1
|
Anil-Inevi M, Ozcivici E. Ring Magnet-Guided Magnetic Manipulation for Biofabrication of 3D Cellular Structures. Methods Mol Biol 2025. [PMID: 39776076 DOI: 10.1007/7651_2024_597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Negative magnetophoresis is employed to levitate cells in a paramagnetic medium without the need for magnetic labeling, preserving their natural state and minimizing toxicity. The single-ring magnet configuration that provides an open space in the levitation chamber enhances culture accessibility and scalability, enabling the formation of millimeter-sized 3D structures through cellular self-assembly. This system provides a versatile and cost-effective approach for diverse applications, including tissue engineering and biofabrication. This protocol outlines a method for biofabrication and maintenance of 3D cellular structures using magnetic levitation with a ring magnet-based setup.
Collapse
Affiliation(s)
- Muge Anil-Inevi
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Izmir, Turkey.
| |
Collapse
|
2
|
Li S, Qiu J, Guo Z, Gao Q, Huang CY, Hao Y, Hu Y, Liang T, Zhai M, Zhang Y, Nie B, Chang WJ, Wang W, Xi R, Wei R. Formation and culture of cell spheroids by using magnetic nanostructures resembling a crown of thorns. Biofabrication 2024; 16:045018. [PMID: 39053493 DOI: 10.1088/1758-5090/ad6794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
In contrast to traditional two-dimensional cell-culture conditions, three-dimensional (3D) cell-culture models closely mimic complexin vivoconditions. However, constructing 3D cell culture models still faces challenges. In this paper, by using micro/nano fabrication method, including lithography, deposition, etching, and lift-off, we designed magnetic nanostructures resembling a crown of thorns. This magnetic crown of thorns (MCT) nanostructure enables the isolation of cells that have endocytosed magnetic particles. To assess the utility of this nanostructure, we used high-flux acquisition of Jurkat cells, an acute-leukemia cell line exhibiting the native phenotype, as an example. The novel structure enabled Jurkat cells to form spheroids within just 30 min by leveraging mild magnetic forces to bring together endocytosed magnetic particles. The size, volume, and arrangement of these spheroids were precisely regulated by the dimensions of the MCT nanostructure and the array configuration. The resulting magnetic cell clusters were uniform in size and reached saturation after 1400 s. Notably, these cell clusters could be easily separated from the MCT nanostructure through enzymatic digestion while maintaining their integrity. These clusters displayed a strong proliferation rate and survival capabilities, lasting for an impressive 96 h. Compared with existing 3D cell-culture models, the approach presented in this study offers the advantage of rapid formation of uniform spheroids that can mimicin vivomicroenvironments. These findings underscore the high potential of the MCT in cell-culture models and magnetic tissue enginerring.
Collapse
Affiliation(s)
- Shijiao Li
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Jingjiang Qiu
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Zhongwei Guo
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Qiulei Gao
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Chen-Yu Huang
- Division of Cardiology, Johns Hopkins Hospital, Baltimore, MD, United States of America
| | - Yilin Hao
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yifan Hu
- Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Henan Spring Biotechnology Ltd Company, Zhengzhou 450001, People's Republic of China
- Division of Logistics, Weistron Co., Ltd, Zhengzhou 450001, People's Republic of China
| | - Tianshui Liang
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Ming Zhai
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yudong Zhang
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Bangbang Nie
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Wei-Jen Chang
- Department of Biology, Hamilton College, Clinton, NY, United States of America
| | - Wen Wang
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Rui Xi
- School of Mechanical Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, People's Republic of China
| | - Ronghan Wei
- Engineering Technology Research Center of Henan Province for MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
- Industrial Technology Research Institute, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
3
|
Ahmadpour A, Shojaeian M, Tasoglu S. Deep learning-augmented T-junction droplet generation. iScience 2024; 27:109326. [PMID: 38510144 PMCID: PMC10951907 DOI: 10.1016/j.isci.2024.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Droplet generation technology has become increasingly important in a wide range of applications, including biotechnology and chemical synthesis. T-junction channels are commonly used for droplet generation due to their integration capability of a larger number of droplet generators in a compact space. In this study, a finite element analysis (FEA) approach is employed to simulate droplet production and its dynamic regimes in a T-junction configuration and collect data for post-processing analysis. Next, image analysis was performed to calculate the droplet length and determine the droplet generation regime. Furthermore, machine learning (ML) and deep learning (DL) algorithms were applied to estimate outputs through examination of input parameters within the simulation range. At the end, a graphical user interface (GUI) was developed for estimation of the droplet characteristics based on inputs, enabling the users to preselect their designs with comparable microfluidic configurations within the studied range.
