1
|
Ramos-Llorca A, Decraecker L, Cacheux VMY, Zeiburlina I, De bruyn M, Battut L, Moreno-Cinos C, Ceradini D, Espinosa E, Dietrich G, Berg M, De Meester I, Van Der Veken P, Boeckxstaens G, Lambeir AM, Denadai-Souza A, Augustyns K. Chemically diverse activity-based probes with unexpected inhibitory mechanisms targeting trypsin-like serine proteases. Front Chem 2023; 10:1089959. [PMID: 36688031 PMCID: PMC9849758 DOI: 10.3389/fchem.2022.1089959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Activity-based probes (ABP) are molecules that bind covalently to the active form of an enzyme family, making them an attractive tool for target and biomarker identification and drug discovery. The present study describes the synthesis and biochemical characterization of novel activity-based probes targeting trypsin-like serine proteases. We developed an extensive library of activity-based probes with "clickable" affinity tags and a diaryl phosphonate warhead. A wide diversity was achieved by including natural amino acid analogs as well as basic polar residues as side chains. A detailed enzymatic characterization was performed in a panel of trypsin-like serine proteases. Their inhibitory potencies and kinetic profile were examined, and their IC50 values, mechanism of inhibition, and kinetic constants were determined. The activity-based probes with a benzyl guanidine side chain showed the highest inhibitory effects in the panel. Surprisingly, some of the high-affinity probes presented a reversible inhibitory mechanism. On the other hand, probes with different side chains exhibited the expected irreversible mechanism. For the first time, we demonstrate that not only irreversible probes but also reversible probes can tightly label recombinant proteases and proteases released from human mast cells. Even under denaturing SDS-PAGE conditions, reversible slow-tight-binding probes can label proteases due to the formation of high-affinity complexes and slow dissociation rates. This unexpected finding will transform the view on the required irreversible nature of activity-based probes. The diversity of this library of activity-based probes combined with a detailed enzyme kinetic characterization will advance their applications in proteomic studies and drug discovery.
Collapse
Affiliation(s)
- Alba Ramos-Llorca
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Lisse Decraecker
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Valérie M. Y. Cacheux
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Irena Zeiburlina
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Michelle De bruyn
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Louise Battut
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Carlos Moreno-Cinos
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Eric Espinosa
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Gilles Dietrich
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Maya Berg
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Pieter Van Der Veken
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Guy Boeckxstaens
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Alexandre Denadai-Souza
- Laboratory for Intestinal Neuroimmune Interactions, Translational Research Center for Gastrointestinal Disorders, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Koen Augustyns
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Thanvi R, Jayasinghe TD, Kapil S, Obadawo BS, Ronning DR, Sucheck SJ. Synthesis of C7/C8-cyclitols and C7N-aminocyclitols from maltose and X-ray crystal structure of Streptomyces coelicolor GlgEI V279S in a complex with an amylostatin GXG–like derivative. Front Chem 2022; 10:950433. [PMID: 36157042 PMCID: PMC9501709 DOI: 10.3389/fchem.2022.950433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022] Open
Abstract
C7/C8-cyclitols and C7N-aminocyclitols find applications in the pharmaceutical sector as α-glucosidase inhibitors and in the agricultural sector as fungicides and insecticides. In this study, we identified C7/C8-cyclitols and C7N-aminocyclitols as potential inhibitors of Streptomyces coelicolor (Sco) GlgEI-V279S based on the docking scores. The protein and the ligand (targets 11, 12, and 13) were prepared, the states were generated at pH 7.0 ± 2.0, and the ligands were docked into the active sites of the receptor via Glide™. The synthetic route to these targets was similar to our previously reported route used to obtain 4-⍺-glucoside of valienamine (AGV), except the protecting group for target 12 was a p-bromobenzyl (PBB) ether to preserve the alkene upon deprotection. While compounds 11–13 did not inhibit Sco GlgEI-V279S at the concentrations evaluated, an X-ray crystal structure of the Sco GlgE1-V279S/13 complex was solved to a resolution of 2.73 Å. This structure allowed assessment differences and commonality with our previously reported inhibitors and was useful for identifying enzyme–compound interactions that may be important for future inhibitor development. The Asp 394 nucleophile formed a bidentate hydrogen bond interaction with the exocyclic oxygen atoms (C(3)-OH and C(7)-OH) similar to the observed interactions with the Sco GlgEI-V279S in a complex with AGV (PDB:7MGY). In addition, the data suggest replacing the cyclohexyl group with more isosteric and hydrogen bond–donating groups to increase binding interactions in the + 1 binding site.
