1
|
Dhankhar J, Hofer MD, Linden A, Čorić I. Site-Selective C-H Arylation of Diverse Arenes Ortho to Small Alkyl Groups. Angew Chem Int Ed Engl 2022; 61:e202205470. [PMID: 35830351 DOI: 10.1002/anie.202205470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 01/07/2023]
Abstract
Catalytic systems for direct C-H activation of arenes commonly show preference for electronically activated and sterically exposed C-H sites. Here we show that a range of functionally rich and pharmaceutically relevant arene classes can undergo site-selective C-H arylation ortho to small alkyl substituents, preferably endocyclic methylene groups. The C-H activation is experimentally supported as being the selectivity-determining step, while computational studies of the transition state models indicate the relevance of non-covalent interactions between the catalyst and the methylene group of the substrate. Our results suggest that preference for C(sp2 )-H activation next to alkyl groups could be a general selectivity mode, distinct from common steric and electronic factors.
Collapse
Affiliation(s)
- Jyoti Dhankhar
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Micha D Hofer
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ilija Čorić
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
2
|
Site‐Selective C–H Arylation of Diverse Arenes Ortho to Small Alkyl Groups. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Hashimoto H, Ueda Y, Takasu K, Kawabata T. Catalytic Substrate‐Selective Silylation of Primary Alcohols via Remote Functional‐Group Discrimination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hisashi Hashimoto
- Institute for Chemical Research Kyoto University Gokasho Uji city Kyoto 611-0011 Japan
| | - Yoshihiro Ueda
- Institute for Chemical Research Kyoto University Gokasho Uji city Kyoto 611-0011 Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida Kyoto, Sakyo-ku 606-8501 Kyoto Japan
| | - Takeo Kawabata
- Institute for Chemical Research Kyoto University Gokasho Uji city Kyoto 611-0011 Japan
- Current address: Department of Pharmaceutical Sciences International University of Health and Welfare 137-1 Enokizu Okawa Fukuoka 831-8501 Japan
| |
Collapse
|
4
|
Mayr S, Zipse H. Annelated Pyridine Bases for the Selective Acylation of 1,2‐Diols. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Stefanie Mayr
- Ludwig-Maximilians-Universitat Munchen Chemistry GERMANY
| | - Hendrik Zipse
- Ludwig-Maximilians-Universität Department of Chemistry Butenandt-Str. 5-13 81377 München GERMANY
| |
Collapse
|
5
|
Abstract
Relative rates for the Lewis base-catalyzed acylation of aryl-substituted 1,2-diols with anhydrides differing in size have been determined by turnover-limited competition experiments and absolute kinetics measurements. Depending on the structure of the anhydride reagent, the secondary hydroxyl group of the 1,2-diol reacts faster than the primary one. This preference towards the secondary hydroxyl group is boosted in the second acylation step from the monoesters to the diester through size and additional steric effects. In absolute terms the first acylation step is found to be up to 35 times faster than the second one for the primary alcohols due to neighboring group effects.
Collapse
Affiliation(s)
- Stefanie Mayr
- Department of ChemistryLMU MünchenButenandtstr. 5–1381366MünchenGermany
| | - Hendrik Zipse
- Department of ChemistryLMU MünchenButenandtstr. 5–1381366MünchenGermany
| |
Collapse
|
6
|
Hashimoto H, Ueda Y, Takasu K, Kawabata T. Catalytic Substrate-Selective Silylation of Primary Alcohols via Remote Functional-Group Discrimination. Angew Chem Int Ed Engl 2021; 61:e202114118. [PMID: 34942061 DOI: 10.1002/anie.202114118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 11/07/2022]
Abstract
Silylation of alcohols has generally been known to take place at the sterically most accessible less-hindered hydroxy group. However, we report here the catalyst-controlled substrate-selective silylation of primary alcohols, where the selectivity was controlled independent of the innate reactivity of the hydroxy group based on the steric environment. The chain-length-selective silylation of 1, n- amino alcohol derivatives was achieved, where 1,5-amino alcohol derivatives showed outstanding high reactivity in the presence of analogues with a shorter or longer chain length under catalyst-controlled conditions. A highly substrate-selective catalytic silylation of pentanol analogues was also developed, in which the remote functionality at C(5) from the reacting hydroxy groups was effectively discriminated on silylation.
