1
|
Yalamandala BN, Huynh TMH, Lien HW, Pan WC, Iao HM, Moorthy T, Chang YH, Hu SH. Advancing brain immunotherapy through functional nanomaterials. Drug Deliv Transl Res 2025:10.1007/s13346-024-01778-5. [PMID: 39789307 DOI: 10.1007/s13346-024-01778-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2024] [Indexed: 01/12/2025]
Abstract
Glioblastoma (GBM), a highly aggressive brain tumor, poses significant treatment challenges due to its highly immunosuppressive microenvironment and the brain immune privilege. Immunotherapy activating the immune system and T lymphocyte infiltration holds great promise against GBM. However, the brain's low immunogenicity and the difficulty of crossing the blood-brain barrier (BBB) hinder therapeutic efficacy. Recent advancements in immune-actuated particles for targeted drug delivery have shown the potential to overcome these obstacles. These particles interact with the BBB by rapidly and reversibly disrupting its structure, thereby significantly enhancing targeting and penetrating delivery. The BBB targeting also minimizes potential long-term damage. At GBM, the particles demonstrated effective chemotherapy, chemodynamic therapy, photothermal therapy (PTT), photodynamic therapy (PDT), radiotherapy, or magnetotherapy, facilitating tumor disruption and promoting antigen release. Additionally, components of the delivery system retained autologous tumor-associated antigens and presented them to dendritic cells (DCs), ensuring prolonged immune activation. This review explores the immunosuppressive mechanisms of GBM, existing therapeutic strategies, and the role of nanomaterials in enhancing immunotherapy. We also discuss innovative particle-based approaches designed to traverse the BBB by mimicking innate immune functions to improve treatment outcomes for brain tumors.
Collapse
Affiliation(s)
- Bhanu Nirosha Yalamandala
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Thi My Hue Huynh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Hui-Wen Lien
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Wan-Chi Pan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Hoi Man Iao
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Thrinayan Moorthy
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Yun-Hsuan Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan.
| |
Collapse
|
2
|
Khafaga DSR, El-Morsy MT, Faried H, Diab AH, Shehab S, Saleh AM, Ali GAM. Metal-organic frameworks in drug delivery: engineering versatile platforms for therapeutic applications. RSC Adv 2024; 14:30201-30229. [PMID: 39315019 PMCID: PMC11418013 DOI: 10.1039/d4ra04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, metal-organic frameworks (MOFs) have attracted much attention as versatile materials for drug delivery and personalized medicine. MOFs are porous structures made up of metal ions coupled with organic ligands. This review highlights the synthesis techniques used to design MOFs with specific features such as surface area and pore size, and the drug encapsulation within MOFs not only improves their stability and solubility but also allows for controlled release kinetics, which improves therapeutic efficacy and minimizes adverse effects. Furthermore, it discusses the challenges and potential advantages of MOF-based drug delivery, such as MOF stability, biocompatibility, and scale-up production. With further advancements in MOF synthesis, functionalization techniques, and understanding of their interactions using biological systems, MOFs can have significant promise for expanding the area of personalized medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University New Galala City 43511 Suez Egypt
| | - Manar T El-Morsy
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Habiba Faried
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ayah H Diab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Shaimaa Shehab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed M Saleh
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Gomaa A M Ali
- College of Marine Science and Aquatic Biology, University of Khorfakkan 18119 Sharjah United Arab Emirates
- Faculty of Science, Galala University 43511 Suez Egypt
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| |
Collapse
|
3
|
Shano LB, Karthikeyan S, Kennedy LJ, Chinnathambi S, Pandian GN. MOFs for next-generation cancer therapeutics through a biophysical approach-a review. Front Bioeng Biotechnol 2024; 12:1397804. [PMID: 38938982 PMCID: PMC11208718 DOI: 10.3389/fbioe.2024.1397804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024] Open
Abstract
Metal-organic frameworks (MOFs) have emerged as promising nanocarriers for cancer treatment due to their unique properties. Featuring high porosity, extensive surface area, chemical stability, and good biocompatibility, MOFs are ideal for efficient drug delivery, targeted therapy, and controlled release. They can be designed to target specific cellular organelles to disrupt metabolic processes in cancer cells. Additionally, functionalization with enzymes mimics their catalytic activity, enhancing photodynamic therapy and overcoming apoptosis resistance in cancer cells. The controllable and regular structure of MOFs, along with their tumor microenvironment responsiveness, make them promising nanocarriers for anticancer drugs. These carriers can effectively deliver a wide range of drugs with improved bioavailability, controlled release rate, and targeted delivery efficiency compared to alternatives. In this article, we review both experimental and computational studies focusing on the interaction between MOFs and drug, explicating the release mechanisms and stability in physiological conditions. Notably, we explore the relationship between MOF structure and its ability to damage cancer cells, elucidating why MOFs are excellent candidates for bio-applicability. By understanding the problem and exploring potential solutions, this review provides insights into the future directions for harnessing the full potential of MOFs, ultimately leading to improved therapeutic outcomes in cancer treatment.
