of cases that were found to have uncertain lateralization by hippocampal FLAIR analysis were confidently lateralized by amygdalar FLAIR. No misclassified case was found outside the amygdalar FLAIR boundary domain. CONCLUSIONS Amygdalar FLAIR analysis provides an additional metric by which to establish mTLE in those cases where hippocampal FLAIR and volume analysis have failed to provide lateralizing information.
Collapse
Affiliation(s)
- Kourosh Jafari-Khouzani
- iCAD, Incorpoated, Nashua, NH.,Medical Image Analysis Laboratory, Henry Ford Health System, Detroit, MI
| | - Kost Elisevich
- Department of Clinical Neurosciences (Division of Neurosurgery), Spectrum Health System, Grand Rapids, MI.,Division of Neurosurgery, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | | | - Hamid Soltanian-Zadeh
- Medical Image Analysis Laboratory, Henry Ford Health System, Detroit, MI.,Control and Intelligent Processing Center of Excellence (CIPCE), School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
20
|
Beheshti I, Sone D, Farokhian F, Maikusa N, Matsuda H. Gray Matter and White Matter Abnormalities in Temporal Lobe Epilepsy Patients with and without Hippocampal Sclerosis. Front Neurol 2018; 9:107. [PMID: 29593628 PMCID: PMC5859011 DOI: 10.3389/fneur.2018.00107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/13/2018] [Indexed: 01/21/2023] Open
Abstract
The presentation and distribution of gray matter (GM) and white matter (WM) abnormalities in temporal lobe epilepsy (TLE) have been widely studied. Here, we investigated the GM and WM abnormalities in TLE patients with and without hippocampal sclerosis (HS) in five groups of participants: healthy controls (HCs) (n = 28), right TLE patients with HS (n = 26), right TLE patients without HS (n = 30), left TLE patients with HS (n = 25), and left TLE patients without HS (n = 27). We performed a flexible factorial statistical test in a whole-brain voxel-based morphometry analysis to identify significant GM and WM abnormalities and analysis of variance of hippocampal and amygdala regions among the five groups using the FreeSurfer procedure. Furthermore, we conducted multiple regression analysis to assess regional GM and WM changes with disease duration. We observed significant ipsilateral mesiotemporal GM and WM volume reductions in TLE patients with HS compared with HCs. We also observed a slight GM amygdala swelling in right TLE patients without HS. The regression analysis revealed significant negative GM and WM changes with disease duration specifically in left TLE patients with HS. The observed GM and WM abnormalities may contribute to our understanding of the root of epilepsy mechanisms.
Collapse
Affiliation(s)
- Iman Beheshti
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Daichi Sone
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Farnaz Farokhian
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Japan.,College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Norihide Maikusa
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hiroshi Matsuda
- Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
21
|
Tai XY, Bernhardt B, Thom M, Thompson P, Baxendale S, Koepp M, Bernasconi N. Review: Neurodegenerative processes in temporal lobe epilepsy with hippocampal sclerosis: Clinical, pathological and neuroimaging evidence. Neuropathol Appl Neurobiol 2018; 44:70-90. [DOI: 10.1111/nan.12458] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022]
Affiliation(s)
- X. Y. Tai
- Division of Neuropathology and Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London UK
| | - B. Bernhardt
- Neuroimaging of Epilepsy Laboratory; McConnell Brain Imaging Centre; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
- Multimodal Imaging and Connectome Analysis Lab; Montreal Neurological Institute; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| | - M. Thom
- Division of Neuropathology and Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London UK
| | - P. Thompson
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London UK
| | - S. Baxendale
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London UK
| | - M. Koepp
- Department of Clinical and Experimental Epilepsy; UCL Institute of Neurology; London UK
| | - N. Bernasconi
- Neuroimaging of Epilepsy Laboratory; McConnell Brain Imaging Centre; Montreal Neurological Institute; McGill University; Montreal Quebec Canada
| |
Collapse
|
22
|
Navidhamidi M, Ghasemi M, Mehranfard N. Epilepsy-associated alterations in hippocampal excitability. Rev Neurosci 2018; 28:307-334. [PMID: 28099137 DOI: 10.1515/revneuro-2016-0059] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/03/2016] [Indexed: 11/15/2022]
Abstract
The hippocampus exhibits a wide range of epilepsy-related abnormalities and is situated in the mesial temporal lobe, where limbic seizures begin. These abnormalities could affect membrane excitability and lead to overstimulation of neurons. Multiple overlapping processes refer to neural homeostatic responses develop in neurons that work together to restore neuronal firing rates to control levels. Nevertheless, homeostatic mechanisms are unable to restore normal neuronal excitability, and the epileptic hippocampus becomes hyperexcitable or hypoexcitable. Studies show that there is hyperexcitability even before starting recurrent spontaneous seizures, suggesting although hippocampal hyperexcitability may contribute to epileptogenesis, it alone is insufficient to produce epileptic seizures. This supports the concept that the hippocampus is not the only substrate for limbic seizure onset, and a broader hyperexcitable limbic structure may contribute to temporal lobe epilepsy (TLE) seizures. Nevertheless, seizures also occur in conditions where the hippocampus shows a hypoexcitable phenotype. Since TLE seizures most often originate in the hippocampus, it could therefore be assumed that both hippocampal hypoexcitability and hyperexcitability are undesirable states that make the epileptic hippocampal network less stable and may, under certain conditions, trigger seizures.
Collapse
|
23
|
Koepp MJ, Årstad E, Bankstahl JP, Dedeurwaerdere S, Friedman A, Potschka H, Ravizza T, Theodore WH, Baram TZ. Neuroinflammation imaging markers for epileptogenesis. Epilepsia 2017; 58 Suppl 3:11-19. [PMID: 28675560 DOI: 10.1111/epi.13778] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2017] [Indexed: 12/23/2022]
Abstract
Epilepsy can be a devastating disorder. In addition to debilitating seizures, epilepsy can cause cognitive and emotional problems with reduced quality of life. Therefore, the major aim is to prevent the disorder in the first place: identify, detect, and reverse the processes responsible for its onset, and monitor and treat its progression. Epilepsy often occurs following a latent period of months to years (epileptogenesis) as a consequence of a brain insult, such as head trauma, stroke, or status epilepticus. Although this latent period clearly represents a therapeutic window, we are not able to stratify patients at risk for long-term epilepsy, which is prerequisite for preventative clinical trials. Moreover, because of the length of the latent period, an early biomarker for treatment response would be of high value. Finally, mechanistic biomarkers of epileptogenesis may provide more profound insight in the process of disease development.