Collapse
Affiliation(s)
- Hisashi Hashimoto
- Institute for Chemical Research, Kyoto University Gokasho, Uji city, Kyoto, 611-0011, Japan
| | - Yoshihiro Ueda
- Institute for Chemical Research, Kyoto University Gokasho, Uji city, Kyoto, 611-0011, Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences, Kyoto University Yoshida Kyoto, Sakyo-ku, 606-8501, Kyoto, Japan
| | - Takeo Kawabata
- Institute for Chemical Research, Kyoto University Gokasho, Uji city, Kyoto, 611-0011, Japan
- Current address: Department of Pharmaceutical Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 831-8501, Japan
| |
Collapse
|
7
|
Wang S, Arguelles AJ, Tay JH, Hotta M, Zimmerman PM, Nagorny P. Experimental and Computational Studies on Regiodivergent Chiral Phosphoric Acid Catalyzed Cycloisomerization of Mupirocin Methyl Ester. Chemistry 2020; 26:4583-4591. [PMID: 31905253 PMCID: PMC7261366 DOI: 10.1002/chem.201905222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/01/2020] [Indexed: 12/17/2022]
Abstract
This article presents a new strategy for achieving regiocontrol over the endo versus exo modes of cycloisomerizations of epoxide-containing alcohols, which leads to the formation of five- or six-membered cyclic ethers. Unlike traditional methods relying on achiral reagents or enzymes, this approach utilizes chiral phosphoric acids to catalyze the regiodivergent selective formations of either tetrahydrofuran- or tetrahydropyran-containing products. By using methyl ester of epoxide-containing antibiotic mupirocin as the substrate, it is demonstrated that catalytic chiral phosphoric acids (R)-TCYP and (S)-TIPSY could be used to achieve the selective formation of either the six-membered endo product (95:5 r.r.) or the five-membered exo product (77:23 r.r.), correspondingly. This cyclization was found to be unselective under the standard conditions involving various achiral acids, bases, or buffers. The subsequent mechanistic studies using state-of-the-art quantum chemical solutions provided the description of the potential energy surface, which is fully consistent with the experimental observations. Based on these results, highly detailed reaction paths are obtained and a concerted and highly synchronous mechanism is proposed for the formation of both exo and endo products.
Collapse
Affiliation(s)
- Sibin Wang
- Chemistry Department, University of Michigan, 930N. University Ave., Ann Arbor, MI, 48109, USA
| | - Alonso J Arguelles
- Eli Lilly and Company, 1500 South Harding Street, Indiana, IN, 46221, USA
| | - Jia-Hui Tay
- Corteva Agriscience, 9330 Zionsville Rd., Indianapolis, IN, 46268, USA
| | - Miyuki Hotta
- Chemistry Department, University of Michigan, 930N. University Ave., Ann Arbor, MI, 48109, USA
| | - Paul M Zimmerman
- Chemistry Department, University of Michigan, 930N. University Ave., Ann Arbor, MI, 48109, USA
| | - Pavel Nagorny
- Chemistry Department, University of Michigan, 930N. University Ave., Ann Arbor, MI, 48109, USA
| |
Collapse
|
8
|
Flanagan ML, Arguello AE, Colman DE, Kim J, Krejci JN, Liu S, Yao Y, Zhang Y, Gorin DJ. A DNA-conjugated small molecule catalyst enzyme mimic for site-selective ester hydrolysis. Chem Sci 2018; 9:2105-2112. [PMID: 29732115 PMCID: PMC5911826 DOI: 10.1039/c7sc04554a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/10/2018] [Indexed: 12/19/2022] Open
Abstract
The challenge of site-selectivity must be overcome in many chemical research contexts, including selective functionalization in complex natural products and labeling of one biomolecule in a living system. Synthetic catalysts incorporating molecular recognition domains can mimic naturally-occurring enzymes to direct a chemical reaction to a particular instance of a functional group. We propose that DNA-conjugated small molecule catalysts (DCats), prepared by tethering a small molecule catalyst to a DNA aptamer, are a promising class of reagents for site-selective transformations. Specifically, a DNA-imidazole conjugate able to increase the rate of ester hydrolysis in a target ester by >100-fold compared with equimolar untethered imidazole was developed. Other esters are unaffected. Furthermore, DCat-catalyzed hydrolysis follows enzyme-like kinetics and a stimuli-responsive variant of the DCat enables programmable "turn on" of the desired reaction.