Collapse
Affiliation(s)
- Abdollah Ahmadpour
- Mechanical Engineering Department, School of Engineering, Koç University, Istanbul 34450, Türkiye
| | - Mostafa Shojaeian
- Mechanical Engineering Department, School of Engineering, Koç University, Istanbul 34450, Türkiye
| | - Savas Tasoglu
- Mechanical Engineering Department, School of Engineering, Koç University, Istanbul 34450, Türkiye
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Türkiye
- Koç University Is Bank Artificial Intelligence Lab (KUIS AILab), Koç University, Sariyer, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Türkiye
| |
Collapse
|
4
|
Li H, Zhang Z, Yi X, Jin S, Chen Y. Control of Self-Winding Microrobot Using an Electromagnetic Drive System: Integration of Movable Electromagnetic Coil and Permanent Magnet. MICROMACHINES 2024; 15:438. [PMID: 38675250 PMCID: PMC11052315 DOI: 10.3390/mi15040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Achieving precise control over the motion position and attitude direction of magnetic microrobots remains a challenging task in the realm of microrobotics. To address this challenge, our research team has successfully implemented synchronized control of a microrobot's motion position and attitude direction through the integration of electromagnetic coils and permanent magnets. The whole drive system consists of two components. Firstly, a stepper motor propels the delta structure, altering the position of the end-mounted permanent magnet to induce microrobot movement. Secondly, a programmable DC power supply regulates the current strength in the electromagnetic coil, thereby manipulating the magnetic field direction at the end and influencing the permanent magnet's attitude, guiding the microrobot in attitude adjustments. The microrobot used for performance testing in this study was fabricated by blending E-dent400 photosensitive resin and NdFeB particles, employing a Single-Layer 4D Printing System Using Focused Light. To address the microrobot drive system's capabilities, experiments were conducted in a two-dimensional and three-dimensional track, simulating the morphology of human liver veins. The microrobot exhibited an average speed of 1.3 mm/s (movement error ± 0.5 mm). Experimental results validated the drive system's ability to achieve more precise control over the microrobot's movement position and attitude rotation. The outcomes of this study offer valuable insights for future electromagnetic drive designs and the application of microrobots in the medical field.
Collapse
Affiliation(s)
- Hao Li
- Department of Mechatronics and Information Engineering, Shandong University at Weihai, Weihai 264209, China;
| | - Zhaopeng Zhang
- Department of Mechanical Engineering, Yanbian University, Yanji 133002, China; (Z.Z.); (X.Y.)
| | - Xin Yi
- Department of Mechanical Engineering, Yanbian University, Yanji 133002, China; (Z.Z.); (X.Y.)
| | - Shanhai Jin
- Department of Mechanical Engineering, Yanbian University, Yanji 133002, China; (Z.Z.); (X.Y.)