Collapse
Affiliation(s)
- Leon Bernet Shano
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Lourdusamy John Kennedy
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Shanmugavel Chinnathambi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Tao T, Rehman SU, Xu S, Zhang J, Xia H, Guo Z, Li Z, Ma K, Wang J. A biomimetic camouflaged metal organic framework for enhanced siRNA delivery in the tumor environment. J Mater Chem B 2024; 12:4080-4096. [PMID: 38577851 DOI: 10.1039/d3tb02827e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Gene silencing through RNA interference (RNAi), particularly using small double-stranded RNA (siRNA), has been identified as a potent strategy for targeted cancer treatment. Yet, its application faces challenges such as nuclease degradation, inefficient cellular uptake, endosomal entrapment, off-target effects, and immune responses, which have hindered its effective delivery. In the past few years, these challenges have been addressed significantly by using camouflaged metal-organic framework (MOF) nanocarriers. These nanocarriers protect siRNA from degradation, enhance cellular uptake, and reduce unintended side effects by effectively targeting desired cells while evading immune detection. By combining the properties of biomimetic membranes and MOFs, these nanocarriers offer superior benefits such as extended circulation times, enhanced stability, and reduced immune responses. Moreover, through ligand-receptor interactions, biomimetic membrane-coated MOFs achieve homologous targeting, minimizing off-target adverse effects. The MOFs, acting as the core, efficiently encapsulate and protect siRNA molecules, while the biomimetic membrane-coated surface provides homologous targeting, further increasing the precision of siRNA delivery to cancer cells. In particular, the biomimetic membranes help to shield the MOFs from the immune system, avoiding unwanted immune responses and improving their biocompatibility. The combination of siRNA with innovative nanocarriers, such as camouflaged-MOFs, presents a significant advancement in cancer therapy. The ability to deliver siRNA with precision and effectiveness using these camouflaged nanocarriers holds great promise for achieving more personalized and efficient cancer treatments in the future. This review article discusses the significant progress made in the development of siRNA therapeutics for cancer, focusing on their effective delivery through novel nanocarriers, with a particular emphasis on the role of metal-organic frameworks (MOFs) as camouflaged nanocarriers.
Collapse
Affiliation(s)
- Tongxiang Tao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- University of Science and Technology of China, Hefei 230036, Anhui, P. R. China
| | - Sajid Ur Rehman
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| | - Shuai Xu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Jing Zhang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Haining Xia
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Zeyong Guo
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Zehua Li
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China
| | - Kun Ma
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
| | - Junfeng Wang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, P. R. China.
- University of Science and Technology of China, Hefei 230036, Anhui, P. R. China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, Anhui, P. R. China
| |
Collapse
|
5
|
Letheux G, Ganesan P, Veillon F, Varignon J, Perez O, Cardin J, Labbé C, Rogez G, Ligeour M, Jaffrès PA, Rueff JM. A new series of magnetic and luminescent layered hybrid materials obtained from thianthrene phosphonic acid: M(H 2O)PO 3-S 2C 12H 7 (M = Cu, Zn) and M(H 2O) 2(PO 2OH-S 2C 12H 7) 2 (M = Mn, Co). Dalton Trans 2023. [PMID: 38008949 DOI: 10.1039/d3dt03153e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Four new metallophosphonates with the chemical formulae M(H2O)PO3-S2C12H7 (M = Cu, Zn) and M(H2O)2(PO2OH-S2C12H7)2 (M = Mn, Co) were synthesized using a hydrothermal route from the original bent rigid thianthrene-2-ylphosphonic acid (TPA). This organic precursor crystallizes in a non-centrosymmetric space group P212121 and presents a unique bent geometry due to the presence of two sulfur atoms in its rigid platform architecture. Obtained as single crystal and polycrystalline powders, the structures of the four hybrid materials were solved using X-ray diffraction on single crystals in a monoclinic P21/c space group. These compounds adopt a lamellar structure consisting of one inorganic subnetwork alternating with a 'sawtooth' double organic -S2C12H7 subnetwork. The inorganic layers of these compounds are made of (PO3C) or partially deprotonated (PO2OHC) tetrahedra connected by the apices to isolated ZnO3(H2O) tetrahedra, Cu2O6(H2O)2 copper dimers and cobalt and manganese MO4(H2O)2 octahedra, where the latter two exhibit an isotype structure. Thermogravimetric analysis was performed to confirm the amount of water molecules present in the formula, to track the dehydration process of the structures, and to evaluate their thermal stability. The magnetic properties of the copper, cobalt, and manganese-based materials were investigated from 2 K to 300 K by using a SQUID magnetometer revealing dominant antiferromagnetic interactions with Weiss temperatures of -8.0, -10, and -1 K, respectively. These magnetic behaviors were further corroborated by first-principles simulations based on Density Functional Theory (DFT). Finally, the absorption and photoluminescence properties of both the ligand and hybrid materials were investigated, revealing diverse excitation and recombination mechanisms. The organic moiety based on thianthrene significantly influenced the absorption and emission, with additional peaks attributed to transition metals. Singlet and triplet states recombination were observed, accompanied by an unidentified quenching mechanism affecting the triplet state lifetime.