Collapse
Affiliation(s)
- Moira L Flanagan
- Smith College , Department of Chemistry , Northampton , MA 01063 , USA .
| | - A Emilia Arguello
- Smith College , Department of Chemistry , Northampton , MA 01063 , USA .
| | - Drew E Colman
- Smith College , Department of Chemistry , Northampton , MA 01063 , USA .
| | - Jiyeon Kim
- Smith College , Department of Chemistry , Northampton , MA 01063 , USA .
| | - Jesse N Krejci
- Smith College , Department of Chemistry , Northampton , MA 01063 , USA .
| | - Shimu Liu
- Smith College , Department of Chemistry , Northampton , MA 01063 , USA .
| | - Yueyu Yao
- Smith College , Department of Chemistry , Northampton , MA 01063 , USA .
| | - Yu Zhang
- Smith College , Department of Chemistry , Northampton , MA 01063 , USA .
| | - David J Gorin
- Smith College , Department of Chemistry , Northampton , MA 01063 , USA .
| |
Collapse
|
9
|
Tay JH, Argüelles AJ, DeMars MD, Zimmerman PM, Sherman DH, Nagorny P. Regiodivergent Glycosylations of 6-Deoxy-erythronolide B and Oleandomycin-Derived Macrolactones Enabled by Chiral Acid Catalysis. J Am Chem Soc 2017; 139:8570-8578. [PMID: 28627172 PMCID: PMC5553906 DOI: 10.1021/jacs.7b03198] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This work describes the first example of using chiral catalysts to control site-selectivity for the glycosylations of complex polyols such as 6-deoxyerythronolide B and oleandomycin-derived macrolactones. The regiodivergent introduction of sugars at the C3, C5, and C11 positions of macrolactones was achieved by selecting appropriate chiral acids as catalysts or through introduction of stoichiometric boronic acid-based additives. BINOL-based chiral phosphoric acids (CPAs) were used to catalyze highly selective glycosylations at the C5 positions of macrolactones (up to 99:1 rr), whereas the use of SPINOL-based CPAs resulted in selectivity switch and glycosylation of the C3 alcohol (up to 91:9 rr). Additionally, the C11 position of macrolactones was selectively functionalized through traceless protection of the C3/C5 diol with boronic acids prior to glycosylation. Investigation of the reaction mechanism for the CPA-controlled glycosylations revealed the involvement of covalently linked anomeric phosphates rather than oxocarbenium ion pairs as the reactive intermediates.
Collapse
Affiliation(s)
- Jia-Hui Tay
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 United States
| | - Alonso J. Argüelles
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 United States
| | - Matthew D. DeMars
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 United States
| | - Paul M. Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 United States
| | - David H. Sherman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109 United States
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109 United States
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109 United States
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109 United States
| |
Collapse
|
10
|
Axelsson A, Ta L, Sundén H. Direct Highly Regioselective Functionalization of Carbohydrates: A Three-Component Reaction Combining the Dissolving and Catalytic Efficiency of Ionic Liquids. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anton Axelsson
- Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 41296 Göteborg Sweden
| | - Linda Ta
- Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 41296 Göteborg Sweden
| | - Henrik Sundén
- Chemistry and Chemical Engineering; Chalmers University of Technology; Kemivägen 10 41296 Göteborg Sweden
| |
Collapse
|
11
|
Cramer DL, Bera S, Studer A. Exploring Cooperative Effects in Oxidative NHC Catalysis: Regioselective Acylation of Carbohydrates. Chemistry 2016; 22:7403-7. [PMID: 27038068 DOI: 10.1002/chem.201601398] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Indexed: 01/11/2023]
Abstract
The utility of oxidative NHC catalysis for both the regioselective and chemoselective functionalization of carbohydrates is explored. Chiral NHCs allow for the highly regioselective oxidative esterification of various carbohydrates using aldehydes as acylation precursors. The transformation was also shown to be amenable to both cis/trans diol isomers, free amino groups, and selective for specific sugar epimers in competition experiments. Efficiency and regioselectivity of the acylation can be improved upon using two different NHC catalysts that act cooperatively. The potential of the method is documented by the regioselective acylation of an amino-linked neodisaccharide.