Collapse
Affiliation(s)
- Matthias J Koepp
- Institute of Neurology, University College London, London, United Kingdom
| | - Eric Årstad
- Department of Chemistry and Institute of Nuclear Medicine, University College London, London, United Kingdom
| | - Jens P Bankstahl
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | | | - Alon Friedman
- Ben-Gurion University of the Negev, Beer-Sheva, Israel.,Dalhousie University, Halifax, Nova Scotia, Canada
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Germany
| | - Teresa Ravizza
- Department of Neuroscience, IRCCS-Institute for Pharmacological Research Mario Negri, Milan, Italy
| | | | - Tallie Z Baram
- Departments of Pediatrics, Anatomy/Neurobiology, Neurology, University of California-Irvine, Irvine, California, U.S.A
| |
Collapse
|
24
|
Venceslas D, Corinne R. A Mesiotemporal Lobe Epilepsy Mouse Model. Neurochem Res 2017; 42:1919-1925. [PMID: 28332054 DOI: 10.1007/s11064-017-2239-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 01/25/2023]
Abstract
Among the different forms of epilepsies, mesiotemporal lobe epilepsy (MTLE) is one of the most common and represents the main pharmaco-resistant form of epilepsy. There is therefore an urgent need to better understand this form of epilepsy to develop better anti-epileptic drugs. Many rodent models are mimicking some aspects of the human temporal lobe epilepsy but only few are addressing most of the human mesiotemporal lobe epilepsy. In this article, we describe the main characteristics of a mouse of model of mesial temporal lobe epilepsy. This model is generated by a single injection of kainic acid into the dorsal hippocampus which reproduces most of the morphological and electrophysiological features of human MTLE in a mouse. This model may help to better understand mesial temporal lobe epilepsy and the development of new therapeutic drugs.
Collapse
Affiliation(s)
- Duveau Venceslas
- SynapCell SAS, Bâtiment Biopolis, 5 Avenue du Grand Sablon, 38700, La Tronche, France.
| | - Roucard Corinne
- SynapCell SAS, Bâtiment Biopolis, 5 Avenue du Grand Sablon, 38700, La Tronche, France
| |
Collapse
|
25
|
Kreilkamp BA, Weber B, Richardson MP, Keller SS. Automated tractography in patients with temporal lobe epilepsy using TRActs Constrained by UnderLying Anatomy (TRACULA). Neuroimage Clin 2017; 14:67-76. [PMID: 28138428 PMCID: PMC5257189 DOI: 10.1016/j.nicl.2017.01.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/06/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE A detailed understanding of white matter tract alterations in patients with temporal lobe epilepsy (TLE) is important as it may provide useful information for likely side of seizure onset, cognitive impairment and postoperative prognosis. However, most diffusion-tensor imaging (DTI) studies have relied on manual reconstruction of tract bundles, despite the recent development of automated techniques. In the present study, we used an automated white matter tractography analysis approach to quantify temporal lobe white matter tract alterations in TLE and determine the relationships between tract alterations, the extent of hippocampal atrophy and the chronicity and severity of the disorder. METHODS We acquired preoperative T1-weighted and DTI data in 64 patients with well-characterized TLE, with imaging and histopathological evidence of hippocampal sclerosis. Identical acquisitions were collected for 44 age- and sex-matched healthy controls. We employed automatic probabilistic tractography DTI analysis using TRActs Constrained by UnderLying Anatomy (TRACULA) available in context of Freesurfer software for the reconstruction of major temporal lobe tract bundles. We determined the factors influencing probabilistic tract reconstruction and investigated alterations of DTI scalar metrics along white matter tracts with respect to hippocampal volume, which was automatically estimated using Freesurfer's morphometric pipelines. We also explored the relationships between white matter tract alterations and duration of epilepsy, age of onset of epilepsy and seizure burden (defined as a function of seizure frequency and duration of epilepsy). RESULTS Whole-tract diffusion characteristics of patients with TLE differed according to side of epilepsy and were significantly different between patients and controls. Waypoint comparisons along each tract revealed that patients had significantly altered tissue characteristics of the ipsilateral inferior-longitudinal, uncinate fasciculus, superior longitudinal fasciculus and cingulum relative to controls. Changes were more widespread (ipsilaterally and contralaterally) in patients with left TLE while patients with right TLE showed changes that remained spatially confined in ipsilateral tract regions. We found no relationship between DTI alterations and volume of the epileptogenic hippocampus. DTI alterations of anterior ipsilateral uncinate and inferior-longitudinal fasciculus correlated with duration of epilepsy (over and above effects of age) and age at onset of epilepsy. Seizure burden correlated with tissue characteristics of the uncinate fasciculus. CONCLUSION This study shows that TRACULA permits the detection of alterations of DTI tract scalar metrics in patients with TLE. It also provides the opportunity to explore relationships with structural volume measurements and clinical variables along white matter tracts. Our data suggests that the anterior temporal lobe portions of the uncinate and inferior-longitudinal fasciculus may be particularly vulnerable to pathological alterations in patients with TLE. These alterations are unrelated to the extent of hippocampal atrophy (and therefore potentially mediated by independent mechanisms) but influenced by chronicity and severity of the disorder.
Collapse
Affiliation(s)
- Barbara A.K. Kreilkamp
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, UK
- Department of Neuroradiology, The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Bernd Weber
- Department of Epileptology, University of Bonn, Germany
- Department of NeuroCognition/Imaging, Life&Brain Research Center, Bonn, Germany
| | - Mark P. Richardson
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Simon S. Keller
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, UK
- Department of Neuroradiology, The Walton Centre NHS Foundation Trust, Liverpool, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
26
|
Chen H, Yu G, Wang J, Li F, Li G. Application of T2 relaxometry in lateralization and localization of mesial temporal lobe epilepsy and corresponding comparison with MR volumetry. Acta Radiol 2016; 57:1107-13. [PMID: 26622058 DOI: 10.1177/0284185115617345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 10/19/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Magnetic resonance (MR) volumetry is insensitive to subtle mesial temporal sclerosis (MTS), while T2 relaxometry is potential useful in detecting MTS, especially MTS in early course. PURPOSE To explore and compare the feasibility of T2 relaxometry and MR volumetry in evaluation of mesial temporal lobe epilepsy (MTLE) and lateralization of the epileptogenic zone, so as to optimize and enhance lesion depiction. MATERIAL AND METHODS For the 17 unilateral MTLE patients and 14 normal participants, the hippocampus and amygdala were contoured on axial T2-weighted (T2W) images and then co-registered onto T2 relaxation maps. Abnormal is defined as an elevated asymmetric ratio of larger than 2 SD. Visual and quantitative volumetric assessment were combined as outcomes of MR volumetry to distinguish MR-positive and MR-negative lesions. Operative and pathological findings were used as gold standard. RESULTS T2 values of lesions were significantly elevated. In lateralizing the epileptogenic zones, T2 relaxometry yielded an overall accuracy of 94.1% (sensitivity 92.6%, specificity 100%), and MR volumetry yielded an overall accuracy of 82.4% (sensitivity 88.9%, specificity 57.1%), meaning a better performance of T2 relaxometry (P < 0.001, by chi-square test). For pathologically sclerotic structures, most (25/27) were recognized by T2 relaxometry, while 24 of 27 sclerotic structures were detected via MR volumetry. MR volumetry wrongly discerned three normal regions as MTS, while one MR-negative sclerotic hippocampus was detected by T2 relaxometry. CONCLUSION T2 relaxometry is feasible in non-invasive lateralization of epileptogenic zone, and more advantaged than MR volumetry in detecting MR-negative lesions, facilitating prompt diagnosis and longitudinal disease monitoring.