Collapse
Affiliation(s)
- Geoffrey Letheux
- Normandie Univ., ENSICAEN, UNICAEN, CNRS, CRISMAT, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France.
| | - Parameshwari Ganesan
- Normandie Univ., ENSICAEN, UNICAEN, CNRS, CIMAP, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France
| | - Fabien Veillon
- Normandie Univ., ENSICAEN, UNICAEN, CNRS, CRISMAT, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France.
| | - Julien Varignon
- Normandie Univ., ENSICAEN, UNICAEN, CNRS, CRISMAT, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France.
| | - Olivier Perez
- Normandie Univ., ENSICAEN, UNICAEN, CNRS, CRISMAT, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France.
| | - Julien Cardin
- Normandie Univ., ENSICAEN, UNICAEN, CNRS, CIMAP, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France
| | - Christophe Labbé
- Normandie Univ., ENSICAEN, UNICAEN, CNRS, CIMAP, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France
| | - Guillaume Rogez
- IPCMS, UMR Unistra-CNRS 7504, 23 rue du Lœss, BP 43, 67034, Strasbourg Cedex 2, France
| | - Mathilde Ligeour
- Univ. Brest, CEMCA UMR CNRS 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France.
| | - Paul-Alain Jaffrès
- Univ. Brest, CEMCA UMR CNRS 6521, 6 Avenue Victor Le Gorgeu, 29238 Brest, France.
| | - Jean-Michel Rueff
- Normandie Univ., ENSICAEN, UNICAEN, CNRS, CRISMAT, 6 Bd du Maréchal Juin, 14050 Caen Cedex, France.
| |
Collapse
|
6
|
Pantwalawalkar J, Mhettar P, Nangare S, Mali R, Ghule A, Patil P, Mohite S, More H, Jadhav N. Stimuli-Responsive Design of Metal-Organic Frameworks for Cancer Theranostics: Current Challenges and Future Perspective. ACS Biomater Sci Eng 2023; 9:4497-4526. [PMID: 37526605 DOI: 10.1021/acsbiomaterials.3c00507] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Scientific fraternity revealed the potential of stimuli-responsive nanotherapeutics for cancer treatment that aids in tackling the major restrictions of traditionally reported drug delivery systems. Among stimuli-responsive inorganic nanomaterials, metal-organic frameworks (MOFs) have transpired as unique porous materials displaying resilient structures and diverse applications in cancer theranostics. Mainly, it demonstrates tailorable porosity, versatile chemical configuration, tunable size and shape, and feasible surface functionalization, etc. The present review provides insights into the design of stimuli-responsive multifunctional MOFs for targeted drug delivery and bioimaging for effective cancer therapy. Initially, the concept of cancer, traditional cancer treatment, background of MOFs, and approaches for MOFs synthesis have been discussed. After this, applications of stimuli-responsive multifunctional MOFs-assisted nanostructures that include pH, light, ions, temperature, magnetic, redox, ATP, and others for targeted drug delivery and bioimaging in cancer have been thoroughly discussed. As an outcome, the designed multifunctional MOFs showed an alteration in properties due to the exogenous and endogenous stimuli that are beneficial for drug release and bioimaging. The several reported types of stimuli-responsive surface-modified MOFs revealed good biocompatibility to normal cells, promising drug loading capability, target-specific delivery of anticancer drugs into cancerous cells, etc. Despite substantial progress in this field, certain crucial issues need to be addressed to reap the clinical benefits of multifunctional MOFs. Specifically, the toxicological compatibility and biodegradability of the building blocks of MOFs demand a thorough evaluation. Moreover, the investigation of sustainable and greener synthesis methods is of the utmost importance. Also, the low flexibility, off-target accumulation, and compromised pharmacokinetic profile of stimuli-responsive MOFs have attracted keen attention. In conclusion, the surface-modified nanosized design of inorganic diverse stimuli-sensitive MOFs demonstrated great potential for targeted drug delivery and bioimaging in different kinds of cancers. In the future, the preference for stimuli-triggered MOFs will open a new frontier for cancer theranostic applications.