| | - Yuan Chen
- Department of Mechatronics and Information Engineering, Shandong University at Weihai, Weihai 264209, China;
| |
Collapse
|
5
|
Xia L, Liu J, Zhu X, Liu R, Wen H, Cao Q. Asymmetric magnetic levitation for density-based measurement and analysis. Anal Chim Acta 2024; 1287:341951. [PMID: 38182357 DOI: 10.1016/j.aca.2023.341951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/25/2023] [Accepted: 10/21/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Magnetic levitation (MagLev) based on negative magnetophoresis represents a promising technology for density-based analysis and manipulation of nonmagnetic objects. This approach has garnered considerable interest across multiple fields, such as chemistry, materials science, and biochemistry, primarily due to its inherent simplicity, precision, and cost-effectiveness. However, it is essential to recognize that frequently used MagLev configurations, including standard MagLev and axial MagLev, are not without their limitations. These configurations often struggle to strike a balance between levitation performance, ease of operation, and visibility. Therefore, it is necessary to develop a new MagLev configuration to address the aforementioned issue. RESULTS This work describes the development of an innovative MagLev, termed "asymmetric MagLev", achieved by combining a ring magnet and a cylinder magnet as up-down asymmetric magnetic field sources. The asymmetric design overcomes the physical obstacles along the centerline of the standard MagLev, offering unique open-structure advantages, including easy handling of samples, the ability to observe samples from the top or bottom, and no restrictions on the container height. Meanwhile, comparative analysis reveals a considerable enhancement in the working distance of the asymmetric MagLev without significantly sacrificing the measurement range compared to the axial MagLev. Notably, the asymmetric MagLev achieves a remarkable sensitivity of up to about 1.8 × 104 mm (g cm-3)-1, surpassing the axial MagLev by approximately 30 times. Furthermore, experimental results validate the successful application of the asymmetric MagLev in density measurement and quality detection of small-sized objects. SIGNIFICANCE This pioneering configuration represents the first utilization of up-down asymmetric magnets in the field of MagLev. Through the integration of an axially magnetized ring magnet and a cylinder magnet, the asymmetric MagLev design overcomes the limitations associated with conventional MagLev configurations. This innovative design exhibits outstanding operational capabilities and levitation performance, making it suitable for a wide range of applications in density-based measurement and analysis.
Collapse
Affiliation(s)
- Liangyu Xia
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China; State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jialuo Liu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China; State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xinhui Zhu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China; State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ruiqi Liu
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China; State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Wen
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China; State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Quanliang Cao
- Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China; State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
6
|
Tepe U, Aslanbay Guler B, Imamoglu E. Applications and sensory utilizations of magnetic levitation in 3D cell culture for tissue Engineering. Mol Biol Rep 2023; 50:7017-7025. [PMID: 37378748 DOI: 10.1007/s11033-023-08585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
3D cell culture approaches are cell culture methods that provide good visualization of interactions between cells while preserving the natural growth pattern. In recent years, several studies have managed to implement magnetic levitation technology on 3D cell culture applications by either combining cells with magnetic nanoparticles (positive magnetophoresis) or applying a magnetic field directly to the cells in a high-intensity medium (negative magnetophoresis). The positive magnetophoresis technique consists of integrating magnetic nanoparticles into the cells, while the negative magnetophoresis technique consists of levitating the cells without labelling them with magnetic nanoparticles. Magnetic levitation methods can be used to manipulate 3D culture, provide more complex habitats and custom control, or display density data as a sensor.The present review aims to show the advantages, limitations, and promises of magnetic 3D cell culture, along with its application methods, tools, and capabilities as a density sensor. In this context, the promising magnetic levitation technique on 3D cell cultures could be fully utilized in further studies with precise control.
Collapse
Affiliation(s)
- Ugur Tepe
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Bahar Aslanbay Guler
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey
| | - Esra Imamoglu
- Faculty of Engineering, Department of Bioengineering, Ege University, Izmir, Turkey.
| |
Collapse
|
7
|
Gao QH, Song PH, Zou HX, Wu ZY, Zhao LC, Zhang WM. Dynamically Rotating Magnetic Levitation to Characterize the Spatial Density Heterogeneity of Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300219. [PMID: 37127886 PMCID: PMC10369266 DOI: 10.1002/advs.202300219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Magnetic levitation (MagLev) is a promising technology for density-based analysis and manipulation of nonmagnetic materials. One major limitation is that extant MagLev methods are based on the static balance of gravitational-magnetic forces, thereby leading to an inability to resolve interior differences in density. Here a new strategy called "dynamically rotating MagLev" is proposed, which combines centrifugal force and nonlinear magnetic force to amplify the interior differences in density. The design of the nonlinear magnetic force in tandem with centrifugal force supports the regulation of stable equilibriums, enabling different homogeneous objects to reach distinguishable equilibrium orientations. Without reducing the magnetic susceptibility, the dynamically rotating MagLev system can lead to a relatively large change in orientation angle (∆ψ > 50°) for the heterogeneous parts with small inclusions (volume fraction VF = 2.08%). The rich equilibrium states of levitating objects invoke the concept of levitation stability, which is employed, for the first time, to characterize the spatial density heterogeneity of objects. Exploiting the tunable nonlinear levitation behaviors of objects provides a new paradigm for developing operationally simple, nondestructive density heterogeneity characterization methods. Such methods have tremendous potential in applications related to sorting, orienting, and assembling objects in three dimensions.
