1
|
Akram F, Shah FI, Ibrar R, Fatima T, Haq IU, Naseem W, Gul MA, Tehreem L, Haider G. Bacterial thermophilic DNA polymerases: A focus on prominent biotechnological applications. Anal Biochem 2023; 671:115150. [PMID: 37054862 DOI: 10.1016/j.ab.2023.115150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/24/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
DNA polymerases are the enzymes able to replicate the genetic information in nucleic acid. As a result, they are necessary to copy the complete genome of every living creature before cell division and sustain the integrity of the genetic information throughout the life of each cell. Any organism that uses DNA as its genetic information, whether unicellular or multicellular, requires one or more thermostable DNA polymerases to thrive. Thermostable DNA polymerase is important in modern biotechnology and molecular biology because it results in methods such as DNA cloning, DNA sequencing, whole genome amplification, molecular diagnostics, polymerase chain reaction, synthetic biology, and single nucleotide polymorphism detection. There are at least 14 DNA-dependent DNA polymerases in the human genome, which is remarkable. These include the widely accepted, high-fidelity enzymes responsible for replicating the vast majority of genomic DNA and eight or more specialized DNA polymerases discovered in the last decade. The newly discovered polymerases' functions are still being elucidated. Still, one of its crucial tasks is to permit synthesis to resume despite the DNA damage that stops the progression of replication-fork. One of the primary areas of interest in the research field has been the quest for novel DNA polymerase since the unique features of each thermostable DNA polymerase may lead to the prospective creation of novel reagents. Furthermore, protein engineering strategies for generating mutant or artificial DNA polymerases have successfully generated potent DNA polymerases for various applications. In molecular biology, thermostable DNA polymerases are extremely useful for PCR-related methods. This article examines the role and importance of DNA polymerase in a variety of techniques.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Fatima Iftikhar Shah
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan; The University of Lahore, Pakistan
| | - Ramesha Ibrar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Taseer Fatima
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan; Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Waqas Naseem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Mahmood Ayaz Gul
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Laiba Tehreem
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ghanoor Haider
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
2
|
Yang S, Zhang Z, Xian Q, Song Q, Liu Y, Gao Y, Wen W. An Aluminum-Based Microfluidic Chip for Polymerase Chain Reaction Diagnosis. Molecules 2023; 28:molecules28031085. [PMID: 36770751 PMCID: PMC9921548 DOI: 10.3390/molecules28031085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Real-time polymerase chain reaction (real-time PCR) tests were successfully conducted in an aluminum-based microfluidic chip developed in this work. The reaction chamber was coated with silicone-modified epoxy resin to isolate the reaction system from metal surfaces, preventing the metal ions from interfering with the reaction process. The patterned aluminum substrate was bonded with a hydroxylated glass mask using silicone sealant at room temperature. The effect of thermal expansion was counteracted by the elasticity of cured silicone. With the heating process closely monitored, real-time PCR testing in reaction chambers proceeded smoothly, and the results show similar quantification cycle values to those of traditional test sets. Scanning electron microscope (SEM) and atomic force microscopy (AFM) images showed that the surface of the reaction chamber was smoothly coated, illustrating the promising coating and isolating properties. Energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma-optical emission spectrometer (ICP-OES) showed that no metal ions escaped from the metal to the chip surface. Fourier-transform infrared spectroscopy (FTIR) was used to check the surface chemical state before and after tests, and the unchanged infrared absorption peaks indicated the unreacted, antifouling surface. The limit of detection (LOD) of at least two copies can be obtained in this chip.