Collapse
Affiliation(s)
- Jidnyasa Pantwalawalkar
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 416013, Kolhapur Maharashtra, India
| | - Prachi Mhettar
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 416013, Kolhapur Maharashtra, India
| | - Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R Patel Institute of Pharmaceutical Education and Research, 425405 Shirpur, Maharashtra, India
| | - Rushikesh Mali
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, 400056 Mumbai, Maharashtra, India
| | - Anil Ghule
- Department of Chemistry, Shivaji University, 416013, Kolhapur Maharashtra, India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R Patel Institute of Pharmaceutical Education and Research, 425405 Shirpur, Maharashtra, India
| | - Suhas Mohite
- Bharati Vidyapeeth Deemed University, Yashwantrao Mohite Arts, Science and Commerce College, 411038 Pune, Maharashtra, India
| | - Harinath More
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, 416013 Kolhapur, Maharashtra, India
| | - Namdeo Jadhav
- Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, 416013, Kolhapur Maharashtra, India
| |
Collapse
|
7
|
Chiang MR, Shen WT, Huang PX, Wang KL, Weng WH, Chang CW, Chiang WH, Liu YC, Chang SJ, Hu SH. Programmed T cells infiltration into lung metastases with harnessing dendritic cells in cancer immunotherapies by catalytic antigen-capture sponges. J Control Release 2023; 360:260-273. [PMID: 37364798 DOI: 10.1016/j.jconrel.2023.06.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/22/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
T lymphocytes served as immune surveillance to suppress metastases by physically interacting with cancer cells. Whereas tumor immune privilege and heterogeneity protect immune attack, it limits immune cell infiltration into tumors, especially in invasive metastatic clusters. Here, a catalytic antigen-capture sponge (CAS) containing the catechol-functionalized copper-based metal organic framework (MOF) and chloroquine (CQ) for programming T cells infiltration is reported. The intravenously injected CAS accumulates at the tumor via the folic acid-mediated target and margination effect. In metastases, Fenton-like reaction induced by copper ions of CAS disrupts the intracellular redox potential, i.e., chemodynamic therapy (CDT), thereby reducing glutathione (GSH) levels. Furthermore, CQ helps inhibit autophagy by inducing lysosomal deacidification during CDT. This process leads to the breakdown of self-defense mechanisms, which exacerbates cytotoxicity. The therapies promote the liberation of tumor-associated antigens, such as neoantigens and damage-associated molecular patterns (DAMPs). Subsequently, the catechol groups present on CAS perform as antigen reservoirs and transport the autologous tumor-associated antigens to dendritic cells, resulting in prolonged immune activation. The CAS, which is capable of forming in-situ, serves as an antigen reservoir in CDT-mediated lung metastasis and leads to the accumulation of immune cells in metastatic clusters, thus hindering metastatic tumors.
Collapse
Affiliation(s)
- Min-Ren Chiang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wei-Ting Shen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan; Department of Nanoengineering, University of California, San Diego, CA 92093, USA
| | - Pin-Xuan Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Kang-Li Wang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wei-Han Weng
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chien-Wen Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Chen Liu
- Laboratory for Human Immunology (Single Cell Genomics), WPI Immunology Frontier Research Center, Osaka University, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, Japan
| | - Shing-Jyh Chang
- Department of Obstetrics and Gynecology, Hsinchu Municipal MacKay Children's Hospital, Hsinchu 300, Taiwan; Department of Nursing, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Shang-Hsiu Hu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 300044, Taiwan.
| |
Collapse
|
8
|
Lin X, Cai L, Cao X, Zhao Y. Stimuli-responsive silk fibroin for on-demand drug delivery. SMART MEDICINE 2023; 2:e20220019. [PMID: 39188280 PMCID: PMC11235688 DOI: 10.1002/smmd.20220019] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 08/28/2024]
Abstract
Stimuli-responsive "smart" hydrogel biomaterials have attracted great attention in the biomedical field, especially in designing novel on-demand drug delivery systems. As a handful natural biomaterial approved by US Food and Drug Administration, silk fibroin (SF) has unique high temperature resistance as well as tunable structural composition. These properties make it one of the most ideal candidates for on-demand drug delivery. Meanwhile, recent advances in polymer modification and nanomaterials have fostered the development of various stimuli-responsive delivery systems. Here, we first review the recent advance in designing responsive SF-based delivery systems in different stimulus sources. These systems are able to release mediators in a desired manner in response to specific stimuli in active or passive manners. We then describe applications of these specially designed responsive delivery systems in wound healing, tumor therapy, as well as immunomodulation. We also discuss the future challenges and prospects of stimuli-responsive SF-based delivery systems.
Collapse
Affiliation(s)
- Xiang Lin
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
| | - Lijun Cai
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
| | - Xinyue Cao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical Engineering, Southeast UniversityNanjingChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| |
Collapse
|
9
|
Fernandes PD, Magalhães FD, Pereira RF, Pinto AM. Metal-Organic Frameworks Applications in Synergistic Cancer Photo-Immunotherapy. Polymers (Basel) 2023; 15:polym15061490. [PMID: 36987269 PMCID: PMC10053741 DOI: 10.3390/polym15061490] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Conventional cancer therapies, such as radiotherapy and chemotherapy, can have long-term side effects. Phototherapy has significant potential as a non-invasive alternative treatment with excellent selectivity. Nevertheless, its applicability is restricted by the availability of effective photosensitizers and photothermal agents, and its low efficacy when it comes to avoiding metastasis and tumor recurrence. Immunotherapy can promote systemic antitumoral immune responses, acting against metastasis and recurrence; however, it lacks the selectivity displayed by phototherapy, sometimes leading to adverse immune events. The use of metal-organic frameworks (MOFs) in the biomedical field has grown significantly in recent years. Due to their distinct properties, including their porous structure, large surface area, and inherent photo-responsive properties, MOFs can be particularly useful in the fields of cancer phototherapy and immunotherapy. MOF nanoplatforms have successfully demonstrated their ability to address several drawbacks associated with cancer phototherapy and immunotherapy, enabling an effective and low-side-effect combinatorial synergistical treatment for cancer. In the coming years, new advancements in MOFs, particularly regarding the development of highly stable multi-function MOF nanocomposites, may revolutionize the field of oncology.