Collapse
Affiliation(s)
- Hui Chen
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei, PR China
| | - Guilian Yu
- Reproductive Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei, PR China
| | - Jiangtao Wang
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei, PR China
| | - Feng Li
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei, PR China
| | - Guangming Li
- Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Hubei, PR China
| |
Collapse
|
27
|
Liu M, Bernhardt BC, Hong SJ, Caldairou B, Bernasconi A, Bernasconi N. The superficial white matter in temporal lobe epilepsy: a key link between structural and functional network disruptions. Brain 2016; 139:2431-40. [PMID: 27357350 DOI: 10.1093/brain/aww167] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/31/2016] [Indexed: 01/08/2023] Open
Abstract
Drug-resistant temporal lobe epilepsy is increasingly recognized as a system-level disorder affecting the structure and function of large-scale grey matter networks. While diffusion magnetic resonance imaging studies have demonstrated deep fibre tract alterations, the superficial white matter immediately below the cortex has so far been neglected despite its proximity to neocortical regions and key role in maintaining cortico-cortical connectivity. Using multi-modal 3 T magnetic resonance imaging, we mapped the topography of superficial white matter diffusion alterations in 61 consecutive temporal lobe epilepsy patients relative to 38 healthy controls and studied the relationship to large-scale structural as well as functional networks. Our approach continuously sampled mean diffusivity and fractional anisotropy along surfaces running 2 mm below the cortex. Multivariate statistics mapped superficial white matter diffusion anomalies in patients relative to controls, while correlation and mediation analyses evaluated their relationship to structural (cortical thickness, mesiotemporal volumetry) and functional parameters (resting state functional magnetic resonance imaging amplitude) and clinical variables. Patients presented with overlapping anomalies in mean diffusivity and anisotropy, particularly in ipsilateral temporo-limbic regions. Diffusion anomalies did not relate to cortical thinning; conversely, they mediated large-scale functional amplitude decreases in patients relative to controls in default mode hub regions (i.e. anterior and posterior midline regions, lateral temporo-parietal cortices), and were themselves mediated by hippocampal atrophy. With respect to clinical variables, we observed more marked diffusion anomalies in patients with a history of febrile convulsions and those with longer disease duration. Similarly, more marked diffusion alterations were associated with seizure-free outcome. Bootstrap analyses indicated high reproducibility of our findings, suggesting generalizability. The temporo-limbic distribution of superficial white matter anomalies, together with the mediation-level findings, suggests that this so far neglected region serves a key link between the hippocampal atrophy and large-scale default mode network alterations in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Min Liu
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Boris C Bernhardt
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Seok-Jun Hong
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Benoit Caldairou
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Andrea Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Neda Bernasconi
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
28
|
de Campos BM, Coan AC, Lin Yasuda C, Casseb RF, Cendes F. Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy. Hum Brain Mapp 2016; 37:3137-52. [PMID: 27133613 PMCID: PMC5074272 DOI: 10.1002/hbm.23231] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/04/2016] [Accepted: 04/15/2016] [Indexed: 11/11/2022] Open
Abstract
Mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) is associated with functional and structural alterations extending beyond the temporal regions and abnormal pattern of brain resting state networks (RSNs) connectivity. We hypothesized that the interaction of large-scale RSNs is differently affected in patients with right- and left-MTLE with HS compared to controls. We aimed to determine and characterize these alterations through the analysis of 12 RSNs, functionally parceled in 70 regions of interest (ROIs), from resting-state functional-MRIs of 99 subjects (52 controls, 26 right- and 21 left-MTLE patients with HS). Image preprocessing and statistical analysis were performed using UF(2) C-toolbox, which provided ROI-wise results for intranetwork and internetwork connectivity. Intranetwork abnormalities were observed in the dorsal default mode network (DMN) in both groups of patients and in the posterior salience network in right-MTLE. Both groups showed abnormal correlation between the dorsal-DMN and the posterior salience, as well as between the dorsal-DMN and the executive-control network. Patients with left-MTLE also showed reduced correlation between the dorsal-DMN and visuospatial network and increased correlation between bilateral thalamus and the posterior salience network. The ipsilateral hippocampus stood out as a central area of abnormalities. Alterations on left-MTLE expressed a low cluster coefficient, whereas the altered connections on right-MTLE showed low cluster coefficient in the DMN but high in the posterior salience regions. Both right- and left-MTLE patients with HS have widespread abnormal interactions of large-scale brain networks; however, all parameters evaluated indicate that left-MTLE has a more intricate bihemispheric dysfunction compared to right-MTLE. Hum Brain Mapp 37:3137-3152, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Brunno Machado de Campos
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil
| | - Ana Carolina Coan
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil
| | - Clarissa Lin Yasuda
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil
| | - Raphael Fernandes Casseb
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil
| | - Fernando Cendes
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
29
|
Cerebral Hemispheric Lateralization Associated with Hippocampal Sclerosis May Affect Interictal Cardiovascular Autonomic Functions in Temporal Lobe Epilepsy. EPILEPSY RESEARCH AND TREATMENT 2016; 2016:7417540. [PMID: 27006827 PMCID: PMC4783555 DOI: 10.1155/2016/7417540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/11/2016] [Accepted: 01/26/2016] [Indexed: 11/18/2022]
Abstract
It is well established that the temporal lobe epilepsy (TLE) is linked to the autonomic nervous system dysfunctions. Seizures alter the function of different systems such as the respiratory, cardiovascular, gastrointestinal, and urogenital systems. The aim of this work was to evaluate the possible factors which may be involved in interictal cardiovascular autonomic function in temporal lobe epilepsy with complex partial seizures, and with particular attention to hippocampal sclerosis. The study was conducted in 30 patients with intractable temporal lobe epilepsy (19 with left hippocampal sclerosis, 11 with right hippocampal sclerosis). All subjects underwent four tests of cardiac autonomic function: heart rate changes in response to deep breathing, heart rate, and blood pressure variations throughout resting activity and during hand grip, mental stress, and orthostatic tests. Our results show that the right cerebral hemisphere predominantly modulates sympathetic activity, while the left cerebral hemisphere mainly modulates parasympathetic activity, which mediated tachycardia and excessive bradycardia counterregulation, both of which might be involved as a mechanism of sudden unexpected death in epilepsy patients (SUDEP).