Collapse
Affiliation(s)
- Siyu Yang
- Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ziyi Zhang
- Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qingyue Xian
- Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qi Song
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Yiteng Liu
- Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Yibo Gao
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
- Thrust of Advanced Materials, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518000, China
- Correspondence: ; Tel.: +852-2358-5781
| |
Collapse
|
3
|
Tellurium-Modified Nucleosides, Nucleotides, and Nucleic Acids with Potential Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238379. [PMID: 36500495 PMCID: PMC9737395 DOI: 10.3390/molecules27238379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Tellurium was successfully incorporated into proteins and applied to protein structure determination through X-ray crystallography. However, studies on tellurium modification of DNA and RNA are limited. This review highlights the recent development of Te-modified nucleosides, nucleotides, and nucleic acids, and summarizes the main synthetic approaches for the preparation of 5-PhTe, 2'-MeTe, and 2'-PhTe modifications. Those modifications are compatible with solid-phase synthesis and stable during Te-oligonucleotide purification. Moreover, the ideal electronic and atomic properties of tellurium for generating clear isomorphous signals give Te-modified DNA and RNA great potential applications in 3D crystal structure determination through X-ray diffraction. STM study also shows that Te-modified DNA has strong topographic and current peaks, which immediately suggests potential applications in nucleic acid direct imaging, nanomaterials, molecular electronics, and diagnostics. Theoretical studies indicate the potential application of Te-modified nucleosides in cancer therapy.
Collapse
|
4
|
Graphene oxide and self-avoiding molecular recognition systems-assisted recombinase polymerase amplification coupled with lateral flow bioassay for nucleic acid detection. Mikrochim Acta 2020; 187:667. [PMID: 33211195 DOI: 10.1007/s00604-020-04637-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022]
Abstract
A new nucleic acid detection technique, termed Nano-SAMRS-RPA, is reported which employed carbon nanomaterial (graphene oxide, GO) and self-avoiding molecular recognition systems (SAMRS) to improve the specificity of recombinase polymerase amplification (RPA). In the presence of GO and SAMRS primers, the assay artifacts, including primer-dimers, nonspecific products, off-target hybrids, and non-canonical folds, are completely suppressed and eliminated, which makes the creation of RPA-based methods faster by simplifying the primer design and eliminating the need for primer optimization and complex probe. Moreover, a lateral flow bioassay (LFB) was also devised for simply and rapidly indicating the Nano-SAMRS-RPA results. Particularly, the new detection system only requires a single-labeled primer, eliminating the false-positive result from hybridization (the labeled probe and reverse primer) and the use of real-time instrument, more complex enzymatic solutions, and probes. As a result, GO, SAMRS primers, and LFB convert RPA from a technique suited only for the research laboratory into one that has a practical value in clinical settings, field environments, and at points-of-care testing. Human papillomaviruses (HPV) genotypes 16 and 18 were applied as model analytes to test the assay's availability. The initial data indicated that Nano-SAMRS-RPA could detect down to 10 copies per reaction, and the sensitivity (14/14 samples collected from HPV16 and HPV 18 patients) and specificity (75/75 samples collected from non-HPV patients) for clinical sample detection were 100%. The proof-of-concept technique can be reconfigured to detect various nucleic acid sequences by redesigning the specific RPA primers.Graphical abstract.
Collapse
|
5
|
Liu Q, Liu G, Wang T, Fu J, Li R, Song L, Wang ZG, Ding B, Chen F. Enhanced Stability of DNA Nanostructures by Incorporation of Unnatural Base Pairs. Chemphyschem 2017; 18:2977-2980. [DOI: 10.1002/cphc.201700809] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/25/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Qing Liu
- CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Guocheng Liu
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Ting Wang
- CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P. R. China
| | - Jing Fu
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing 100101 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Rujiao Li
- Big Data Center, Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing 100101 P. R. China
| | - Linlin Song
- CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Zhen-Gang Wang
- CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P. R. China
| | - Baoquan Ding
- CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics; Chinese Academy of Sciences; Beijing 100101 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
6
|
Yang Z, McLendon C, Hutter D, Bradley KM, Hoshika S, Frye CB, Benner SA. Helicase-Dependent Isothermal Amplification of DNA and RNA by Using Self-Avoiding Molecular Recognition Systems. Chembiochem 2015; 16:1365-70. [PMID: 25953623 PMCID: PMC4489552 DOI: 10.1002/cbic.201500135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 11/06/2022]
Abstract
Assays that detect DNA or RNA (xNA) are highly sensitive, as small amounts of xNA can be amplified by PCR. Unfortunately, PCR is inconvenient in low-resource environments, and requires equipment and power that might not be available in these environments. Isothermal procedures, which avoid thermal cycling, are often confounded by primer dimers, off-target priming, and other artifacts. Here, we show how a "self avoiding molecular recognition system" (SAMRS) eliminates these artifacts and gives clean amplicons in a helicase-dependent isothermal amplification (SAMRS-HDA). We also show that incorporating SAMRS into the 3'-ends of primers facilitates the design and screening of primers for HDA assays. Finally, we show that SAMRS-HDA can be twofold multiplexed, difficult to achieve with HDA using standard primers. Thus, SAMRS-HDA is a more versatile approach than standard HDA, with a broader applicability for xNA-targeted diagnostics and research.