Collapse
Affiliation(s)
- Pedro D. Fernandes
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Fernão D. Magalhães
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Rúben F. Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Artur M. Pinto
- LEPABE, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto, Portugal
- AliCE—Associate Laboratory in Chemical Engineering, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Correspondence:
| |
Collapse
|
10
|
Fatima SF, Sabouni R, Garg R, Gomaa H. Recent advances in Metal-Organic Frameworks as nanocarriers for triggered release of anticancer drugs: Brief history, biomedical applications, challenges and future perspective. Colloids Surf B Biointerfaces 2023; 225:113266. [PMID: 36947901 DOI: 10.1016/j.colsurfb.2023.113266] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Metal-Organic Frameworks (MOFs) have emerged as a promising biomedical material due to its unique features such as high surface area, pore volume, variable pore size, flexible functional groups, and excellent efficiency for drug loading. In this review, we explored the use of novel and smart metal organic frameworks as drug delivery vehicles to discover a safer and more controlled mode of drug release aiming to minimize their side effects. Here, we systematically discussed the background of MOFs following a thorough review on structural and physical properties of MOFs, their synthesis techniques, and the important characteristics to establish a strong foundation for future research. Furthermore, the current status on the potential applications of MOF-based stimuli-responsive drug delivery systems, including pH-, ion-, temperature-, light-, and multiple responsive systems for the delivery of anticancer drugs has also been presented. Lastly, we discuss the prospects and challenges in implementation of MOF-based materials in the drug delivery. Therefore, this review will help researchers working in the relevant fields to enhance their understanding of MOFs for encapsulation of various drugs as well as their stimuli responsive mechanism.
Collapse
Affiliation(s)
- Syeda Fiza Fatima
- Master of Science in Biomedical Engineering Program, College of Engineering, American University of Sharjah, P.O. BOX 26666, Sharjah, United Arab Emirates
| | - Rana Sabouni
- Department of Chemical and Biological Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
| | - Renuka Garg
- Department of Chemical and Biological Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Hassan Gomaa
- Department of Chemical and Biochemical Engineering, Western University, London, Canada
| |
Collapse
|
11
|
Utilization of Functionalized Metal–Organic Framework Nanoparticle as Targeted Drug Delivery System for Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15030931. [PMID: 36986793 PMCID: PMC10051794 DOI: 10.3390/pharmaceutics15030931] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer is a multifaceted disease that results from the complex interaction between genetic and environmental factors. Cancer is a mortal disease with the biggest clinical, societal, and economic burden. Research on better methods of the detection, diagnosis, and treatment of cancer is crucial. Recent advancements in material science have led to the development of metal–organic frameworks, also known as MOFs. MOFs have recently been established as promising and adaptable delivery platforms and target vehicles for cancer therapy. These MOFs have been constructed in a fashion that offers them the capability of drug release that is stimuli-responsive. This feature has the potential to be exploited for cancer therapy that is externally led. This review presents an in-depth summary of the research that has been conducted to date in the field of MOF-based nanoplatforms for cancer therapeutics.
Collapse
|
12
|
Cedrún-Morales M, Ceballos M, Polo E, Del Pino P, Pelaz B. Nanosized metal-organic frameworks as unique platforms for bioapplications. Chem Commun (Camb) 2023; 59:2869-2887. [PMID: 36757184 PMCID: PMC9990148 DOI: 10.1039/d2cc05851k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/16/2022] [Indexed: 02/10/2023]
Abstract
Metal-organic frameworks (MOFs) are extremely versatile materials, which serve to create platforms with exceptional porosity and specific reactivities. The production of MOFs at the nanoscale (NMOFs) offers the possibility of creating innovative materials for bioapplications as long as they maintain the properties of their larger counterparts. Due to their inherent chemical versatility, synthetic methods to produce them at the nanoscale can be combined with inorganic nanoparticles (NPs) to create nanocomposites (NCs) with one-of-a-kind features. These systems can be remotely controlled and can catalyze abiotic reactions in living cells, which have the potential to stimulate further research on these nanocomposites as tools for advanced therapies.