Collapse
|
30
|
Anticonvulsant efficacy of melatonin in an experimental model of hyperthermic febrile seizures. Epilepsy Res 2015; 118:49-54. [DOI: 10.1016/j.eplepsyres.2015.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/03/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022]
|
31
|
Yasuda CL, Chen Z, Beltramini GC, Coan AC, Morita ME, Kubota B, Bergo F, Beaulieu C, Cendes F, Gross DW. Aberrant topological patterns of brain structural network in temporal lobe epilepsy. Epilepsia 2015; 56:1992-2002. [PMID: 26530395 DOI: 10.1111/epi.13225] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2015] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Although altered large-scale brain network organization in patients with temporal lobe epilepsy (TLE) has been shown using morphologic measurements such as cortical thickness, these studies, have not included critical subcortical structures (such as hippocampus and amygdala) and have had relatively small sample sizes. Here, we investigated differences in topological organization of the brain volumetric networks between patients with right TLE (RTLE) and left TLE (LTLE) with unilateral hippocampal atrophy. METHODS We performed a cross-sectional analysis of 86 LTLE patients, 70 RTLE patients, and 116 controls. RTLE and LTLE groups were balanced for gender (p = 0.64), seizure frequency (Mann-Whitney U test, p = 0.94), age (p = 0.39), age of seizure onset (p = 0.21), and duration of disease (p = 0.69). Brain networks were constructed by thresholding correlation matrices of volumes from 80 cortical/subcortical regions (parcellated with Freesurfer v5.3 https://surfer.nmr.mgh.harvard.edu/) that were then analyzed using graph theoretical approaches. RESULTS We identified reduced cortical/subcortical connectivity including bilateral hippocampus in both TLE groups, with the most significant interregional correlation increases occurring within the limbic system in LTLE and contralateral hemisphere in RTLE. Both TLE groups demonstrated less optimal topological organization, with decreased global efficiency and increased local efficiency and clustering coefficient. LTLE also displayed a more pronounced network disruption. Contrary to controls, hub nodes in both TLE groups were not distributed across whole brain, but rather found primarily in the paralimbic/limbic and temporal association cortices. Regions with increased centrality were concentrated in occipital lobes for LTLE and contralateral limbic/temporal areas for RTLE. SIGNIFICANCE These findings provide first evidence of altered topological organization of the whole brain volumetric network in TLE, with disruption of the coordinated patterns of cortical/subcortical morphology.
Collapse
Affiliation(s)
- Clarissa Lin Yasuda
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Laboratory of Neuroimaging, Department of Neurology, University of Campinas, Campinas, Brazil
| | - Zhang Chen
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Guilherme Coco Beltramini
- Laboratory of Neuroimaging, Department of Neurology, University of Campinas, Campinas, Brazil.,Institute of Physics "Gleb Wataghin", University of Campinas, Campinas, Brazil
| | - Ana Carolina Coan
- Laboratory of Neuroimaging, Department of Neurology, University of Campinas, Campinas, Brazil
| | - Marcia Elisabete Morita
- Laboratory of Neuroimaging, Department of Neurology, University of Campinas, Campinas, Brazil
| | - Bruno Kubota
- Laboratory of Neuroimaging, Department of Neurology, University of Campinas, Campinas, Brazil
| | - Felipe Bergo
- Laboratory of Neuroimaging, Department of Neurology, University of Campinas, Campinas, Brazil
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Fernando Cendes
- Laboratory of Neuroimaging, Department of Neurology, University of Campinas, Campinas, Brazil
| | - Donald William Gross
- Division of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
32
|
Bernhardt BC, Bonilha L, Gross DW. Network analysis for a network disorder: The emerging role of graph theory in the study of epilepsy. Epilepsy Behav 2015; 50:162-70. [PMID: 26159729 DOI: 10.1016/j.yebeh.2015.06.005] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 01/01/2023]
Abstract
Recent years have witnessed a paradigm shift in the study and conceptualization of epilepsy, which is increasingly understood as a network-level disorder. An emblematic case is temporal lobe epilepsy (TLE), the most common drug-resistant epilepsy that is electroclinically defined as a focal epilepsy and pathologically associated with hippocampal sclerosis. In this review, we will summarize histopathological, electrophysiological, and neuroimaging evidence supporting the concept that the substrate of TLE is not limited to the hippocampus alone, but rather is broadly distributed across multiple brain regions and interconnecting white matter pathways. We will introduce basic concepts of graph theory, a formalism to quantify topological properties of complex systems that has recently been widely applied to study networks derived from brain imaging and electrophysiology. We will discuss converging graph theoretical evidence indicating that networks in TLE show marked shifts in their overall topology, providing insight into the neurobiology of TLE as a network-level disorder. Our review will conclude by discussing methodological challenges and future clinical applications of this powerful analytical approach.
Collapse
Affiliation(s)
- Boris C Bernhardt
- Neuroimaging of Epilepsy Laboratory, Brain Imaging Center, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada; Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Leonardo Bonilha
- Department of Neurology, Medical University of South Carolina, SC, USA
| | - Donald W Gross
- Division of Neurology, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
33
|
Azab M, Carone M, Ying SH, Yousem DM. Mesial Temporal Sclerosis: Accuracy of NeuroQuant versus Neuroradiologist. AJNR Am J Neuroradiol 2015; 36:1400-6. [PMID: 25907519 DOI: 10.3174/ajnr.a4313] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/19/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE We sought to compare the accuracy of a volumetric fully automated computer assessment of hippocampal volume asymmetry versus neuroradiologists' interpretations of the temporal lobes for mesial temporal sclerosis. Detecting mesial temporal sclerosis (MTS) is important for the evaluation of patients with temporal lobe epilepsy as it often guides surgical intervention. One feature of MTS is hippocampal volume loss. MATERIALS AND METHODS Electronic medical record and researcher reports of scans of patients with proved mesial temporal sclerosis were compared with volumetric assessment with an FDA-approved software package, NeuroQuant, for detection of mesial temporal sclerosis in 63 patients. The degree of volumetric asymmetry was analyzed to determine the neuroradiologists' threshold for detecting right-left asymmetry in temporal lobe volumes. RESULTS Thirty-six patients had left-lateralized MTS, 25 had right-lateralized MTS, and 2 had bilateral MTS. The estimated accuracy of the neuroradiologist was 72.6% with a κ statistic of 0.512 (95% CI, 0.315-0.710) [moderate agreement, P < 3 × 10(-6)]), whereas the estimated accuracy of NeuroQuant was 79.4% with a κ statistic of 0.588 (95% CI, 0.388-0.787) [moderate agreement, P < 2 × 10(-6)]). This discrepancy in accuracy was not statistically significant. When at least a 5%-10% volume discrepancy between temporal lobes was present, the neuroradiologists detected it 75%-80% of the time. CONCLUSIONS As a stand-alone fully automated software program that can process temporal lobe volume in 5-10 minutes, NeuroQuant compares favorably with trained neuroradiologists in predicting the side of mesial temporal sclerosis. Neuroradiologists can often detect even small temporal lobe volumetric changes visually.