Collapse
Affiliation(s)
- Zunyi Yang
- Foundation for Applied Molecular Evolution (FfAME), 720 SW 2nd Avenue, Suite 201, Gainesville, FL 32601 (USA) http://ffame.org.
| | - Chris McLendon
- Foundation for Applied Molecular Evolution (FfAME), 720 SW 2nd Avenue, Suite 201, Gainesville, FL 32601 (USA) http://ffame.org
| | - Daniel Hutter
- Foundation for Applied Molecular Evolution (FfAME), 720 SW 2nd Avenue, Suite 201, Gainesville, FL 32601 (USA) http://ffame.org
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, N112, Alachua, FL 32615 (USA)
| | - Kevin M Bradley
- Foundation for Applied Molecular Evolution (FfAME), 720 SW 2nd Avenue, Suite 201, Gainesville, FL 32601 (USA) http://ffame.org
| | - Shuichi Hoshika
- Foundation for Applied Molecular Evolution (FfAME), 720 SW 2nd Avenue, Suite 201, Gainesville, FL 32601 (USA) http://ffame.org
| | - Carole B Frye
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, N112, Alachua, FL 32615 (USA)
| | - Steven A Benner
- Foundation for Applied Molecular Evolution (FfAME), 720 SW 2nd Avenue, Suite 201, Gainesville, FL 32601 (USA) http://ffame.org.
- Firebird Biomolecular Sciences LLC, 13709 Progress Blvd, N112, Alachua, FL 32615 (USA).
| |
Collapse
|
7
|
|
8
|
Sharma N, Hoshika S, Hutter D, Bradley KM, Benner SA. Recombinase-based isothermal amplification of nucleic acids with self-avoiding molecular recognition systems (SAMRS). Chembiochem 2014; 15:2268-74. [PMID: 25209570 PMCID: PMC7162014 DOI: 10.1002/cbic.201402250] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Indexed: 12/27/2022]
Abstract
Recombinase polymerase amplification (RPA) is an isothermal method to amplify nucleic acid sequences without the temperature cycling that classical PCR uses. Instead of using heat to denature the DNA duplex, RPA uses recombination enzymes to swap single-stranded primers into the duplex DNA product; these are then extended using a strand-displacing polymerase to complete the cycle. Because RPA runs at low temperatures, it never forces the system to recreate base-pairs following Watson-Crick rules, and therefore it produces undesired products that impede the amplification of the desired product, complicating downstream analysis. Herein, we show that most of these undesired side products can be avoided if the primers contain components of a self-avoiding molecular recognition system (SAMRS). Given the precision that is necessary in the recombination systems for them to function biologically, it is surprising that they accept SAMRS. SAMRS-RPA is expected to be a powerful tool within the range of amplification techniques available to scientists.
Collapse
Affiliation(s)
- Nidhi Sharma
- Foundation for Applied Molecular Evolution, P.O. Box 13174, Gainesville FL 32604 (USA)
| | | | | | | | | |
Collapse
|
9
|
Yaren O, Mosimann M, Leumann CJ. Ein paralleles Testverfahren zur Entdeckung neuer DNA-Basenpaare. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Yaren O, Mosimann M, Leumann CJ. A parallel screen for the discovery of novel DNA base pairs. Angew Chem Int Ed Engl 2011; 50:1935-8. [PMID: 21328674 DOI: 10.1002/anie.201005300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/15/2010] [Indexed: 11/11/2022]
Affiliation(s)
- Oezlem Yaren
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | | | | |
Collapse
|