Collapse
Affiliation(s)
- Qiu-Hua Gao
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peng-Hui Song
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hong-Xiang Zou
- Hunan Provincial Key Laboratory of Vehicle Power and Transmission System, Hunan Institute of Engineering, 88 Fuxing East Road, Xiangtan, 411104, P. R. China
| | - Zhi-Yuan Wu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lin-Chuan Zhao
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wen-Ming Zhang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- SJTU Paris Elite Institute of Technology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
8
|
Yu J, Li D, Zhu C, Ouyang Q, Miao C, Yu H. A Magnetic Levitation System for Range/Sensitivity-Tunable Measurement of Density. SENSORS (BASEL, SWITZERLAND) 2023; 23:3955. [PMID: 37112295 PMCID: PMC10143956 DOI: 10.3390/s23083955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 06/19/2023]
Abstract
Magnetic levitation (MagLev) is a promising density-based analytical technique with numerous applications. Several MagLev structures with different levels of sensitivity and range have been studied. However, these MagLev structures can seldom satisfy the different performance requirements simultaneously, such as high sensitivity, wide measurement range, and easy operation, which have prevented them from being widely used. In this work, a tunable MagLev system was developed. It is confirmed by numerical simulation and experiments that this system possesses a high resolution down to 10-7 g/cm3 or even higher compared to the existing systems. Meanwhile, the resolution and range of this tunable system can be adjusted to meet different requirements of measurement. More importantly, this system can be operated simply and conveniently. This bundle of characteristics demonstrates that the novel tunable MagLev system could be handily applied in various density-based analyses on demand, which would greatly expand the ability of MagLev technology.
Collapse
Affiliation(s)
- Junhui Yu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Donghai Li
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Chengxian Zhu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Qiran Ouyang
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Chunyang Miao
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Haidong Yu
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- Xi’an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| |
Collapse
|
9
|
Ko MJ, Hong H, Choi H, Kang H, Kim D. Multifunctional Magnetic Nanoparticles for Dynamic Imaging and Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Min Jun Ko
- Department of Radiology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
| | - Hyunsik Hong
- Department of Materials Science and Engineering Korea University Seoul 02841 Republic of Korea
| | - Hyunjun Choi
- Department of Radiology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
- Department of Bioengineering University of Illinois at Chicago Chicago IL 60607 USA
| | - Heemin Kang
- Department of Materials Science and Engineering Korea University Seoul 02841 Republic of Korea
- College of Medicine Korea University Seoul 02841 Republic of Korea
| | - Dong‐Hyun Kim
- Department of Radiology Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
- Department of Bioengineering University of Illinois at Chicago Chicago IL 60607 USA
- Department of Biomedical Engineering McCormick School of Engineering Northwestern University Evanston IL 60208 USA
- Robert H. Lurie Comprehensive Cancer Center Northwestern University Chicago Illinois 60611 USA
| |
Collapse
|
10
|
Ramos‐Sebastian A, Hwang S, Kim SH. Single Coil Mechano-Electromagnetic System for the Automatic 1-Axis Position Feedback 3D Locomotion Control of Magnetic Robots and Their Selective Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201968. [PMID: 35712771 PMCID: PMC9376823 DOI: 10.1002/advs.202201968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/31/2022] [Indexed: 05/13/2023]
Abstract
3D locomotion of magnetic microrobots requires at least one pair of coils per axis and 3D feedback of the position of the microrobot. This results in voluminous systems with high-power usage and a small working space, which require complex and expensive controllers. This study presents a single-coil magneto-electromagnetic system, comprising a parallel robot and coil, capable of precise 3D locomotion control of magnetic millirobots while requiring only feedback of the vertical position of the millirobot. The coil current creates a 2D magnetic trapping point in the horizontal plane, which depends on the position and orientation of the coil and toward which the millirobot moves, eliminating the need for position feedback at such plane. The vertical position of the millirobot is controlled by varying the coil current while receiving feedback from the vertical position of the millirobot. Feedbackless 2D control and 1-axis feedback 3D automatic control of magnetic millirobots are experimentally demonstrated, achieving higher speeds and similar position errors when compared to control systems with 3D position feedback. Furthermore, selective control of two millirobots is demonstrated by matching the region of maximum vertical magnetic force and the targeted millirobot, achieving selective levitation and control of such millirobots.
