1
|
Jeliazkova N, Longhin E, El Yamani N, Rundén-Pran E, Moschini E, Serchi T, Vrček IV, Burgum MJ, Doak SH, Cimpan MR, Rios-Mondragon I, Cimpan E, Battistelli CL, Bossa C, Tsekovska R, Drobne D, Novak S, Repar N, Ammar A, Nymark P, Di Battista V, Sosnowska A, Puzyn T, Kochev N, Iliev L, Jeliazkov V, Reilly K, Lynch I, Bakker M, Delpivo C, Sánchez Jiménez A, Fonseca AS, Manier N, Fernandez-Cruz ML, Rashid S, Willighagen E, D Apostolova M, Dusinska M. A template wizard for the cocreation of machine-readable data-reporting to harmonize the evaluation of (nano)materials. Nat Protoc 2024; 19:2642-2684. [PMID: 38755447 DOI: 10.1038/s41596-024-00993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 02/20/2024] [Indexed: 05/18/2024]
Abstract
Making research data findable, accessible, interoperable and reusable (FAIR) is typically hampered by a lack of skills in technical aspects of data management by data generators and a lack of resources. We developed a Template Wizard for researchers to easily create templates suitable for consistently capturing data and metadata from their experiments. The templates are easy to use and enable the compilation of machine-readable metadata to accompany data generation and align them to existing community standards and databases, such as eNanoMapper, streamlining the adoption of the FAIR principles. These templates are citable objects and are available as online tools. The Template Wizard is designed to be user friendly and facilitates using and reusing existing templates for new projects or project extensions. The wizard is accompanied by an online template validator, which allows self-evaluation of the template (to ensure mapping to the data schema and machine readability of the captured data) and transformation by an open-source parser into machine-readable formats, compliant with the FAIR principles. The templates are based on extensive collective experience in nanosafety data collection and include over 60 harmonized data entry templates for physicochemical characterization and hazard assessment (cell viability, genotoxicity, environmental organism dose-response tests, omics), as well as exposure and release studies. The templates are generalizable across fields and have already been extended and adapted for microplastics and advanced materials research. The harmonized templates improve the reliability of interlaboratory comparisons, data reuse and meta-analyses and can facilitate the safety evaluation and regulation process for (nano) materials.
Collapse
Affiliation(s)
| | - Eleonora Longhin
- Health Effects Laboratory, Department of Environmental Chemistry & Health Effects, The Climate and Environmental Research Institute NILU, Kjeller, Norway
| | - Naouale El Yamani
- Health Effects Laboratory, Department of Environmental Chemistry & Health Effects, The Climate and Environmental Research Institute NILU, Kjeller, Norway
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department of Environmental Chemistry & Health Effects, The Climate and Environmental Research Institute NILU, Kjeller, Norway
| | - Elisa Moschini
- Environmental Health group, Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | - Tommaso Serchi
- Environmental Health group, Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology, Belvaux, Luxembourg
| | | | - Michael J Burgum
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, Wales, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, Wales, UK
| | | | | | - Emil Cimpan
- Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | | | - Cecilia Bossa
- Environment and Health Department, Istituto Superiore di Sanità, Rome, Italy
| | - Rositsa Tsekovska
- Medical and Biological Research Laboratory, Roumen Tsanev Institute of Molecular Biology-Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Novak
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Neža Repar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Ammar Ammar
- Department of Bioinformatics-BiGCaT, NUTRIM, Maastricht University, Maastricht, the Netherlands
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Veronica Di Battista
- BASF SE, Material Physics, Carl Bosch straße, Ludwigshafen, Germany
- Department of Environmental and Resource Engineering, DTU, Kgs. Lyngby, Denmark
| | - Anita Sosnowska
- QSAR Lab Ltd., Gdańsk, Poland
- University of Gdańsk, Faculty of Chemistry, Gdansk, Poland
| | - Tomasz Puzyn
- QSAR Lab Ltd., Gdańsk, Poland
- University of Gdańsk, Faculty of Chemistry, Gdansk, Poland
| | - Nikolay Kochev
- Ideaconsult Ltd., Sofia, Bulgaria
- Department of Analytical Chemistry and Computer Chemistry, Faculty of Chemistry, University of Plovdiv, Plovdiv, Bulgaria
| | | | | | - Katie Reilly
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Martine Bakker
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | | | - Araceli Sánchez Jiménez
- Spanish National Institute of Health and Safety, Centro Nacional de Verificación de Maquinaria, Barakaldo, Spain
| | - Ana Sofia Fonseca
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Nicolas Manier
- Ecotoxicology of Substances and Environmental Matrices Unit, French National Institute for Industrial Environment and Risks, Verneuil-en-Halatte, France
| | - María Luisa Fernandez-Cruz
- Department of Environment and Agronomy, National Institute for Agriculture and Food Research and Technology, Spanish National Research Council, Madrid, Spain
| | - Shahzad Rashid
- Institute of Occupational Medicine, Research Avenue North, Edinburgh, UK
| | - Egon Willighagen
- Department of Bioinformatics-BiGCaT, NUTRIM, Maastricht University, Maastricht, the Netherlands
| | - Margarita D Apostolova
- Medical and Biological Research Laboratory, Roumen Tsanev Institute of Molecular Biology-Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry & Health Effects, The Climate and Environmental Research Institute NILU, Kjeller, Norway.