Collapse
Affiliation(s)
- Radhika Thanvi
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, United States
| | - Thilina D. Jayasinghe
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sunayana Kapil
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, United States
| | | | - Donald R. Ronning
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, United States
- *Correspondence: Donald R. Ronning, ; Steven J. Sucheck,
| | - Steven J. Sucheck
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH, United States
- *Correspondence: Donald R. Ronning, ; Steven J. Sucheck,
| |
Collapse
|
3
|
Rowland RJ, Chen Y, Breen I, Wu L, Offen WA, Beenakker TJ, Su Q, van den Nieuwendijk AMCH, Aerts JMFG, Artola M, Overkleeft HS, Davies GJ. Design, Synthesis and Structural Analysis of Glucocerebrosidase Imaging Agents. Chemistry 2021; 27:16377-16388. [PMID: 34570911 PMCID: PMC9298352 DOI: 10.1002/chem.202102359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 12/15/2022]
Abstract
Gaucher disease (GD) is a lysosomal storage disorder caused by inherited deficiencies in β‐glucocerebrosidase (GBA). Current treatments require rapid disease diagnosis and a means of monitoring therapeutic efficacy, both of which may be supported by the use of GBA‐targeting activity‐based probes (ABPs). Here, we report the synthesis and structural analysis of a range of cyclophellitol epoxide and aziridine inhibitors and ABPs for GBA. We demonstrate their covalent mechanism‐based mode of action and uncover binding of the new N‐functionalised aziridines to the ligand binding cleft. These inhibitors became scaffolds for the development of ABPs; the O6‐fluorescent tags of which bind in an allosteric site at the dimer interface. Considering GBA's preference for O6‐ and N‐functionalised reagents, a bi‐functional aziridine ABP was synthesized as a potentially more powerful imaging agent. Whilst this ABP binds to two unique active site clefts of GBA, no further benefit in potency was achieved over our first generation ABPs. Nevertheless, such ABPs should serve useful in the study of GBA in relation to GD and inform the design of future probes.
Collapse
Affiliation(s)
- Rhianna J Rowland
- Department of Chemistry, York Structural Biology Laboratory (YSBL), University of York Heslington, York, YO10 5DD, UK
| | - Yurong Chen
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinwegg 55, 2300 RA, Leiden, Netherlands
| | - Imogen Breen
- Department of Chemistry, York Structural Biology Laboratory (YSBL), University of York Heslington, York, YO10 5DD, UK
| | - Liang Wu
- Department of Chemistry, York Structural Biology Laboratory (YSBL), University of York Heslington, York, YO10 5DD, UK
| | - Wendy A Offen
- Department of Chemistry, York Structural Biology Laboratory (YSBL), University of York Heslington, York, YO10 5DD, UK
| | - Thomas J Beenakker
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinwegg 55, 2300 RA, Leiden, Netherlands
| | - Qin Su
- Department of Medicinal Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinwegg 55, 2300 RA, Leiden, Netherlands
| | | | - Johannes M F G Aerts
- Department of Medicinal Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinwegg 55, 2300 RA, Leiden, Netherlands
| | - Marta Artola
- Department of Medicinal Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinwegg 55, 2300 RA, Leiden, Netherlands
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinwegg 55, 2300 RA, Leiden, Netherlands
| | - Gideon J Davies
- Department of Chemistry, York Structural Biology Laboratory (YSBL), University of York Heslington, York, YO10 5DD, UK
| |
Collapse
|
4
|
Su Q, Schröder SP, Lelieveld LT, Ferraz MJ, Verhoek M, Boot RG, Overkleeft HS, Aerts JMFG, Artola M, Kuo C. Xylose-Configured Cyclophellitols as Selective Inhibitors for Glucocerebrosidase. Chembiochem 2021; 22:3090-3098. [PMID: 34459538 PMCID: PMC8596838 DOI: 10.1002/cbic.202100396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/29/2021] [Indexed: 02/03/2023]
Abstract
Glucocerebrosidase (GBA), a lysosomal retaining β-d-glucosidase, has recently been shown to hydrolyze β-d-xylosides and to transxylosylate cholesterol. Genetic defects in GBA cause the lysosomal storage disorder Gaucher disease (GD), and also constitute a risk factor for developing Parkinson's disease. GBA and other retaining glycosidases can be selectively visualized by activity-based protein profiling (ABPP) using fluorescent probes composed of a cyclophellitol scaffold having a configuration tailored to the targeted glycosidase family. GBA processes β-d-xylosides in addition to β-d-glucosides, this in contrast to the other two mammalian cellular retaining β-d-glucosidases, GBA2 and GBA3. Here we show that the xylopyranose preference also holds up for covalent inhibitors: xylose-configured cyclophellitol and cyclophellitol aziridines selectively react with GBA over GBA2 and GBA3 in vitro and in vivo, and that the xylose-configured cyclophellitol is more potent and more selective for GBA than the classical GBA inhibitor, conduritol B-epoxide (CBE). Both xylose-configured cyclophellitol and cyclophellitol aziridine cause accumulation of glucosylsphingosine in zebrafish embryo, a characteristic hallmark of GD, and we conclude that these compounds are well suited for creating such chemically induced GD models.