Collapse
Affiliation(s)
- M Azab
- From the Division of Neuroradiology (M.A., S.H.Y., D.M.Y.), The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland Department of Radiology (M.A.), Suez Canal University, Ismaïlia, Ismailia Governorate
| | - M Carone
- Department of Biostatistics (M.C.), University of Washington, Seattle, Washington
| | - S H Ying
- From the Division of Neuroradiology (M.A., S.H.Y., D.M.Y.), The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - D M Yousem
- From the Division of Neuroradiology (M.A., S.H.Y., D.M.Y.), The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
34
|
Kuperman RA, Martin KW. Pharmacoresistent Partial Epilepsy Secondary to Progressive Inflammatory Poliodystrophy. Pediatr Neurol 2015; 53:83-7. [PMID: 25937386 DOI: 10.1016/j.pediatrneurol.2015.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 02/12/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Epilepsy with progressive cortical volume loss is described secondary to energy failure such as mitochondrial disorders, infectious, or inflammatory etiologies and associated with temporal lobe epilepsy. Postmortem studies do not support that spontaneous seizures even if present for prolonged periods universally result in cortical volume loss. MAIN FINDINGS We describe two children with extratemporal pharmacoresistent epilepsy, slowly progressive gray matter volume loss over several years, and evidence of central nervous system inflammation. Brain magnetic resonance imaging changes and antibody profiles were not typical of a well-defined, antibody-mediated central nervous system syndrome such as N-methyl-D-aspartate receptor encephalitis. CONCLUSIONS These patients illustrate a novel presentation of a subacute inflammatory central nervous system process with epilepsy and progressive cortical volume loss, supporting the role of sequential brain imaging in children with epilepsy.
Collapse
Affiliation(s)
- Rachel A Kuperman
- Pediatric Neurology, Children's Hospital and Research Center, Oakland, California.
| | - Kenneth W Martin
- Pediatric Radiology, Children's Hospital and Research Center, Oakland, California
| |
Collapse
|
35
|
Bonilha L, Keller SS. Quantitative MRI in refractory temporal lobe epilepsy: relationship with surgical outcomes. Quant Imaging Med Surg 2015; 5:204-24. [PMID: 25853080 DOI: 10.3978/j.issn.2223-4292.2015.01.01] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 01/07/2015] [Indexed: 11/14/2022]
Abstract
Medically intractable temporal lobe epilepsy (TLE) remains a serious health problem. Across treatment centers, up to 40% of patients with TLE will continue to experience persistent postoperative seizures at 2-year follow-up. It is unknown why such a large number of patients continue to experience seizures despite being suitable candidates for resective surgery. Preoperative quantitative MRI techniques may provide useful information on why some patients continue to experience disabling seizures, and may have the potential to develop prognostic markers of surgical outcome. In this article, we provide an overview of how quantitative MRI morphometric and diffusion tensor imaging (DTI) data have improved the understanding of brain structural alterations in patients with refractory TLE. We subsequently review the studies that have applied quantitative structural imaging techniques to identify the neuroanatomical factors that are most strongly related to a poor postoperative prognosis. In summary, quantitative imaging studies strongly suggest that TLE is a disorder affecting a network of neurobiological systems, characterized by multiple and inter-related limbic and extra-limbic network abnormalities. The relationship between brain alterations and postoperative outcome are less consistent, but there is emerging evidence suggesting that seizures are less likely to remit with surgery when presurgical abnormalities are observed in the connectivity supporting brain regions serving as network nodes located outside the resected temporal lobe. Future work, possibly harnessing the potential from multimodal imaging approaches, may further elucidate the etiology of persistent postoperative seizures in patients with refractory TLE. Furthermore, quantitative imaging techniques may be explored to provide individualized measures of postoperative seizure freedom outcome.
Collapse
Affiliation(s)
- Leonardo Bonilha
- 1 Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA ; 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK ; 3 Department of Radiology, The Walton Centre NHS Foundation Trust, Liverpool, UK ; 4 Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Simon S Keller
- 1 Department of Neurology and Neurosurgery, Medical University of South Carolina, Charleston, SC 29425, USA ; 2 Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK ; 3 Department of Radiology, The Walton Centre NHS Foundation Trust, Liverpool, UK ; 4 Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
36
|
Hamelin S, Depaulis A. Revisiting hippocampal sclerosis in mesial temporal lobe epilepsy according to the "two-hit" hypothesis. Rev Neurol (Paris) 2015; 171:227-35. [PMID: 25748332 DOI: 10.1016/j.neurol.2015.01.560] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/20/2015] [Indexed: 12/28/2022]
Abstract
Hippocampal sclerosis (HS) is the most common neuropathological pattern observed in pharmacoresistant epilepsy and represents a critical feature in mesial temporal lobe epilepsy syndrome. However, its pathophysiological mechanisms and neuropathological consequences on seizures remain mostly unresolved. The new international classification of hippocampal sclerosis aims at standardizing its description to allow comparisons between different clinical studies. However, several aspects are not considered in this classification (granule cell dispersion, sprouting, glial modifications…). In this chapter, we discuss these different features associated with hippocampal sclerosis in perspective with the "two-hit" hypothesis and propose mechanisms that could be involved in the modulation of some specific neuropathological aspects like early life stress, hyperthermic seizures, brain lesions or hormonal modifications.