Collapse
Affiliation(s)
- Manuela Cedrún-Morales
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Manuel Ceballos
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Ester Polo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
13
|
Huang HJ, Huang SY, Wang TH, Lin TY, Huang NC, Shih O, Jeng US, Chu CY, Chiang WH. Clay nanosheets simultaneously intercalated and stabilized by PEGylated chitosan as drug delivery vehicles for cancer chemotherapy. Carbohydr Polym 2023; 302:120390. [PMID: 36604068 DOI: 10.1016/j.carbpol.2022.120390] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Montmorillonite (MMT) has been frequently utilized as drug vehicles due to its high specific surface area, excellent cation exchange capacity and biocompatibility. However, the significant flocculation of MMT under physiological condition restricted its application to drug delivery. To conquer this problem, the graft-type PEGylated chitosan (PEG-CS) adducts were synthesized as intercalator to stabilize MMT dispersion. Through electrostatic attraction between the chitosan and MMT, the PEG-CS adducts were adsorbed on MMT surfaces and intercalated into MMT. The resulting PEG-CS/MMT nanosheets possessed PEG-rich surfaces, thus showing outstanding dispersion in serum-containing environment. Moreover, the physicochemical characterization revealed that the increased mass ratio of PEG-CS to MMT led to the microstructure transition of PEG-CS/MMT nanosheets from multilayered to exfoliated structure. Interestingly, the PEG-CS/MMT nanosheets with mass ratio of 8.0 in freeze-dried state exhibited a hierarchical lamellar structure organized by the intercalated MMT bundles and unintercalated PEG-CS domains. Notably, the multilayered PEG-CS/MMT nanosheets showed the capability of loading doxorubicin (DOX) superior to the exfoliated counterparts. Importantly, the DOX@PEG-CS/MMT nanosheets endocytosed by TRAMP-C1 cells liberated the drug progressively within acidic organelles, thereby eliciting cell apoptosis. This work provides a new strategy of achieving the controllable dispersion stability of MMT nanoclays towards application potentials in drug delivery.
Collapse
Affiliation(s)
- Hsuan-Jung Huang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Shih-Yu Huang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Tzu-Hao Wang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Tzu-Yun Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Nan-Ching Huang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Che-Yi Chu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
14
|
Huang SY, Yeh NT, Wang TH, Hsu TC, Chin HY, Tzang BS, Chiang WH. Onion-like doxorubicin-carrying polymeric nanomicelles with tumor acidity-sensitive dePEGylation to expose positively-charged chitosan shell for enhanced cancer chemotherapy. Int J Biol Macromol 2023; 227:925-937. [PMID: 36563808 DOI: 10.1016/j.ijbiomac.2022.12.172] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
To effectively promote antitumor potency of doxorubicin (DOX), a regularly used chemotherapy drug, the tumor acidity-responsive polymeric nanomicelles from self-assembly of the as-synthesized amphiphilic benzoic imine-containing PEGylated chitosan-g-poly(lactic-co-glycolic acid) (PLGA) conjugates were developed as vehicles of DOX. The attained PEGylated chitosan-g-PLGA nanomicelles with high PEGylation degree (H-PEG-CSPNs) were characterized to exhibit a "onion-like" core-shell-corona structure consisting of a hydrophobic PLGA core covered by benzoic imine-rich chitosan shell and outer hydrophilic PEG corona. The DOX-carrying H-PEG-CSPNs (DOX@H-PEG-CSPNs) displayed robust colloidal stability under large-volume dilution condition and in a serum-containing aqueous solution of physiological salt concentration. Importantly, the DOX@H-PEG-CSPNs in weak acidic milieu undergoing the hydrolysis of benzoic imine bonds and increased protonation of chitosan shell showed dePEGylation and surface charge conversion. Also, the considerable swelling of protonated chitosan shell within DOX@H-PEG-CSPNs accelerated drug release. Notably, the cellular internalization of DOX@H-PEG-CSPNs by TRAMP-C1 prostate cancer cells under mimic acidic tumor microenvironment was efficiently boosted upon acidity-triggered detachment of PEG corona and exposure of positively-charged chitosan shell, thus augmenting DOX-mediated anticancer effect. Compared to free DOX molecules, the DOX@H-PEG-CSPNs appreciably suppressed TRAMP-C1 tumor growth in vivo, thereby showing great promise in improving DOX chemotherapy.
Collapse
Affiliation(s)
- Shih-Yu Huang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Nien-Tzu Yeh
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Tzu-Hao Wang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Tsai-Ching Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Hao-Yang Chin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
| | - Bor-Show Tzang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; Immunology Research Center, Chung Shan Medical University, Taichung 402, Taiwan; Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan; Department of Biochemistry, School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
15
|
Le BT, La DD, Nguyen PTH. Ultrasonic-Assisted Fabrication of MIL-100(Fe) Metal-Organic Frameworks as a Carrier for the Controlled Delivery of the Chloroquine Drug. ACS OMEGA 2023; 8:1262-1270. [PMID: 36643433 PMCID: PMC9835187 DOI: 10.1021/acsomega.2c06676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Metal-organic framework materials (MOFs) are materials with an ordered crystalline structure and high porosity that have been intensively investigated for many applications, such as gas adsorption, catalysis, sensors, drug delivery, and so on. Among them, the MOF-based drug delivery system has received increasing interest from scientists worldwide. This work presented the preparation of the MIL-100(Fe) metal-organic framework from the organic ligand of trimesic acid and iron ions with ultrasonic assistance. Scanning electron microscopy (SEM), Brunauer-Emmett-Teller surface area (BET), X-ray diffraction (XRD), infrared spectroscopy (FTIR), and Raman spectroscopy were employed to characterize the prepared MIL-100(Fe) material. MIL-100(Fe) materials synthesized by the ultrasonic method have uniform particle morphology ranging from 100 to 300 nm with a surface area of 1033 m2/g. The prepared MIL-100(Fe) was employed as a carrier for delivering chloroquine drug with a maximal loading capacity of 220 mg/g. The MIL-100(Fe)@chloroquine system was also characterized in detail. The delivery system's slow drug release was studied, showing that nearly 80% of chloroquine molecules were released after 7.5 h of immersing time in PBS and simulated gastric solutions and completely detached from the MIL-100(Fe)@chloroquine system only after approximately 80 h. This result shows the ability to control chloroquine drug release of the material, reducing the possibility of drug shock.