| |
Collapse
|
2
|
Yen H, Huang CW, Wu CH, Liao VHC. Life cycle exposure to titanium dioxide nanoparticles (TiO 2-NPs) induces filial toxicity and population decline in the nematode Caenorhabditis elegans. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31467-31478. [PMID: 38635093 DOI: 10.1007/s11356-024-33159-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
Titanium dioxide nanoparticle (TiO2-NP) exposure has raised significant concern due to their potential toxicity and adverse ecological impacts. Despite their ubiquitous presence in various environmental compartments, the long-term consequences of TiO2-NPs remain poorly understood. In this study, we combined data of in vivo toxicity and modeling to investigate the potential negative impacts of TiO2-NP exposure. We employed the nematode Caenorhabditis elegans, an environmental organism, to conduct a full life cycle TiO2-NP toxicity assays. Moreover, to assess the potential impact of TiO2-NP toxicity on population dynamics, we applied a stage-constructed matrix population model (MPM). Results showed that TiO2-NPs caused significant reductions in reproduction, survival, and growth of parental C. elegans (P0) at the examined concentrations. Moreover, these toxic effects were even more pronounced in the subsequent generation (F1) when exposed to TiO2-NPs. Furthermore, parental TiO2-NP exposure resulted in significant toxicity in non-exposed C. elegans progeny (TiO2-NPs free), adversely affecting their reproduction, survival, and growth. MPM analysis revealed decreased transition probabilities of surviving (Pi), growth (Gi), and fertility (Fi) in scenarios with TiO2-NP exposure. Additionally, the population growth rate (λmax) was found to be less than 1 in both P0 and F1, indicating a declining population trend after successive generations. Sensitivity analysis pinpointed L1 larvae as the most vulnerable stage, significantly contributing to the observed population decline in both P0 and F1 generations under TiO2-NP exposure. Our findings provide insight into the potential risk of an environmental organism like nematode by life cycle exposure to TiO2-NPs.
Collapse
Affiliation(s)
- Hsin Yen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan
| | - Chi-Wei Huang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 811, Taiwan
| | - Chien-Hou Wu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu, 300, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106, Taiwan.
| |
Collapse
|
3
|
Rosner A, Ballarin L, Barnay-Verdier S, Borisenko I, Drago L, Drobne D, Concetta Eliso M, Harbuzov Z, Grimaldi A, Guy-Haim T, Karahan A, Lynch I, Giulia Lionetto M, Martinez P, Mehennaoui K, Oruc Ozcan E, Pinsino A, Paz G, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. A broad-taxa approach as an important concept in ecotoxicological studies and pollution monitoring. Biol Rev Camb Philos Soc 2024; 99:131-176. [PMID: 37698089 DOI: 10.1111/brv.13015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Aquatic invertebrates play a pivotal role in (eco)toxicological assessments because they offer ethical, cost-effective and repeatable testing options. Additionally, their significance in the food chain and their ability to represent diverse aquatic ecosystems make them valuable subjects for (eco)toxicological studies. To ensure consistency and comparability across studies, international (eco)toxicology guidelines have been used to establish standardised methods and protocols for data collection, analysis and interpretation. However, the current standardised protocols primarily focus on a limited number of aquatic invertebrate species, mainly from Arthropoda, Mollusca and Annelida. These protocols are suitable for basic toxicity screening, effectively assessing the immediate and severe effects of toxic substances on organisms. For more comprehensive and ecologically relevant assessments, particularly those addressing long-term effects and ecosystem-wide impacts, we recommended the use of a broader diversity of species, since the present choice of taxa exacerbates the limited scope of basic ecotoxicological studies. This review provides a comprehensive overview of (eco)toxicological studies, focusing on major aquatic invertebrate taxa and how they are used to assess the impact of chemicals in diverse aquatic environments. The present work supports the use of a broad-taxa approach in basic environmental assessments, as it better represents the natural populations inhabiting various ecosystems. Advances in omics and other biochemical and computational techniques make the broad-taxa approach more feasible, enabling mechanistic studies on non-model organisms. By combining these approaches with in vitro techniques together with the broad-taxa approach, researchers can gain insights into less-explored impacts of pollution, such as changes in population diversity, the development of tolerance and transgenerational inheritance of pollution responses, the impact on organism phenotypic plasticity, biological invasion outcomes, social behaviour changes, metabolome changes, regeneration phenomena, disease susceptibility and tissue pathologies. This review also emphasises the need for harmonised data-reporting standards and minimum annotation checklists to ensure that research results are findable, accessible, interoperable and reusable (FAIR), maximising the use and reusability of data. The ultimate goal is to encourage integrated and holistic problem-focused collaboration between diverse scientific disciplines, international standardisation organisations and decision-making bodies, with a focus on transdisciplinary knowledge co-production for the One-Health approach.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, 28 avenue Valombrose, Nice, F-06107, France
