1
|
Zhao Z, Mousa R, Metanis N. One-Pot Chemical Protein Synthesis Utilizing Fmoc-Masked Selenazolidine to Address the Redox Functionality of Human Selenoprotein F. Chemistry 2022; 28:e202200279. [PMID: 35112407 PMCID: PMC9304195 DOI: 10.1002/chem.202200279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/25/2022]
Abstract
Human SELENOF is an endoplasmic reticulum (ER) selenoprotein that contains the redox active motif CXU (C is cysteine and U is selenocysteine), resembling the redox motif of thiol-disulfide oxidoreductases (CXXC). Like other selenoproteins, the challenge in accessing SELENOF has somewhat limited its full biological characterization thus far. Here we present the one-pot chemical synthesis of the thioredoxin-like domain of SELENOF, highlighted by the use of Fmoc-protected selenazolidine, native chemical ligations and deselenization reactions. The redox potential of the CXU motif, together with insulin turbidimetric assay suggested that SELENOF may catalyze the reduction of disulfides in misfolded proteins. Furthermore, we demonstrate that SELENOF is not a protein disulfide isomerase (PDI)-like enzyme, as it did not enhance the folding of the two protein models; bovine pancreatic trypsin inhibitor and hirudin. These studies suggest that SELENOF may be responsible for reducing the non-native disulfide bonds of misfolded glycoproteins as part of the quality control system in the ER.
Collapse
Affiliation(s)
- Zhenguang Zhao
- Institute of ChemistryThe Hebrew University of JerusalemJerusalem9190401Israel
| | - Reem Mousa
- Institute of ChemistryThe Hebrew University of JerusalemJerusalem9190401Israel
| | - Norman Metanis
- Institute of ChemistryThe Hebrew University of JerusalemJerusalem9190401Israel
- The Center for Nanoscience and NanotechnologyThe Hebrew University of JerusalemJerusalem9190401Israel
- Casali Center for Applied ChemistryThe Hebrew University of JerusalemJerusalem9190401Israel
| |
Collapse
|
2
|
Patel A, Mulder DW, Söll D, Krahn N. Harnessing selenocysteine to enhance microbial cell factories for hydrogen production. FRONTIERS IN CATALYSIS 2022; 2. [PMID: 36844461 PMCID: PMC9961374 DOI: 10.3389/fctls.2022.1089176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogen is a clean, renewable energy source, that when combined with oxygen, produces heat and electricity with only water vapor as a biproduct. Furthermore, it has the highest energy content by weight of all known fuels. As a result, various strategies have engineered methods to produce hydrogen efficiently and in quantities that are of interest to the economy. To approach the notion of producing hydrogen from a biological perspective, we take our attention to hydrogenases which are naturally produced in microbes. These organisms have the machinery to produce hydrogen, which when cleverly engineered, could be useful in cell factories resulting in large production of hydrogen. Not all hydrogenases are efficient at hydrogen production, and those that are, tend to be oxygen sensitive. Therefore, we provide a new perspective on introducing selenocysteine, a highly reactive proteinogenic amino acid, as a strategy towards engineering hydrogenases with enhanced hydrogen production, or increased oxygen tolerance.
Collapse
Affiliation(s)
- Armaan Patel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| | - David W Mulder
- National Renewable Energy Laboratory, Biosciences Center, Golden, CO, United States
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.,Department of Chemistry, Yale University, New Haven, CT, United States
| | - Natalie Krahn
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
| |
Collapse
|
3
|
Wang Y, Liu P, Chang J, Xu Y, Wang J. Site-Specific Selenocysteine Incorporation into Proteins by Genetic Engineering. Chembiochem 2021; 22:2918-2924. [PMID: 33949764 DOI: 10.1002/cbic.202100124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/03/2021] [Indexed: 01/23/2023]
Abstract
Selenocysteine (Sec), a rare naturally proteinogenic amino acid, is the major form of essential trace element selenium in living organisms. Selenoproteins, with one or several Sec residues, are found in all three domains of life. Many selenoproteins play a role in critical cellular functions such as maintaining cell redox homeostasis. Sec is usually encoded by an in-frame stop codon UGA in the selenoprotein mRNA, and its incorporation in vivo is highly species-dependent and requires the reprogramming of translation. This mechanistic complexity of selenoprotein synthesis poses a big challenge to produce synthetic selenoproteins. To understand the functions of natural as well as engineered selenoproteins, many strategies have recently been developed to overcome the inherent barrier for recombinant selenoprotein production. In this review, we will describe the progress in selenoprotein production methodology.