Collapse
Affiliation(s)
- Bac Thanh Le
- Institute of Chemistry and
Materials, Nghia Do, Cau Giay, Hanoi 100000, Vietnam
| | - Duong Duc La
- Institute of Chemistry and
Materials, Nghia Do, Cau Giay, Hanoi 100000, Vietnam
| | | |
Collapse
|
16
|
Ahanger AM, Kumar S. Telescopic synthesis and encapsulation of anticancer drugs from
Ajuga bracteosa
Wall. ex Benth. with zeolitic imidazole framework‐8. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ab Majeed Ahanger
- Botany University of Delhi Faculty of Science New Delhi India
- Environmental Studies University of Delhi Faculty of Science New Delhi India
| | - Suresh Kumar
- Botany University of Delhi Faculty of Science New Delhi India
| |
Collapse
|
17
|
You LX, Zhang L, Cao SY, Liu W, Xiong G, Van Deun R, He YK, Ding F, Dragutan V, Sun YG. Synthesis, structure and luminescence of 3D lanthanide metal-organic frameworks based on 1,3-bis(3,5-dicarboxyphenyl) imidazolium chloride. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Maranescu B, Visa A. Applications of Metal-Organic Frameworks as Drug Delivery Systems. Int J Mol Sci 2022; 23:4458. [PMID: 35457275 PMCID: PMC9026733 DOI: 10.3390/ijms23084458] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022] Open
Abstract
In the last decade, metal organic frameworks (MOFs) have shown great prospective as new drug delivery systems (DDSs) due to their unique properties: these materials exhibit fascinating architectures, surfaces, composition, and a rich chemistry of these compounds. The DSSs allow the release of the active pharmaceutical ingredient to accomplish a desired therapeutic response. Over the past few decades, there has been exponential growth of many new classes of coordination polymers, and MOFs have gained popularity over other identified systems due to their higher biocompatibility and versatile loading capabilities. This review presents and assesses the most recent research, findings, and challenges associated with the use of MOFs as DDSs. Among the most commonly used MOFs for investigated-purpose MOFs, coordination polymers and metal complexes based on synthetic and natural polymers, are well known. Specific attention is given to the stimuli- and multistimuli-responsive MOFs-based DDSs. Of great interest in the COVID-19 pandemic is the use of MOFs for combination therapy and multimodal systems.
Collapse
Affiliation(s)
- Bianca Maranescu
- Coriolan Dragulescu Institute of Chemistry, 24 Mihai Viteazul Blv., 300223 Timisoara, Romania
- Department of Biology-Chemistry, Faculty of Chemistry, Biology, Geography, West University Timisoara, 16 Pestalozzi Street, 300115 Timisoara, Romania
| | - Aurelia Visa
- Coriolan Dragulescu Institute of Chemistry, 24 Mihai Viteazul Blv., 300223 Timisoara, Romania
| |
Collapse
|
19
|
Rao C, Liao D, Pan Y, Zhong Y, Zhang W, Ouyang Q, Nezamzadeh-Ejhieh A, Liu J. Novel formulations of metal-organic frameworks for controlled drug delivery. Expert Opin Drug Deliv 2022; 19:1183-1202. [PMID: 35426756 DOI: 10.1080/17425247.2022.2064450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Congying Rao
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
- These authors have equal contributions
| | - Donghui Liao
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
- These authors have equal contributions
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
- These authors have equal contributions
| | - Yuyu Zhong
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Wenfeng Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Qin Ouyang
- Department of general surgery, Dalang Hospital, Dongguan, 523800, China
| | | | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| |
Collapse
|
20
|
Rautenberg M, Gernhard M, Radnik J, Witt J, Roth C, Emmerling F. Mechanochemical Synthesis of Fluorine-Containing Co-Doped Zeolitic Imidazolate Frameworks for Producing Electrocatalysts. Front Chem 2022; 10:840758. [PMID: 35372277 PMCID: PMC8964432 DOI: 10.3389/fchem.2022.840758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
Catalysts derived from pyrolysis of metal organic frameworks (MOFs) are promising candidates to replace expensive and scarce platinum-based electrocatalysts commonly used in polymer electrolyte membrane fuel cells. MOFs contain ordered connections between metal centers and organic ligands. They can be pyrolyzed into metal- and nitrogen-doped carbons, which show electrocatalytic activity toward the oxygen reduction reaction (ORR). Furthermore, metal-free heteroatom-doped carbons, such as N-F-Cs, are known for being active as well. Thus, a carbon material with Co-N-F doping could possibly be even more promising as ORR electrocatalyst. Herein, we report the mechanochemical synthesis of two polymorphs of a zeolitic imidazole framework, Co-doped zinc 2-trifluoromethyl-1H-imidazolate (Zn0.9Co0.1(CF3-Im)2). Time-resolved in situ X-ray diffraction studies of the mechanochemical formation revealed a direct conversion of starting materials to the products. Both polymorphs of Zn0.9Co0.1(CF3-Im)2 were pyrolyzed, yielding Co-N-F containing carbons, which are active toward electrochemical ORR.