Collapse
Affiliation(s)
- David L Cramer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Srikrishna Bera
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstraße 40, 48149, Münster, Germany.
| |
Collapse
|
12
|
Piggott AM, Karuso P. Identifying the cellular targets of natural products using T7 phage display. Nat Prod Rep 2016; 33:626-36. [DOI: 10.1039/c5np00128e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A description of the T7 phage biopanning procedure is provided with tips and advice suitable for setup in a chemistry laboratory.
Collapse
Affiliation(s)
- Andrew M. Piggott
- Department of Chemistry and Biomolecular Sciences
- Macquarie University
- Sydney
- Australia
| | - Peter Karuso
- Department of Chemistry and Biomolecular Sciences
- Macquarie University
- Sydney
- Australia
| |
Collapse
|
13
|
|
14
|
Vohidov F, Coughlin JM, Ball ZT. Rhodium(II) Metallopeptide Catalyst Design Enables Fine Control in Selective Functionalization of Natural SH3 Domains. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Vohidov F, Coughlin JM, Ball ZT. Rhodium(II) Metallopeptide Catalyst Design Enables Fine Control in Selective Functionalization of Natural SH3 Domains. Angew Chem Int Ed Engl 2015; 54:4587-91. [DOI: 10.1002/anie.201411745] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/13/2015] [Indexed: 12/29/2022]
|
16
|
Shin I, Wang G, Krische MJ. Catalyst-directed diastereo- and site-selectivity in successive nucleophilic and electrophilic allylations of chiral 1,3-diols: protecting-group-free synthesis of substituted pyrans. Chemistry 2014; 20:13382-9. [PMID: 25169904 PMCID: PMC4177504 DOI: 10.1002/chem.201404065] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Indexed: 12/12/2022]
Abstract
The iridium-catalyzed, protecting group-free synthesis of 4-hydroxy-2,6-cis- or trans-pyrans through successive nucleophilic and electrophilic allylations of chiral 1,3-diols occurs with complete levels of catalyst-directed diastereoselectivity in the absence of protecting groups, premetallated reagents, or discrete alcohol-to-aldehyde redox reactions.
Collapse
Affiliation(s)
- Inji Shin
- University of Texas at Austin, Department of Chemistry, 1 University Station – A5300, Austin, TX 78712-1167 (USA)
| | - Gang Wang
- University of Texas at Austin, Department of Chemistry, 1 University Station – A5300, Austin, TX 78712-1167 (USA)
| | - Michael J. Krische
- University of Texas at Austin, Department of Chemistry, 1 University Station – A5300, Austin, TX 78712-1167 (USA)
| |
Collapse
|
17
|
Chen IH, Kou KGM, Le DN, Rathbun CM, Dong VM. Recognition and site-selective transformation of monosaccharides by using copper(II) catalysis. Chemistry 2014; 20:5013-8. [PMID: 24623522 DOI: 10.1002/chem.201400133] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Indexed: 01/13/2023]
Abstract
We demonstrate copper(II)-catalyzed acylation and tosylation of monosaccharides. Various carbohydrate derivatives, including glucopyranosides and ribofuranosides, are obtained in high yields and regioselectivities. Using this versatile strategy, the site of acylation can be switched by choice of ligand. Preliminary mechanistic studies support nucleophilic addition of a copper-sugar complex to the acyl chloride to be turnover limiting.