Collapse
Affiliation(s)
- Qin Su
- Department of Medical BiochemistryLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Sybrin P. Schröder
- Department of Bio-organic SynthesisLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Lindsey T. Lelieveld
- Department of Medical BiochemistryLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Maria J. Ferraz
- Department of Medical BiochemistryLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Marri Verhoek
- Department of Medical BiochemistryLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Rolf G. Boot
- Department of Medical BiochemistryLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Herman S. Overkleeft
- Department of Bio-organic SynthesisLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Johannes M. F. G. Aerts
- Department of Medical BiochemistryLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Marta Artola
- Department of Medical BiochemistryLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| | - Chi‐Lin Kuo
- Department of Medical BiochemistryLeiden Institute of ChemistryLeiden UniversityEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
5
|
Biduś N, Banachowicz P, Buda S. Application of a tandem seleno-michael/aldol reaction in the total syntheses of (+)-Pericosine B, (+)-Pericosine C, (+)-COTC and 7-chloro-analogue of (+)-Gabosine C. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Artola M, Wouters S, Schröder SP, de Boer C, Chen Y, Petracca R, van den Nieuwendijk AMCH, Aerts JMFG, van der Marel GA, Codée JDC, Overkleeft HS. Direct Stereoselective Aziridination of Cyclohexenols with 3-Amino-2-(trifluoromethyl)quinazolin-4(3 H)-one in the Synthesis of Cyclitol Aziridine Glycosidase Inhibitors. European J Org Chem 2019; 2019:1397-1404. [PMID: 31787842 PMCID: PMC6876648 DOI: 10.1002/ejoc.201801703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Indexed: 11/08/2022]
Abstract
Cyclophellitol aziridine and its configurational and functional isomers are powerful covalent inhibitors of retaining glycosidases, and find application in fundamental studies on glycosidases, amongst others in relation to inherited lysosomal storage disorders caused by glycosidase malfunctioning. Few direct and stereoselective aziridination methodologies are known for the synthesis of cyclophellitol aziridines. Herein, we present our studies on the scope of direct 3‐amino‐2‐(trifluoromethyl)quinazolin‐4(3H)‐one‐mediated aziridination on a variety of configurational and functional cyclohexenol isosters. We demonstrate that the aziridination can be directed by an allylic or homoallylic hydroxyl through H‐bonding and that steric hindrance plays a key role in the diastereoselectivity of the reaction.