Collapse
Affiliation(s)
- Yuchuan Wang
- Shenzhen Institute of Transfusion Medicine Shenzhen Blood Center, Shenzhen, Futian District, 518052, P. R. China.,Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Nanshan District, 518055, P. R. China
| | - Pengcheng Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang District, 100101, P. R. China
| | - Jiao Chang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang District, 100101, P. R. China
| | - Yunping Xu
- Shenzhen Institute of Transfusion Medicine Shenzhen Blood Center, Shenzhen, Futian District, 518052, P. R. China
| | - Jiangyun Wang
- Shenzhen Institute of Transfusion Medicine Shenzhen Blood Center, Shenzhen, Futian District, 518052, P. R. China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing, Chaoyang District, 100101, P. R. China.,Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Nanshan District, 518055, P. R. China
| |
Collapse
|
4
|
Welegedara AP, Maleckis A, Bandara R, Mahawaththa MC, Dilhani Herath I, Jiun Tan Y, Giannoulis A, Goldfarb D, Otting G, Huber T. Cell-Free Synthesis of Selenoproteins in High Yield and Purity for Selective Protein Tagging. Chembiochem 2021; 22:1480-1486. [PMID: 33319405 DOI: 10.1002/cbic.202000785] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/10/2020] [Indexed: 01/10/2023]
Abstract
The selenol group of selenocysteine is much more nucleophilic than the thiol group of cysteine. Selenocysteine residues in proteins thus offer reactive points for rapid post-translational modification. Herein, we show that selenoproteins can be expressed in high yield and purity by cell-free protein synthesis by global substitution of cysteine by selenocysteine. Complete alkylation of solvent-exposed selenocysteine residues was achieved in 10 minutes with 4-chloromethylene dipicolinic acid (4Cl-MDPA) under conditions that left cysteine residues unchanged even after overnight incubation. GdIII -GdIII distances measured by double electron-electron resonance (DEER) experiments of maltose binding protein (MBP) containing two selenocysteine residues tagged with 4Cl-MDPA-GdIII were indistinguishable from GdIII -GdIII distances measured of MBP containing cysteine reacted with 4Br-MDPA tags.
Collapse
Affiliation(s)
- Adarshi P Welegedara
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia.,Department of Chemistry, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Ansis Maleckis
- Latvian Institute of Organic Synthesis, 1006, Riga, Latvia
| | - Ruchira Bandara
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia
| | - Mithun C Mahawaththa
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia
| | - Iresha Dilhani Herath
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia
| | - Yi Jiun Tan
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia
| | - Angeliki Giannoulis
- Department of Chemical and Biological Physics Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Daniella Goldfarb
- Department of Chemical and Biological Physics Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Gottfried Otting
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia
| | - Thomas Huber
- Australian National University, Research School of Chemistry, Canberra, ACT 2601, Australia
| |
Collapse
|
5
|
Mukai T, Sevostyanova A, Suzuki T, Fu X, Söll D. Eine einfache Methode zur Produktion von Selenoproteinen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry Yale University New Haven CT 06520 USA
| | - Anastasia Sevostyanova
- Department of Molecular Biophysics and Biochemistry Yale University New Haven CT 06520 USA
| | - Tateki Suzuki
- Department of Molecular Biophysics and Biochemistry Yale University New Haven CT 06520 USA
| | - Xian Fu
- Department of Molecular Biophysics and Biochemistry Yale University New Haven CT 06520 USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry Yale University New Haven CT 06520 USA
- Department of Chemistry Yale University New Haven CT 06520 USA
| |
Collapse
|
6
|
Mukai T, Sevostyanova A, Suzuki T, Fu X, Söll D. A Facile Method for Producing Selenocysteine-Containing Proteins. Angew Chem Int Ed Engl 2018; 57:7215-7219. [PMID: 29631320 DOI: 10.1002/anie.201713215] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/20/2018] [Indexed: 01/14/2023]
Abstract
Selenocysteine (Sec, U) confers new chemical properties on proteins. Improved tools are thus required that enable Sec insertion into any desired position of a protein. We report a facile method for synthesizing selenoproteins with multiple Sec residues by expanding the genetic code of Escherichia coli. We recently discovered allo-tRNAs, tRNA species with unusual structure, that are as efficient serine acceptors as E. coli tRNASer . Ser-allo-tRNA was converted into Sec-allo-tRNA by Aeromonas salmonicida selenocysteine synthase (SelA). Sec-allo-tRNA variants were able to read through five UAG codons in the fdhF mRNA coding for E. coli formate dehydrogenase H, and produced active FDHH with five Sec residues in E. coli. Engineering of the E. coli selenium metabolism along with mutational changes in allo-tRNA and SelA improved the yield and purity of recombinant human glutathione peroxidase 1 (to over 80 %). Thus, our allo-tRNAUTu system offers a new selenoprotein engineering platform.