Collapse
Affiliation(s)
- I-Hon Chen
- Department of Chemistry, University of California, Irvine, Natural Sciences 1, University of California, Irvine, California 92697 (USA)
| | | | | | | | | |
Collapse
|
18
|
Mensah E, Camasso N, Kaplan W, Nagorny P. Chiral Phosphoric Acid Directed Regioselective Acetalization of Carbohydrate-Derived 1,2-Diols. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201304298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
19
|
Mensah E, Camasso N, Kaplan W, Nagorny P. Chiral Phosphoric Acid Directed Regioselective Acetalization of Carbohydrate-Derived 1,2-Diols. Angew Chem Int Ed Engl 2013; 52:12932-6. [DOI: 10.1002/anie.201304298] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/29/2013] [Indexed: 01/21/2023]
|
20
|
Akagawa K, Sen J, Kudo K. Peptide-Catalyzed Regio- and Enantioselective Reduction of α,β,γ,δ-Unsaturated Aldehydes. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Akagawa K, Sen J, Kudo K. Peptide-Catalyzed Regio- and Enantioselective Reduction of α,β,γ,δ-Unsaturated Aldehydes. Angew Chem Int Ed Engl 2013; 52:11585-8. [DOI: 10.1002/anie.201305004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Indexed: 12/25/2022]
|
22
|
Pathak TP, Miller SJ. Chemical tailoring of teicoplanin with site-selective reactions. J Am Chem Soc 2013; 135:8415-22. [PMID: 23692563 DOI: 10.1021/ja4038998] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Semisynthesis of natural product derivatives combines the power of fermentation with orthogonal chemical reactions. Yet, chemical modification of complex structures represents an unmet challenge, as poor selectivity often undermines efficiency. The complex antibiotic teicoplanin eradicates bacterial infections. However, as resistance emerges, the demand for improved analogues grows. We have discovered chemical reactions that achieve site-selective alteration of teicoplanin. Utilizing peptide-based additives that alter reaction selectivities, certain bromo-teicoplanins are accessible. These new compounds are also scaffolds for selective cross-coupling reactions, enabling further molecular diversification. These studies enable two-step access to glycopeptide analogues not available through either biosynthesis or rapid total chemical synthesis alone. The new compounds exhibit a spectrum of activities, revealing that selective chemical alteration of teicoplanin may lead to analogues with attenuated or enhanced antibacterial properties, in particular against vancomycin- and teicoplanin-resistant strains.
Collapse
Affiliation(s)
- Tejas P Pathak
- Department of Chemistry, Yale University , P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | | |
Collapse
|
23
|
Dechert-Schmitt AMR, Schmitt DC, Krische MJ. Protecting-Group-Free Diastereoselective CC Coupling of 1,3-Glycols and Allyl Acetate through Site-Selective Primary Alcohol Dehydrogenation. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209863] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Dechert-Schmitt AMR, Schmitt DC, Krische MJ. Protecting-group-free diastereoselective C-C coupling of 1,3-glycols and allyl acetate through site-selective primary alcohol dehydrogenation. Angew Chem Int Ed Engl 2013; 52:3195-8. [PMID: 23364927 DOI: 10.1002/anie.201209863] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Indexed: 11/07/2022]
Affiliation(s)
- Anne-Marie R Dechert-Schmitt
- University of Texas at Austin, Department of Chemistry and Biochemistry, 1 University Station-A5300, Austin, TX 78712-1167, USA
| | | | | |
Collapse
|
25
|
Yoshida K, Mishiro K, Ueda Y, Shigeta T, Furuta T, Kawabata T. Non-Enzymatic Geometry-Selective Acylation of Tri- and Tetrasubstituted α,α′-Alkenediols. Adv Synth Catal 2012. [DOI: 10.1002/adsc.201200242] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
|
27
|
Mahatthananchai J, Dumas AM, Bode JW. Catalytic Selective Synthesis. Angew Chem Int Ed Engl 2012; 51:10954-90. [DOI: 10.1002/anie.201201787] [Citation(s) in RCA: 355] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Indexed: 11/08/2022]
|
28
|
Lee JH, Oh CH. ChemoselectiveO-Benzylation of the Propargylic Hydroxy Group in Polyols. European J Org Chem 2012. [DOI: 10.1002/ejoc.201201086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
29
|