Collapse
Affiliation(s)
- S Hamelin
- Inserm, U836, université Joseph-Fourier, dite Santé, bâtiment Edmond-J.-Safra, chemin Fortuné-Ferrini, 38706 La Tronche cedex, France; University Grenoble-Alpes, Grenoble institut des neurosciences, chemin Fortuné-Ferrini, 38700 La Tronche, France; Hôpital Pierre-Oudot, 30, avenue du Médipôle, BP 40348, 38302 Bourgoin-Jallieu cedex, France.
| | - A Depaulis
- Inserm, U836, université Joseph-Fourier, dite Santé, bâtiment Edmond-J.-Safra, chemin Fortuné-Ferrini, 38706 La Tronche cedex, France; University Grenoble-Alpes, Grenoble institut des neurosciences, chemin Fortuné-Ferrini, 38700 La Tronche, France; CHU de Grenoble, avenue Maquis-du-Grésivaudan, 38700 La Tronche, France
| |
Collapse
|
37
|
Mandell JG, Hill KL, Nguyen DTD, Moser KW, Harbaugh RE, McInerney J, Nsubuga BK, Mugamba JK, Johnson D, Warf BC, Boling W, Webb AG, Schiff SJ. Volumetric brain analysis in neurosurgery: Part 3. Volumetric CT analysis as a predictor of seizure outcome following temporal lobectomy. J Neurosurg Pediatr 2015; 15:133-43. [PMID: 25431899 DOI: 10.3171/2014.9.peds12428] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The incidence of temporal lobe epilepsy (TLE) due to mesial temporal sclerosis (MTS) can be high in developing countries. Current diagnosis of MTS relies on structural MRI, which is generally unavailable in developing world settings. Given widespread effects on temporal lobe structure beyond hippocampal atrophy in TLE, the authors propose that CT volumetric analysis can be used in patient selection to help predict outcomes following resection. METHODS Ten pediatric patients received preoperative CT scans and temporal resections at the CURE Children's Hospital of Uganda. Engel classification of seizure control was determined 12 months postoperatively. Temporal lobe volumes were measured from CT and from normative MR images using the Cavalieri method. Whole brain and fluid volumes were measured using particle filter segmentation. Linear discrimination analysis (LDA) was used to classify seizure outcome by temporal lobe volumes and normalized brain volume. RESULTS Epilepsy patients showed normal to small brain volumes and small temporal lobes bilaterally. A multivariate measure of the volume of each temporal lobe separated patients who were seizure free (Engel Class IA) from those with incomplete seizure control (Engel Class IB/IIB) with LDA (p<0.01). Temporal lobe volumes also separate normal subjects, patients with Engel Class IA outcomes, and patients with Class IB/IIB outcomes (p<0.01). Additionally, the authors demonstrated that age-normalized whole brain volume, in combination with temporal lobe volumes, may further improve outcome prediction (p<0.01). CONCLUSIONS This study shows strong evidence that temporal lobe and brain volume can be predictive of seizure outcome following temporal lobe resection, and that volumetric CT analysis of the temporal lobe may be feasible in lieu of structural MRI when the latter is unavailable. Furthermore, since the authors' methods are modality independent, these findings suggest that temporal lobe and normative brain volumes may further be useful in the selection of patients for temporal lobe resection when structural MRI is available.
Collapse
|
38
|
Bernhardt BC, Hong SJ, Bernasconi A, Bernasconi N. Magnetic resonance imaging pattern learning in temporal lobe epilepsy: classification and prognostics. Ann Neurol 2015; 77:436-46. [PMID: 25546153 DOI: 10.1002/ana.24341] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/08/2014] [Accepted: 12/21/2014] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In temporal lobe epilepsy (TLE), although hippocampal atrophy lateralizes the focus, the value of magnetic resonance imaging (MRI) to predict postsurgical outcome is rather modest. Prediction solely based on the hippocampus may be hampered by widespread mesiotemporal structural damage shown by advanced imaging. Increasingly complex and high-dimensional representation of MRI metrics motivates a shift to machine learning to establish objective, data-driven criteria for pathogenic processes and prognosis. METHODS We applied clustering to 114 consecutive unilateral TLE patients using 1.5T MRI profiles derived from surface morphology of hippocampus, amygdala, and entorhinal cortex. To evaluate the diagnostic validity of the classification, we assessed its yield to predict outcome in 79 surgically treated patients. Reproducibility of outcome prediction was assessed in an independent cohort of 27 patients evaluated on 3.0T MRI. RESULTS Four similarly sized classes partitioned our cohort; in all, alterations spanned over the 3 mesiotemporal structures. Compared to 46 controls, TLE-I showed marked bilateral atrophy; in TLE-II atrophy was ipsilateral; TLE-III showed mild bilateral atrophy; whereas TLE-IV showed hypertrophy. Classes differed with regard to histopathology and freedom from seizures. Classwise surface-based classifiers accurately predicted outcome in 92 ± 1% of patients, outperforming conventional volumetry. Predictors of relapse were distributed bilaterally across structures. Prediction accuracy was similarly high in the independent cohort (96%), supporting generalizability. INTERPRETATION We provide a novel description of individual variability across the TLE spectrum. Class membership was associated with distinct patterns of damage and outcome predictors that did not spatially overlap, emphasizing the ability of machine learning to disentangle the differential contribution of morphology to patient phenotypes, ultimately refining the prognosis of epilepsy surgery.
Collapse
Affiliation(s)
- Boris C Bernhardt
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
39
|
Abstract
A significant proportion of temporal lobe epilepsy (TLE), a common, intractable brain disorder, arises in children with febrile status epilepticus (FSE). Preventative therapy development is hampered by our inability to identify early the FSE individuals who will develop TLE. In a naturalistic rat model of FSE, we used high-magnetic-field MRI and long-term video EEG to seek clinically relevant noninvasive markers of epileptogenesis and found that reduced amygdala T2 relaxation times in high-magnetic-field MRI hours after FSE predicted experimental TLE. Reduced T2 values likely represented paramagnetic susceptibility effects derived from increased unsaturated venous hemoglobin, suggesting augmented oxygen utilization after FSE termination. Indeed, T2 correlated with energy-demanding intracellular translocation of the injury-sensor high-mobility group box 1 (HMGB1), a trigger of inflammatory cascades implicated in epileptogenesis. Use of deoxyhemoglobin-sensitive MRI sequences enabled visualization of the predictive changes on lower-field, clinically relevant scanners. This novel MRI signature delineates the onset and suggests mechanisms of epileptogenesis that follow experimental FSE.