Collapse
Affiliation(s)
- Marta Artola
- Department of Bio-organic Synthesis Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Shirley Wouters
- Department of Bio-organic Synthesis Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Sybrin P Schröder
- Department of Bio-organic Synthesis Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Casper de Boer
- Department of Bio-organic Synthesis Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Yurong Chen
- Department of Bio-organic Synthesis Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Rita Petracca
- Department of Bio-organic Synthesis Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | | | - Johannes M F G Aerts
- Department of Medical Biochemistry Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijsbert A van der Marel
- Department of Bio-organic Synthesis Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jeroen D C Codée
- Department of Bio-organic Synthesis Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis Leiden Institute of Chemistry Leiden University Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
7
|
Artola M, Kuo CL, McMahon SA, Oehler V, Hansen T, van der Lienden M, He X, van den Elst H, Florea BI, Kermode AR, van der Marel GA, Gloster TM, Codée JDC, Overkleeft HS, Aerts JMFG. New Irreversible α-l-Iduronidase Inhibitors and Activity-Based Probes. Chemistry 2018; 24:19081-19088. [PMID: 30307091 PMCID: PMC6343074 DOI: 10.1002/chem.201804662] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/10/2018] [Indexed: 11/20/2022]
Abstract
Cyclophellitol aziridines are potent irreversible inhibitors of retaining glycosidases and versatile intermediates in the synthesis of activity‐based glycosidase probes (ABPs). Direct 3‐amino‐2‐(trifluoromethyl)quinazolin‐4(3H)‐one‐mediated aziridination of l‐ido‐configured cyclohexene has enabled the synthesis of new covalent inhibitors and ABPs of α‐l‐iduronidase, deficiency of which underlies the lysosomal storage disorder mucopolysaccharidosis type I (MPS I). The iduronidase ABPs react covalently and irreversibly in an activity‐based manner with human recombinant α‐l‐iduronidase (rIDUA, Aldurazyme®). The structures of IDUA when complexed with the inhibitors in a non‐covalent transition state mimicking form and a covalent enzyme‐bound form provide insights into its conformational itinerary. Inhibitors 1–3 adopt a half‐chair conformation in solution (4H3 and 3H4), as predicted by DFT calculations, which is different from the conformation of the Michaelis complex observed by crystallographic studies. Consequently, 1–3 may need to overcome an energy barrier in order to switch from the 4H3 conformation to the transition state (2, 5B) binding conformation before reacting and adopting a covalent 5S1 conformation. rIDUA can be labeled with fluorescent Cy5 ABP 2, which allows monitoring of the delivery of therapeutic recombinant enzyme to lysosomes, as is intended in enzyme replacement therapy for the treatment of MPS I patients.
Collapse
Affiliation(s)
- Marta Artola
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Chi-Lin Kuo
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Stephen A McMahon
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Verena Oehler
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Thomas Hansen
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Martijn van der Lienden
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Xu He
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Hans van den Elst
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Bogdan I Florea
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Allison R Kermode
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Gijsbert A van der Marel
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Tracey M Gloster
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Jeroen D C Codée
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Herman S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
8
|
Schröder SP, Kallemeijn WW, Debets MF, Hansen T, Sobala LF, Hakki Z, Williams SJ, Beenakker TJM, Aerts JMFG, van der Marel GA, Codée JDC, Davies GJ, Overkleeft HS. Spiro-epoxyglycosides as Activity-Based Probes for Glycoside Hydrolase Family 99 Endomannosidase/Endomannanase. Chemistry 2018; 24:9983-9992. [PMID: 29797675 PMCID: PMC6055899 DOI: 10.1002/chem.201801902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/23/2018] [Indexed: 11/06/2022]
Abstract
N-Glycans direct protein function, stability, folding and targeting, and influence immunogenicity. While most glycosidases that process N-glycans cleave a single sugar residue at a time, enzymes from glycoside hydrolase family 99 are endo-acting enzymes that cleave within complex N-glycans. Eukaryotic Golgi endo-1,2-α-mannosidase cleaves glucose-substituted mannose within immature glucosylated high-mannose N-glycans in the secretory pathway. Certain bacteria within the human gut microbiota produce endo-1,2-α-mannanase, which cleaves related structures within fungal mannan, as part of nutrient acquisition. An unconventional mechanism of catalysis was proposed for enzymes of this family, hinted at by crystal structures of imino/azasugars complexed within the active site. Based on this mechanism, we developed the synthesis of two glycosides bearing a spiro-epoxide at C-2 as electrophilic trap, to covalently bind a mechanistically important, conserved GH99 catalytic residue. The spiro-epoxyglycosides are equipped with a fluorescent tag, and following incubation with recombinant enzyme, allow concentration, time and pH dependent visualization of the bound enzyme using gel electrophoresis.