Sambasivan R, Ball ZT. Screening Rhodium Metallopeptide Libraries “On Bead”: Asymmetric Cyclopropanation and a Solution to the Enantiomer Problem. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202512] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ramya Sambasivan
- Department of Chemistry MS 60, Rice University, 6100 Main street, Houston, TX 77005 (USA) http://www.ztb.rice.edu
| | - Zachary T. Ball
- Department of Chemistry MS 60, Rice University, 6100 Main street, Houston, TX 77005 (USA) http://www.ztb.rice.edu
| |
Collapse
|
30
|
Sambasivan R, Ball ZT. Screening Rhodium Metallopeptide Libraries “On Bead”: Asymmetric Cyclopropanation and a Solution to the Enantiomer Problem. Angew Chem Int Ed Engl 2012; 51:8568-72. [DOI: 10.1002/anie.201202512] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/08/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Ramya Sambasivan
- Department of Chemistry MS 60, Rice University, 6100 Main street, Houston, TX 77005 (USA) http://www.ztb.rice.edu
| | - Zachary T. Ball
- Department of Chemistry MS 60, Rice University, 6100 Main street, Houston, TX 77005 (USA) http://www.ztb.rice.edu
| |
Collapse
|
31
|
Jordan PA, Miller SJ. An approach to the site-selective deoxygenation of hydroxy groups based on catalytic phosphoramidite transfer. Angew Chem Int Ed Engl 2012; 51:2907-11. [PMID: 22319027 PMCID: PMC3319666 DOI: 10.1002/anie.201109033] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Indexed: 12/24/2022]
Affiliation(s)
- Peter A. Jordan
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, Fax: (+1) 203-496-4900
| | - Scott J. Miller
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520-8107, Fax: (+1) 203-496-4900
| |
Collapse
|
32
|
Muramatsu W, Tanigawa S, Takemoto Y, Yoshimatsu H, Onomura O. Organotin‐Catalyzed Highly Regioselective Thiocarbonylation of Nonprotected Carbohydrates and Synthesis of Deoxy Carbohydrates in a Minimum Number of Steps. Chemistry 2012; 18:4850-3. [DOI: 10.1002/chem.201104007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/03/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Wataru Muramatsu
- Graduate School of Biomedical Sciences, Nagasaki University, 1‐14 Bunkyo‐machi, Nagasaki 852‐8521 (Japan)
| | - Satoko Tanigawa
- Graduate School of Biomedical Sciences, Nagasaki University, 1‐14 Bunkyo‐machi, Nagasaki 852‐8521 (Japan)
| | - Yuki Takemoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1‐14 Bunkyo‐machi, Nagasaki 852‐8521 (Japan)
| | - Hirofumi Yoshimatsu
- Graduate School of Biomedical Sciences, Nagasaki University, 1‐14 Bunkyo‐machi, Nagasaki 852‐8521 (Japan)
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1‐14 Bunkyo‐machi, Nagasaki 852‐8521 (Japan)
| |
Collapse
|
33
|
Jordan PA, Miller SJ. An Approach to the Site-Selective Deoxygenation of Hydroxy Groups Based on Catalytic Phosphoramidite Transfer. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201109033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Müller CE, Schreiner PR. Organokatalytischer, enantioselektiver Acyltransfer auf racemische sowie meso-Alkohole, -Amine und -Thiole. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201006128] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
35
|
Müller CE, Schreiner PR. Organocatalytic Enantioselective Acyl Transfer onto Racemic as well as meso Alcohols, Amines, and Thiols. Angew Chem Int Ed Engl 2011; 50:6012-42. [DOI: 10.1002/anie.201006128] [Citation(s) in RCA: 315] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Yoshida K, Furuta T, Kawabata T. Organocatalytic Chemoselective Monoacylation of 1,n-Linear Diols. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201100700] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Yoshida K, Furuta T, Kawabata T. Organocatalytic Chemoselective Monoacylation of 1,n-Linear Diols. Angew Chem Int Ed Engl 2011; 50:4888-92. [DOI: 10.1002/anie.201100700] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Indexed: 11/06/2022]
|
38
|
Zhou CY, Li J, Peddibhotla S, Romo D. Mild Arming and Derivatization of Natural Products via an In(OTf)3-Catalyzed Arene Iodination. Org Lett 2010; 12:2104-7. [DOI: 10.1021/ol100587j] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cong-Ying Zhou
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012
| | - Jing Li
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012