Collapse
|
40
|
Laxer KD, Trinka E, Hirsch LJ, Cendes F, Langfitt J, Delanty N, Resnick T, Benbadis SR. The consequences of refractory epilepsy and its treatment. Epilepsy Behav 2014; 37:59-70. [PMID: 24980390 DOI: 10.1016/j.yebeh.2014.05.031] [Citation(s) in RCA: 469] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/27/2014] [Accepted: 05/29/2014] [Indexed: 12/12/2022]
Abstract
Seizures in some 30% to 40% of patients with epilepsy fail to respond to antiepileptic drugs or other treatments. While much has been made of the risks of new drug therapies, not enough attention has been given to the risks of uncontrolled and progressive epilepsy. This critical review summarizes known risks associated with refractory epilepsy, provides practical clinical recommendations, and indicates areas for future research. Eight international epilepsy experts from Europe, the United States, and South America met on May 4, 2013, to present, review, and discuss relevant concepts, data, and literature on the consequences of refractory epilepsy. While patients with refractory epilepsy represent the minority of the population with epilepsy, they require the overwhelming majority of time, effort, and focus from treating physicians. They also represent the greatest economic and psychosocial burdens. Diagnostic procedures and medical/surgical treatments are not without risks. Overlooked, however, is that these risks are usually smaller than the risks of long-term, uncontrolled seizures. Refractory epilepsy may be progressive, carrying risks of structural damage to the brain and nervous system, comorbidities (osteoporosis, fractures), and increased mortality (from suicide, accidents, sudden unexpected death in epilepsy, pneumonia, vascular disease), as well as psychological (depression, anxiety), educational, social (stigma, driving), and vocational consequences. Adding to this burden is neuropsychiatric impairment caused by underlying epileptogenic processes ("essential comorbidities"), which appears to be independent of the effects of ongoing seizures themselves. Tolerating persistent seizures or chronic medicinal adverse effects has risks and consequences that often outweigh risks of seemingly "more aggressive" treatments. Future research should focus not only on controlling seizures but also on preventing these consequences.
Collapse
Affiliation(s)
- Kenneth D Laxer
- Sutter Pacific Epilepsy Program, California Pacific Medical Center, San Francisco, CA, USA.
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria; Centre for Cognitive Neuroscience, Salzburg, Austria
| | - Lawrence J Hirsch
- Division of Epilepsy and EEG, Department of Neurology, Yale Comprehensive Epilepsy Center, New Haven, CT, USA
| | - Fernando Cendes
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil
| | - John Langfitt
- Department of Neurology, University of Rochester School of Medicine, Rochester, NY, USA; Department Psychiatry, University of Rochester School of Medicine, Rochester, NY, USA; Strong Epilepsy Center, University of Rochester School of Medicine, Rochester, NY, USA
| | - Norman Delanty
- Epilepsy Service and National Epilepsy Surgery Programme, Beaumont Hospital, Dublin, Ireland
| | - Trevor Resnick
- Comprehensive Epilepsy Program, Miami Children's Hospital, Miami, FL, USA
| | - Selim R Benbadis
- Comprehensive Epilepsy Program, University of South Florida, Tampa, FL, USA
| |
Collapse
|
41
|
Bernhardt BC, Kim H, Bernasconi N. Patterns of subregional mesiotemporal disease progression in temporal lobe epilepsy. Neurology 2013; 81:1840-7. [PMID: 24142475 DOI: 10.1212/01.wnl.0000436069.20513.92] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Evidence for disease progression in the mesiotemporal lobe is mainly derived from global volumetry of the hippocampus. In this study, we tracked progressive structural changes in the hippocampus, amygdala, and entorhinal cortex in drug-resistant temporal lobe epilepsy at a subregional level. Furthermore, we evaluated the relation between disease progression and surgical outcome. METHODS We combined cross-sectional modeling of disease duration in a large cohort of patients (n = 134) and longitudinal analysis in a subset that delayed surgery (n = 31). To track subregional pathology, we applied surface-shape analysis techniques on manual mesiotemporal labels. RESULTS Longitudinal and cross-sectional designs showed consistent patterns of progressive atrophy in hippocampal CA1, anterolateral entorhinal, and the amygdalar laterobasal group bilaterally. These regions also exhibited more marked age-related volume loss in patients compared with controls. We found a faster progression of hippocampal atrophy in patients with a seizure frequency ≥6 per month. High rates of contralateral entorhinal cortex atrophy predicted postsurgical seizure relapse. CONCLUSION We observed progressive atrophy in hippocampal, amygdalar, and entorhinal subregions that frequently display neuronal loss on histology. The bilateral character of cumulative atrophy highlights the importance of early surgery. In patients who nevertheless delay this procedure, serial scanning may provide markers of surgical outcome.
Collapse
Affiliation(s)
- Boris C Bernhardt
- From the Neuroimaging of Epilepsy Laboratory, Department of Neurology and Brain Imaging Center, McGill University, Montreal Neurological Institute and Hospital, Montreal, Canada
| | | | | |
Collapse
|
42
|
Bernhardt BC, Hong S, Bernasconi A, Bernasconi N. Imaging structural and functional brain networks in temporal lobe epilepsy. Front Hum Neurosci 2013; 7:624. [PMID: 24098281 PMCID: PMC3787804 DOI: 10.3389/fnhum.2013.00624] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/09/2013] [Indexed: 11/24/2022] Open
Abstract
Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy.
Collapse
Affiliation(s)
- Boris C Bernhardt
- Neuroimaging of Epilepsy Laboratory, Montreal Neurological Institute and Hospital, McGill University Montreal, QC, Canada ; Department of Social Neuroscience, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | | | | | | |
Collapse
|
43
|
Histopathological evidence that hippocampal atrophy following status epilepticus is a result of neuronal necrosis. J Neurol Sci 2013; 334:186-91. [PMID: 23992920 DOI: 10.1016/j.jns.2013.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/19/2013] [Accepted: 08/11/2013] [Indexed: 11/21/2022]
Abstract
Medial temporal lobe epilepsy is commonly associated with hippocampal atrophy on MRI and hippocampal sclerosis on histopathological examination of surgically-resected specimens. Likewise, it is well-established that prolonged seizures and status epilepticus can lead to hippocampal edema as noted on MRI. In this paper, the authors present an unusual patient with prolonged refractory status epilepticus, due to limbic encephalitis associated with anti-GAD antibody, who underwent palliative epilepsy surgery. Bilateral hippocampal edema was noted on preoperative MRI. Histologic evaluation confirmed presence of acute necrosis and neuronal loss in the left hippocampal formation. Follow-up MRI several months after surgery demonstrated severe atrophy of the contralateral right hippocampus. This is the first clear histopathological evidence that hippocampal atrophy following status epilepticus is the result of acute neuronal necrosis and cell loss.