Collapse
Affiliation(s)
- Sybrin P. Schröder
- Department of Bioorganic ChemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Wouter W. Kallemeijn
- Department of Medical BiochemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Marjoke F. Debets
- Department of Bioorganic ChemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Thomas Hansen
- Department of Bioorganic ChemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Lukasz F. Sobala
- Department of Chemistry, York Structural Biology LaboratoryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Zalihe Hakki
- School of Chemistry and Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Spencer J. Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology InstituteUniversity of MelbourneParkvilleVictoriaAustralia
| | - Thomas J. M. Beenakker
- Department of Bioorganic ChemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Johannes M. F. G. Aerts
- Department of Medical BiochemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Gijsbert A. van der Marel
- Department of Bioorganic ChemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Jeroen D. C. Codée
- Department of Bioorganic ChemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| | - Gideon J. Davies
- Department of Chemistry, York Structural Biology LaboratoryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | - Herman S. Overkleeft
- Department of Bioorganic ChemistryLeiden Institute of ChemistryEinsteinweg 552333 CCLeidenThe Netherlands
| |
Collapse
|
9
|
Beenakker TJM, Wander DPA, Codée JDC, Aerts JMFG, van der Marel GA, Overkleeft HS. Synthesis of Carba-Cyclophellitols: a New Class of Carbohydrate Mimetics. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Thomas J. M. Beenakker
- Department of Bio-Organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Dennis P. A. Wander
- Department of Bio-Organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Jeroen D. C. Codée
- Department of Bio-Organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Johannes M. F. G. Aerts
- Department of Medical Biochemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Gijsbert A. van der Marel
- Department of Bio-Organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Herman S. Overkleeft
- Department of Bio-Organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2300 RA Leiden The Netherlands
| |
Collapse
|
10
|
Peng T, Nagy G, Trinidad JC, Jackson JM, Pohl NLB. A High-Throughput Mass-Spectrometry-Based Assay for Identifying the Biochemical Functions of Putative Glycosidases. Chembiochem 2017; 18:2306-2311. [PMID: 28960712 DOI: 10.1002/cbic.201700292] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Indexed: 11/10/2022]
Abstract
The most commonly employed glycosidase assays rely on bulky ultraviolet or fluorescent tags at the anomeric position in potential carbohydrate substrates, thereby limiting the utility of these assays for broad substrate characterization. Here we report a qualitative mass spectrometry-based glycosidase assay amenable to high-throughput screening for the identification of the biochemical functions of putative glycosidases. The assay utilizes a library of methyl glycosides and is demonstrated on a high-throughput robotic liquid handling system for enzyme substrate screening. Identification of glycosidase biochemical function is achieved through the observation of an appropriate decrease in mass between a potential sugar substrate and its corresponding product by electrospray ionization mass spectrometry (ESI-MS). In addition to screening known glycosidases, the assay was demonstrated to characterize the biochemical function and enzyme substrate competency of the recombinantly expressed product of a putative glycosidase gene from the thermophilic bacterium Thermus thermophilus.
Collapse
Affiliation(s)
- Tianyuan Peng
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Gabe Nagy
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA.,Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Joy Marie Jackson
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| |
Collapse
|
11
|
Lahav D, Liu B, van den Berg RJBHN, van den
Nieuwendijk AMCH, Wennekes T, Ghisaidoobe AT, Breen I, Ferraz MJ, Kuo CL, Wu L, Geurink PP, Ovaa H, van der Marel GA, van der Stelt M, Boot RG, Davies GJ, Aerts JMFG, Overkleeft HS. A Fluorescence Polarization Activity-Based Protein Profiling Assay in the Discovery of Potent, Selective Inhibitors for Human Nonlysosomal Glucosylceramidase. J Am Chem Soc 2017; 139:14192-14197. [PMID: 28937220 PMCID: PMC5677758 DOI: 10.1021/jacs.7b07352] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 11/28/2022]
Abstract
Human nonlysosomal glucosylceramidase (GBA2) is one of several enzymes that controls levels of glycolipids and whose activity is linked to several human disease states. There is a major need to design or discover selective GBA2 inhibitors both as chemical tools and as potential therapeutic agents. Here, we describe the development of a fluorescence polarization activity-based protein profiling (FluoPol-ABPP) assay for the rapid identification, from a 350+ library of iminosugars, of GBA2 inhibitors. A focused library is generated based on leads from the FluoPol-ABPP screen and assessed on GBA2 selectivity offset against the other glucosylceramide metabolizing enzymes, glucosylceramide synthase (GCS), lysosomal glucosylceramidase (GBA), and the cytosolic retaining β-glucosidase, GBA3. Our work, yielding potent and selective GBA2 inhibitors, also provides a roadmap for the development of high-throughput assays for identifying retaining glycosidase inhibitors by FluoPol-ABPP on cell extracts containing recombinant, overexpressed glycosidase as the easily accessible enzyme source.