| | | | - Daniel Romo
- Department of Chemistry, P.O. Box 30012, Texas A&M University, College Station, Texas 77842-3012
| |
Collapse
|
39
|
Kumar RR, Kagan H. Regioselective Reactions on a Chiral Substrate Controlled by the Configuration of a Chiral Catalyst. Adv Synth Catal 2010. [DOI: 10.1002/adsc.200900822] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Afagh N, Yudin A. Chemoselectivity and the Curious Reactivity Preferences of Functional Groups. Angew Chem Int Ed Engl 2010; 49:262-310. [DOI: 10.1002/anie.200901317] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicholas A. Afagh
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6 (Canada)
| | - Andrei K. Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6 (Canada)
| |
Collapse
|
41
|
Afagh N, Yudin A. Chemoselektivität und die eigentümlichen Reaktivitäten funktioneller Gruppen. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200901317] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nicholas A. Afagh
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6 (Kanada)
| | - Andrei K. Yudin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6 (Kanada)
| |
Collapse
|
42
|
Wiesner M, Neuburger M, Wennemers H. Tripeptides of the Type H-D-Pro-Pro-Xaa-NH2as Catalysts for Asymmetric 1,4-Addition Reactions: Structural Requirements for High Catalytic Efficiency. Chemistry 2009; 15:10103-9. [DOI: 10.1002/chem.200901021] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Buchan ZA, Bader SJ, Montgomery J. Ketone hydrosilylation with sugar silanes followed by intramolecular aglycone delivery: an orthogonal glycosylation strategy. Angew Chem Int Ed Engl 2009; 48:4840-4. [PMID: 19492383 DOI: 10.1002/anie.200901666] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gettin' a little sugar-no alcohol required: A procedure for the direct glycosylation of ketones without a hydroxy intermediate enables the site-selective glycosylation of hydroxyketones at the ketone or the alcohol functionality without the use of protecting groups on the aglycone (see scheme). Site selectivity is controlled by the catalyst structure in hydrosilylation and dehydrogenative silylation reactions with sugar silanes. Bn=benzyl.
Collapse
Affiliation(s)
- Zachary A Buchan
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | |
Collapse
|
44
|
Chen X, Engle K, Wang DH, Yu JQ. Palladium(II)-katalysierte C-H-Aktivierung/C-C-Kreuzkupplung: Vielseitigkeit und Anwendbarkeit. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200806273] [Citation(s) in RCA: 1142] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Buchan Z, Bader S, Montgomery J. Ketone Hydrosilylation with Sugar Silanes Followed by Intramolecular Aglycone Delivery: An Orthogonal Glycosylation Strategy. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200901666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
46
|
You Z, Hoveyda A, Snapper M. Catalytic Enantioselective Silylation of Acyclic and Cyclic Triols: Application to Total Syntheses of Cleroindicins D, F, and C. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200805338] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Chen X, Engle KM, Wang DH, Yu JQ. Palladium(II)-catalyzed C-H activation/C-C cross-coupling reactions: versatility and practicality. Angew Chem Int Ed Engl 2009; 48:5094-115. [PMID: 19557755 PMCID: PMC2722958 DOI: 10.1002/anie.200806273] [Citation(s) in RCA: 3644] [Impact Index Per Article: 227.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the past decade, palladium-catalyzed C-H activation/C-C bond-forming reactions have emerged as promising new catalytic transformations; however, development in this field is still at an early stage compared to the state of the art in cross-coupling reactions using aryl and alkyl halides. This Review begins with a brief introduction of four extensively investigated modes of catalysis for forming C-C bonds from C-H bonds: Pd(II)/Pd(0), Pd(II)/Pd(IV), Pd(0)/Pd(II)/Pd(IV), and Pd(0)/Pd(II) catalysis. A more detailed discussion is then directed towards the recent development of palladium(II)-catalyzed coupling of C-H bonds with organometallic reagents through a Pd(II)/Pd(0) catalytic cycle. Despite the progress made to date, improving the versatility and practicality of this new reaction remains a tremendous challenge.