Collapse
|
44
|
Ye Y, Xiong J, Hu J, Kong M, Cheng L, Chen H, Li T, Jiang L. Altered hippocampal myelinated fiber integrity in a lithium-pilocarpine model of temporal lobe epilepsy: a histopathological and stereological investigation. Brain Res 2013; 1522:76-87. [PMID: 23727401 DOI: 10.1016/j.brainres.2013.05.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/09/2013] [Accepted: 05/16/2013] [Indexed: 11/28/2022]
Abstract
The damage of white matter, primarily myelinated fibers, in the central nervous system (CNS) of temporal lobe epilepsy (TLE) patients has been recently reported. However, limited data exist addressing the types of changes that occur to myelinated fibers inside the hippocampus as a result of TLE. The current study was designed to examine this issue in a lithium-pilocarpine rat model. Investigated by electroencephalography (EEG), Gallyas silver staining, immunohistochemistry, western blotting, transmission electron microscopy, and stereological methods, the results showed that hippocampal myelinated fibers of the epilepsy group were degenerated with significantly less myelin basic protein (MBP) expression relative to those of control group rats. Stereological analysis revealed that the total volumes of hippocampal formation, myelinated fibers, and myelin sheaths in the hippocampus of epilepsy group rats were decreased by 20.43%, 49.16%, and 52.60%, respectively. In addition, epilepsy group rats showed significantly greater mean diameters of myelinated fibers and axons, whereas the mean thickness of myelin sheaths was less, especially for small axons with diameters from 0.1 to 0.8µm, compared to control group rats. Finally, the total length of the myelinated fibers in the hippocampus of epilepsy group rats was significantly decreased by 56.92%, compared to that of the control group, with the decreased length most prominent for myelinated fibers with diameters from 0.4 to 0.8µm. This study is the first to provide experimental evidence that the integrity of hippocampal myelinated fibers is negatively affected by inducing epileptic seizures with pilocarpine, which may contribute to the abnormal propagation of epileptic discharge.
Collapse
Affiliation(s)
- Yuanzhen Ye
- Lab of Pediatric Neurology, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Coan AC, Cendes F. Epilepsy as progressive disorders: what is the evidence that can guide our clinical decisions and how can neuroimaging help? Epilepsy Behav 2013; 26:313-21. [PMID: 23127969 DOI: 10.1016/j.yebeh.2012.09.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 09/16/2012] [Indexed: 10/27/2022]
Abstract
There is evidence that some types of epilepsy progress over time, and an important part of this knowledge has derived from neuroimaging studies. Different authors have demonstrated structural damage more pronounced in individuals with a longer duration of epilepsy, and others have been able to quantify this progression over time. However, others have failed to demonstrate progression possibly due to the heterogeneity of individuals evaluated. Currently, temporal lobe epilepsy associated with hippocampal sclerosis is regarded as a progressive disorder. Conversely, for other types of epilepsy, the evidence is not so clear. The causes of this damage progression are also unknown although there is consistent evidence that seizure is one of the mechanisms. The conflicting data about epilepsy progression can be a challenge for clinical decisions for an individual patient. Studies with homogenous groups and longer follow-up are necessary for appropriate conclusions about the real burden of damage progression in epilepsies, and neuroimaging will be essential in this context.
Collapse
Affiliation(s)
- Ana C Coan
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, SP, Brazil
| | | |
Collapse
|
46
|
Matrix-metalloproteinases and proinflammatory cytokines in children with febrile convulsions and epilepsy--cause or consequence? Epilepsy Res 2013; 105:225-8. [PMID: 23313321 DOI: 10.1016/j.eplepsyres.2012.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 12/05/2012] [Accepted: 12/09/2012] [Indexed: 11/22/2022]
Abstract
This is the first investigation of MMPs in children with febrile seizures. In a prospective, cross sectional study, serum levels of matrix metalloproteinases (MMP8/9), tissue inhibitor of metalloproteinases (TIMP1/2), of children with FS (n=13), children with febrile infection (FI, n=13) and children with unprovoked generalized seizures (US, n=11) were compared. Neither provoked nor unprovoked seizures in FS and US seem to elevate levels of MMPs or TIMPs, whereas in case of febrile infection blood level of MMP8 was significant elevated. Seizures in general might have no influence on this distinctive inflammatory process or even might have suppressive impact.
Collapse
|
47
|
Gomez-Ibañez A, Gasca-Salas C, Urrestarazu E, Viteri C. Clinical phenotypes within non-surgical patients with mesial temporal lobe epilepsy caused by hippocampal sclerosis based on response to antiepileptic drugs. Seizure 2012; 22:20-3. [PMID: 23041032 DOI: 10.1016/j.seizure.2012.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 09/10/2012] [Accepted: 09/14/2012] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To evaluate evolution and elucidate clinical phenotypes related to prognosis of patients with mesial temporal lobe epilepsy related to hippocampal sclerosis (MTLE-HS) treated exclusively with antiepileptic drugs (AED). METHODS Forty-seven out of 68 MTLE-HS patients treated between January 2005 and June 2010 were retrospectively studied for demographic, clinical and outcome data. The population was divided into drug-responder and drug-resistant patients; the latter was divided, according to the duration of the seizure-free periods along their evolution, into patients with at least one seizure-free period longer than one year and those with shorter periods. Variables were compared between drug-responders vs drug-resistants and drug-resistants with long seizure-free periods vs drug-resistants without it. RESULTS There were 7 (15%) drug-responders, 39 (83%) drug-resistants and 1 patient (2%) with an undetermined response. Eighteen (46%) drug-resistant individuals had seizure-free periods longer than one year, with mean duration of 46 months (3.8 years). Since no factor was statistically associated with long seizure-free period within drug-resistants, we can clinically distinguish two phenotypes: women with left HS and late onset of seizures, with poor prognosis, and men with right HS and earlier appearance of seizures, attaining a better outcome. Twenty out of 47 (42.5%) patients followed an intermittent pattern of epilepsy. CONCLUSIONS Non-surgical MTLE-HS drug-resistant patients can achieve long seizure-free periods with AED, but relapses are common. Female gender, left or bilateral lesion and later onset of seizures seem to be bad prognosis factors within MTLE-HS drug-resistant patients.
Collapse
Affiliation(s)
- Asier Gomez-Ibañez
- Department of Neurology and Neurosurgery, Clinica Universidad de Navarra, Pamplona, Spain.
| | | | | | | |
Collapse
|
48
|
Surface-based multi-template automated hippocampal segmentation: Application to temporal lobe epilepsy. Med Image Anal 2012; 16:1445-55. [DOI: 10.1016/j.media.2012.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 04/19/2012] [Accepted: 04/24/2012] [Indexed: 11/24/2022]
|
49
|
Serum neurofilament concentrations in children with prolonged febrile seizures. J Neurol Sci 2012; 321:39-42. [DOI: 10.1016/j.jns.2012.07.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 07/16/2012] [Accepted: 07/18/2012] [Indexed: 11/20/2022]
|
50
|
Status epilepticus in children. HANDBOOK OF CLINICAL NEUROLOGY 2012. [PMID: 22939066 DOI: 10.1016/b978-0-444-52899-5.00028-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|