Collapse
Affiliation(s)
- Armando Ramos‐Sebastian
- Department of Electronics Convergence EngineeringWonkwang UniversityIksan54538Republic of Korea
- Department of IT Convergence Mechatronics EngineeringJeonbuk National UniversityJeonju54896Republic of Korea
| | - Seungchan Hwang
- Department of Electronics Convergence EngineeringWonkwang UniversityIksan54538Republic of Korea
| | - Sung Hoon Kim
- Department of Electronics Convergence EngineeringWonkwang UniversityIksan54538Republic of Korea
- Wonkwang Institute of Materials Science and TechnologyWonkwang UniversityIksan54538Republic of Korea
| |
Collapse
|
11
|
Abstract
Drug testing, either on animals or on 2D cell cultures, has its limitations due to inaccurate mimicking of human pathophysiology. The liver, as one of the key organs that filters and detoxifies the blood, is susceptible to drug-induced injuries. Integrating 3D bioprinting with microfluidic chips to fabricate organ-on-chip platforms for 3D liver cell cultures with continuous perfusion can offer a more physiologically relevant liver-mimetic platform for screening drugs and studying liver function. The development of organ-on-chip platforms may ultimately contribute to personalized medicine as well as body-on-chip technology that can test drug responses and organ–organ interactions on a single or linked chip model.
Collapse
|
12
|
Rabbi F, Dabbagh SR, Angin P, Yetisen AK, Tasoglu S. Deep Learning-Enabled Technologies for Bioimage Analysis. MICROMACHINES 2022; 13:mi13020260. [PMID: 35208385 PMCID: PMC8880650 DOI: 10.3390/mi13020260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 02/05/2023]
Abstract
Deep learning (DL) is a subfield of machine learning (ML), which has recently demonstrated its potency to significantly improve the quantification and classification workflows in biomedical and clinical applications. Among the end applications profoundly benefitting from DL, cellular morphology quantification is one of the pioneers. Here, we first briefly explain fundamental concepts in DL and then we review some of the emerging DL-enabled applications in cell morphology quantification in the fields of embryology, point-of-care ovulation testing, as a predictive tool for fetal heart pregnancy, cancer diagnostics via classification of cancer histology images, autosomal polycystic kidney disease, and chronic kidney diseases.
Collapse
Affiliation(s)
- Fazle Rabbi
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey; (F.R.); (S.R.D.)
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey; (F.R.); (S.R.D.)
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
- Koc University Is Bank Artificial Intelligence Lab (KUIS AILab), Koç University, Sariyer, Istanbul 34450, Turkey
| | - Pelin Angin
- Department of Computer Engineering, Middle East Technical University, Ankara 06800, Turkey;
| | - Ali Kemal Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK;
| | - Savas Tasoglu
- Department of Mechanical Engineering, Koç University, Sariyer, Istanbul 34450, Turkey; (F.R.); (S.R.D.)
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Sariyer, Istanbul 34450, Turkey
- Koc University Is Bank Artificial Intelligence Lab (KUIS AILab), Koç University, Sariyer, Istanbul 34450, Turkey
- Institute of Biomedical Engineering, Boğaziçi University, Çengelköy, Istanbul 34684, Turkey
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
- Correspondence:
| |
Collapse
|