Collapse
Affiliation(s)
- Daniël Lahav
- Bioorganic
Synthesis, Molecular Physiology, and Medical Biochemistry, Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Bing Liu
- Bioorganic
Synthesis, Molecular Physiology, and Medical Biochemistry, Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Richard J. B. H. N. van den Berg
- Bioorganic
Synthesis, Molecular Physiology, and Medical Biochemistry, Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Adrianus M. C. H. van den
Nieuwendijk
- Bioorganic
Synthesis, Molecular Physiology, and Medical Biochemistry, Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Tom Wennekes
- Bioorganic
Synthesis, Molecular Physiology, and Medical Biochemistry, Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Amar T. Ghisaidoobe
- Bioorganic
Synthesis, Molecular Physiology, and Medical Biochemistry, Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Imogen Breen
- Structural
Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| | - Maria J. Ferraz
- Bioorganic
Synthesis, Molecular Physiology, and Medical Biochemistry, Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Chi-Lin Kuo
- Bioorganic
Synthesis, Molecular Physiology, and Medical Biochemistry, Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Liang Wu
- Structural
Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| | - Paul P. Geurink
- Department of Chemical Immunology, Leiden
University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Huib Ovaa
- Department of Chemical Immunology, Leiden
University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Gijsbert A. van der Marel
- Bioorganic
Synthesis, Molecular Physiology, and Medical Biochemistry, Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Mario van der Stelt
- Bioorganic
Synthesis, Molecular Physiology, and Medical Biochemistry, Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Rolf G. Boot
- Bioorganic
Synthesis, Molecular Physiology, and Medical Biochemistry, Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Gideon J. Davies
- Structural
Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, United Kingdom
| | - Johannes M. F. G. Aerts
- Bioorganic
Synthesis, Molecular Physiology, and Medical Biochemistry, Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Herman S. Overkleeft
- Bioorganic
Synthesis, Molecular Physiology, and Medical Biochemistry, Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| |
Collapse
|
12
|
Marques ARA, Willems LI, Herrera Moro D, Florea BI, Scheij S, Ottenhoff R, van Roomen CPAA, Verhoek M, Nelson JK, Kallemeijn WW, Biela-Banas A, Martin OR, Cachón-González MB, Kim NN, Cox TM, Boot RG, Overkleeft HS, Aerts JMFG. A Specific Activity-Based Probe to Monitor Family GH59 Galactosylceramidase, the Enzyme Deficient in Krabbe Disease. Chembiochem 2017; 18:402-412. [DOI: 10.1002/cbic.201600561] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 11/07/2022]
Affiliation(s)
- André R. A. Marques
- Department of Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 15 1105 AZ Amsterdam The Netherlands
- Present address: Institute of Biochemistry; Christian-Albrechts-University of Kiel; Otto-Hahn-Platz 9 24098 Kiel Germany
| | - Lianne I. Willems
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteeinweg 55 2300 RA Leiden The Netherlands
- Present address: Department of Chemistry; Simon Fraser University; 8888 University Drive Burnaby V5A 1S6 BC Canada
| | - Daniela Herrera Moro
- Department of Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 15 1105 AZ Amsterdam The Netherlands
| | - Bogdan I. Florea
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteeinweg 55 2300 RA Leiden The Netherlands
| | - Saskia Scheij
- Department of Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 15 1105 AZ Amsterdam The Netherlands
| | - Roelof Ottenhoff
- Department of Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 15 1105 AZ Amsterdam The Netherlands
| | - Cindy P. A. A. van Roomen
- Department of Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 15 1105 AZ Amsterdam The Netherlands
| | - Marri Verhoek
- Department of Biochemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Jessica K. Nelson
- Department of Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 15 1105 AZ Amsterdam The Netherlands
| | - Wouter W. Kallemeijn
- Department of Biochemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Anna Biela-Banas
- Institute of Organic and Analytical Chemistry; Université D'Orléans; Rue de Chartres B. P. 6759 45100 Orléans France
| | - Olivier R. Martin
- Institute of Organic and Analytical Chemistry; Université D'Orléans; Rue de Chartres B. P. 6759 45100 Orléans France
| | - M. Begoña Cachón-González
- Department of Medicine; University of Cambridge; Addenbrooke's Hospital; Hills Road Cambridge CB2 2QQ UK
| | - Nee Na Kim