| | - Ilya Borisenko
- Faculty of Biology, Department of Embryology, Saint Petersburg State University, Universitetskaya embankment 7/9, Saint Petersburg, 199034, Russia
| | - Laura Drago
- Department of Biology, University of Padova, via Ugo Bassi 58/B, Padova, I-35121, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, 1111, Slovenia
| | - Maria Concetta Eliso
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Zoya Harbuzov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
- Leon H. Charney School of Marine Sciences, Department of Marine Biology, University of Haifa, 199 Aba Koushy Ave., Haifa, 3498838, Israel
| | - Annalisa Grimaldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J. H. Dunant, Varese, 3-21100, Italy
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Arzu Karahan
- Middle East Technical University, Institute of Marine Sciences, Erdemli-Mersin, PO 28, 33731, Turkey
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via prov. le Lecce -Monteroni, Lecce, I-73100, Italy
- NBFC, National Biodiversity Future Center, Piazza Marina, 61, Palermo, I-90133, Italy
| | - Pedro Martinez
- Department de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Av. Diagonal 643, Barcelona, 08028, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, Barcelona, 08010, Spain
| | - Kahina Mehennaoui
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| | - Elif Oruc Ozcan
- Faculty of Arts and Science, Department of Biology, Cukurova University, Balcali, Saricam, Adana, 01330, Turkey
| | - Annalisa Pinsino
- National Research Council, Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo, 90146, Italy
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, PO 2336 Sha'ar Palmer 1, Haifa, 3102201, Israel
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, 80121, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 26, Milan, 20133, Italy
| | - Sébastien Cambier
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 41, rue du Brill, Belvaux, L-4422, Luxembourg
| |
Collapse
|
4
|
Lyashenko EN, Uzbekova LD, Polovinkina VV, Dorofeeva AK, Ibragimov SUSU, Tatamov AA, Avkaeva AG, Mikhailova AA, Tuaeva IS, Esiev RK, Mezentsev SD, Gubanova MA, Bondarenko NG, Maslova AY. Study of the Embryonic Toxicity of TiO 2 and ZrO 2 Nanoparticles. MICROMACHINES 2023; 14:363. [PMID: 36838065 PMCID: PMC9961787 DOI: 10.3390/mi14020363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Currently, the widespread use of TiO2 and ZrO2 nanoparticles (NPs) in various industries poses a risk in terms of their potential toxicity. A number of experimental studies provide evidence of the toxic effect of TiO2 and ZrO2 NPs on biological objects. In order to supplement the level of knowledge and assess the risks of toxicity and danger of TiO2 and ZrO2 NPs, we decided to conduct a comprehensive experiment to study the embryonic toxicity of TiO2 and ZrO2 NPs in pregnant rats. For the experiment, mongrel white rats during pregnancy received aqueous dispersions of powders of TiO2 and ZrO2 NPs at a dose of 100 mg/kg/day. To characterize the effect of TiO2 and ZrO2 NPs on females and the postnatal ontogenesis of offspring, a complex of physiological and biochemical research methods was used. The results of the experiment showed that TiO2 NPs as ZrO2 NPs (100 mg/kg per os) cause few shifts of similar orientation in the maternal body. Neither TiO2 NPs nor ZrO2 NPs have an embryonic and teratogenic effect on the offspring in utero, but both modify its postnatal development.
Collapse
Affiliation(s)
- Elena Nikolaevna Lyashenko
- Department of Obstetrics and Gynecology, Faculty of Pediatrics, S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University, 295007 Simferopol, Russia
| | | | - Valeri Vladimirovna Polovinkina
- Department of Obstetrics and Gynecology, Faculty of Pediatrics, S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University, 295007 Simferopol, Russia
| | | | - Said-Umar Sithalil-ugli Ibragimov
- Department of Obstetrics and Gynecology, Faculty of Pediatrics, S.I. Georgievsky Medical Academy, V.I. Vernadsky Crimean Federal University, 295007 Simferopol, Russia
| | | | | | | | - Inga Shamilevna Tuaeva
- Department of Hygiene, Faculty of Medicine and Prevention, North Ossetian State Medical Academy, 362019 Vladikavkaz, Russia
| | | | | | | | - Natalya Grigorevna Bondarenko
- Department of Philosophy of History of Law, Pyatigorsk Branch of North Caucasus Federal University, 357502 Pyatigorsk, Russia
| | - Alina Yurievna Maslova
- Faculty of Medicine, Stavropol State Medical University, 355017 Stavropol, Russia
- SocMedica, 121205 Moscow, Russia
| |
Collapse
|