Collapse
Affiliation(s)
- Max Rautenberg
- BAM Federal Institute of Materials Research and Testing, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marius Gernhard
- Fakultät für Ingenieurwissenschaften, Lehrstuhl für Werkstoffverfahrenstechnik, Universität Bayreuth, Bayreuth, Germany
| | - Jörg Radnik
- BAM Federal Institute of Materials Research and Testing, Berlin, Germany
| | - Julia Witt
- BAM Federal Institute of Materials Research and Testing, Berlin, Germany
| | - Christina Roth
- Fakultät für Ingenieurwissenschaften, Lehrstuhl für Werkstoffverfahrenstechnik, Universität Bayreuth, Bayreuth, Germany
| | - Franziska Emmerling
- BAM Federal Institute of Materials Research and Testing, Berlin, Germany
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
- *Correspondence: Franziska Emmerling,
| |
Collapse
|
21
|
Programmed Catalytic Therapy-Mediated ROS Generation and T-Cell Infiltration in Lung Metastasis by a Dual Metal-Organic Framework (MOF) Nanoagent. Pharmaceutics 2022; 14:pharmaceutics14030527. [PMID: 35335903 PMCID: PMC8955711 DOI: 10.3390/pharmaceutics14030527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/10/2022] Open
Abstract
Nano-catalytic agents actuating Fenton-like reaction in cancer cells cause intratumoral generation of reactive oxygen species (ROS), allowing the potential for immune therapy of tumor metastasis via the recognition of tumor-associated antigens. However, the self-defense mechanism of cancer cells, known as autophagy, and unsustained ROS generation often restricts efficiency, lowering the immune attack, especially in invading metastatic clusters. Here, a functional core-shell metal-organic framework nanocube (dual MOF) doubling as a catalytic agent and T cell infiltration inducer that programs ROS and inhibits autophagy is reported. The dual MOF integrated a Prussian blue (PB)-coated iron (Fe2+)-containing metal-organic framework (MOF, MIL88) as a programmed peroxide mimic in the cancer cells, facilitating the sustained ROS generation. With the assistance of Chloroquine (CQ), the inhibition of autophagy through lysosomal deacidification breaks off the self-defense mechanism and further improves the cytotoxicity. The purpose of this material design was to inhibit autophagy and ROS efficacy of the tumor, and eventually improve T cell recruitment for immune therapy of lung metastasis. The margination and internalization-mediated cancer cell uptake improve the accumulation of dual MOF of metastatic tumors in vivo. The effective catalytic dual MOF integrated dysfunctional autophagy at the metastasis elicits the ~3-fold recruitment of T lymphocytes. Such synergy of T cell recruitment and ROS generation transported by dual MOF during the metastases successfully suppresses more than 90% of tumor foci in the lung.
Collapse
|
22
|
Ibrahim M, Abuwatfa WH, Awad NS, Sabouni R, Husseini GA. Encapsulation, Release, and Cytotoxicity of Doxorubicin Loaded in Liposomes, Micelles, and Metal-Organic Frameworks: A Review. Pharmaceutics 2022; 14:pharmaceutics14020254. [PMID: 35213987 PMCID: PMC8875190 DOI: 10.3390/pharmaceutics14020254] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/31/2022] Open
Abstract
Doxorubicin (DOX) is one of the most widely used anthracycline anticancer drugs due to its high efficacy and evident antitumoral activity on several cancer types. However, its effective utilization is hindered by the adverse side effects associated with its administration, the detriment to the patients’ quality of life, and general toxicity to healthy fast-dividing cells. Thus, delivering DOX to the tumor site encapsulated inside nanocarrier-based systems is an area of research that has garnered colossal interest in targeted medicine. Nanoparticles can be used as vehicles for the localized delivery and release of DOX, decreasing the effects on neighboring healthy cells and providing more control over the drug’s release and distribution. This review presents an overview of DOX-based nanocarrier delivery systems, covering loading methods, release rate, and the cytotoxicity of liposomal, micellar, and metal organic frameworks (MOFs) platforms.
Collapse
Affiliation(s)
- Mihad Ibrahim
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.I.); (W.H.A.); (N.S.A.); (R.S.)
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.I.); (W.H.A.); (N.S.A.); (R.S.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Nahid S. Awad
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.I.); (W.H.A.); (N.S.A.); (R.S.)
| | - Rana Sabouni
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.I.); (W.H.A.); (N.S.A.); (R.S.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates; (M.I.); (W.H.A.); (N.S.A.); (R.S.)
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Correspondence: ; Tel.: +971-6-515-2970
| |
Collapse
|