Collapse
Affiliation(s)
- Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Anastasia Sevostyanova
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Tateki Suzuki
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Xian Fu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.,Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
7
|
Mousa R, Notis Dardashti R, Metanis N. Selen und Selenocystein in der Proteinchemie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706876] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Reem Mousa
- The Institute of Chemistry; The Hebrew University of Jerusalem; Edmond J. Safra, Givat Ram Jerusalem 91904 Israel
| | - Rebecca Notis Dardashti
- The Institute of Chemistry; The Hebrew University of Jerusalem; Edmond J. Safra, Givat Ram Jerusalem 91904 Israel
| | - Norman Metanis
- The Institute of Chemistry; The Hebrew University of Jerusalem; Edmond J. Safra, Givat Ram Jerusalem 91904 Israel
| |
Collapse
|
8
|
Mousa R, Notis Dardashti R, Metanis N. Selenium and Selenocysteine in Protein Chemistry. Angew Chem Int Ed Engl 2017; 56:15818-15827. [PMID: 28857389 DOI: 10.1002/anie.201706876] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Indexed: 01/22/2023]
Abstract
Selenocysteine, the selenium-containing analogue of cysteine, is the twenty-first proteinogenic amino acid. Since its discovery almost fifty years ago, it has been exploited in unnatural systems even more often than in natural systems. Selenocysteine chemistry has attracted the attention of many chemists in the field of chemical biology owing to its high reactivity and resulting potential for various applications such as chemical modification, chemical protein (semi)synthesis, and protein folding, to name a few. In this Minireview, we will focus on the chemistry of selenium and selenocysteine and their utility in protein chemistry.
Collapse
Affiliation(s)
- Reem Mousa
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Rebecca Notis Dardashti
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| | - Norman Metanis
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra, Givat Ram, Jerusalem, 91904, Israel
| |
Collapse
|
9
|
Bröcker MJ, Ho JML, Church GM, Söll D, O'Donoghue P. Recoding the genetic code with selenocysteine. Angew Chem Int Ed Engl 2014; 53:319-23. [PMID: 24511637 DOI: 10.1002/anie.201308584] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Selenocysteine (Sec) is naturally incorporated into proteins by recoding the stop codon UGA. Sec is not hardwired to UGA, as the Sec insertion machinery was found to be able to site-specifically incorporate Sec directed by 58 of the 64 codons. For 15 sense codons, complete conversion of the codon meaning from canonical amino acid (AA) to Sec was observed along with a tenfold increase in selenoprotein yield compared to Sec insertion at the three stop codons. This high-fidelity sense-codon recoding mechanism was demonstrated for Escherichia coli formate dehydrogenase and recombinant human thioredoxin reductase and confirmed by independent biochemical and biophysical methods. Although Sec insertion at UGA is known to compete against protein termination, it is surprising that the Sec machinery has the ability to outcompete abundant aminoacyl-tRNAs in decoding sense codons. The findings have implications for the process of translation and the information storage capacity of the biological cell.
Collapse
|
10
|
Bröcker MJ, Ho JML, Church GM, Söll D, O'Donoghue P. Umkodierung des genetischen Codes mit Selenocystein. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|