Collapse
Affiliation(s)
- Xiao Chen
- K. M. Engle, D.-H. Wang, Prof. Dr. J.-Q. Yu, Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037 (USA), Fax: (+1) 858-784-2409, , Dr. X. Chen, Chemical Development Department, Albany Molecular Research, Inc., 21 Corporate Circle, Albany, NY 12203 (USA)
| | - Keary M. Engle
- K. M. Engle, D.-H. Wang, Prof. Dr. J.-Q. Yu, Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037 (USA), Fax: (+1) 858-784-2409, , Dr. X. Chen, Chemical Development Department, Albany Molecular Research, Inc., 21 Corporate Circle, Albany, NY 12203 (USA)
| | - Dong-Hui Wang
- K. M. Engle, D.-H. Wang, Prof. Dr. J.-Q. Yu, Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Rd., La Jolla, CA 92037 (USA), Fax: (+1) 858-784-2409, , Dr. X. Chen, Chemical Development Department, Albany Molecular Research, Inc., 21 Corporate Circle, Albany, NY 12203 (USA)
| | | |
Collapse
|
48
|
You Z, Hoveyda AH, Snapper ML. Catalytic enantioselective silylation of acyclic and cyclic triols: application to total syntheses of cleroindicins D, F, and C. Angew Chem Int Ed Engl 2009; 48:547-50. [PMID: 19072962 PMCID: PMC2705283 DOI: 10.1002/anie.200805338] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen You
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)
| | - Amir H. Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)
| | - Marc L. Snapper
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA 02467 (USA)
| |
Collapse
|
49
|
Laungani AC, Slattery JM, Krossing I, Breit B. Supramolecular bidentate ligands by metal-directed in situ formation of antiparallel beta-sheet structures and application in asymmetric catalysis. Chemistry 2008; 14:4488-502. [PMID: 18449870 DOI: 10.1002/chem.200800359] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The principles of protein structure design, molecular recognition, and supramolecular and combinatorial chemistry have been applied to develop a convergent metal-ion-assisted self-assembly approach that is a very simple and effective method for the de novo design and the construction of topologically predetermined antiparallel beta-sheet structures and self-assembled catalysts. A new concept of in situ generation of bidentate P-ligands for transition-metal catalysis, in which two complementary, monodentate, peptide-based ligands are brought together by employing peptide secondary structure motif as constructing tool to direct the self-assembly process, is achieved through formation of stable beta-sheet motifs and subsequent control of selectivity. The supramolecular structures were studied by (1)H, (31)P, and (13)C NMR spectroscopy, ESI mass spectrometry, X-ray structure analysis, and theoretical calculations. Our initial catalysis results confirm the close relationship between the self-assembled sheet conformations and the catalytic activity of these metallopeptides in the asymmetric rhodium-catalyzed hydroformylation. Good catalyst activity and moderate enantioselectivity were observed for the selected combination of catalyst and substrate, but most importantly the concept of this new methodology was successfully proven. This work presents a perspective interface between protein design and supramolecular catalysis for the design of beta-sheet mimetics and screening of libraries of self-organizing supramolecular catalysts.
Collapse
Affiliation(s)
- Andy C Laungani
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | | | | |
Collapse
|
50
|
Reetz M. Kombinatorische Übergangsmetallkatalyse: Mischungen einzähniger Liganden zur Kontrolle der Enantio-, Diastereo- und Regioselektivität. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200704327] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|