- Department of Medicine; University of Cambridge; Addenbrooke's Hospital; Hills Road Cambridge CB2 2QQ UK
| | - Timothy M. Cox
- Department of Medicine; University of Cambridge; Addenbrooke's Hospital; Hills Road Cambridge CB2 2QQ UK
| | - Rolf G. Boot
- Department of Biochemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2300 RA Leiden The Netherlands
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteeinweg 55 2300 RA Leiden The Netherlands
| | - Johannes M. F. G. Aerts
- Department of Biochemistry; Academic Medical Center; University of Amsterdam; Meibergdreef 15 1105 AZ Amsterdam The Netherlands
- Department of Biochemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2300 RA Leiden The Netherlands
| |
Collapse
|
13
|
Schröder SP, Petracca R, Minnee H, Artola M, Aerts JMFG, Codée JDC, van der Marel GA, Overkleeft HS. A Divergent Synthesis ofl-arabino- andd-xylo-Configured Cyclophellitol Epoxides and Aziridines. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600983] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sybrin P. Schröder
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Rita Petracca
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Hugo Minnee
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Marta Artola
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Johannes M. F. G. Aerts
- Department of Medical Biochemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jeroen D. C. Codée
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijsbert A. van der Marel
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
14
|
Kallemeijn WW, Scheij S, Voorn-Brouwer TM, Witte MD, Verhoek M, Overkleeft HS, Boot RG, Aerts JMFG. Endo-β-Glucosidase Tag Allows Dual Detection of Fusion Proteins by Fluorescent Mechanism-Based Probes and Activity Measurement. Chembiochem 2016; 17:1698-704. [PMID: 27383447 DOI: 10.1002/cbic.201600312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 11/07/2022]
Abstract
β-Glucoside-configured cyclophellitols are activity-based probes (ABPs) that allow sensitive detection of β-glucosidases. Their applicability to detect proteins fused with β-glucosidase was investigated in the cellular context. The tag was Rhodococcus sp. M-777 endoglycoceramidase II (EGCaseII), based on its lack of glycans and ability to hydrolyze fluorogenic 4-methylumbelliferyl β-d-lactoside (an activity absent in mammalian cells). Specific dual detection of fusion proteins was possible in vitro and in situ by using fluorescent ABPs and a fluorogenic substrate. Pre-blocking with conduritol β-epoxide (a poor inhibitor of EGCaseII) eliminated ABP labeling of endogenous β-glucosidases. ABPs equipped with biotin allowed convenient purification of the fusion proteins. Diversification of ABPs (distinct fluorophores, fluorogenic high-resolution detection moieties) should assist further research in living cells and organisms.
Collapse
Affiliation(s)
- Wouter W Kallemeijn
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, NL
| | - Saskia Scheij
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, NL
| | - Tineke M Voorn-Brouwer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, NL
| | - Martin D Witte
- Department of Bio-Organic Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, NL.,Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, NL
| | - Marri Verhoek
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, NL
| | - Hermen S Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, NL
| | - Rolf G Boot
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, NL
| | - Johannes M F G Aerts
- Department of Medical Biochemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden, NL.
| |
Collapse
|
15
|
Jiang J, Artola M, Beenakker TJM, Schröder SP, Petracca R, de Boer C, Aerts JMFG, van der Marel GA, Codée JDC, Overkleeft HS. The Synthesis of Cyclophellitol-Aziridine and Its Configurational and Functional Isomers. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jianbing Jiang
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Marta Artola
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Thomas J. M. Beenakker
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Sybrin P. Schröder
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Rita Petracca
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Casper de Boer
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Johannes M. F. G. Aerts
- Department of Medical Biochemistry; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Gijsbert A. van der Marel
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Jeroen D. C. Codée
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis; Leiden Institute of Chemistry; Leiden University; Einsteinweg 55 2333 CC Leiden The Netherlands
| |
Collapse
|
16
|
Jiang J, Beenakker TJM, Kallemeijn WW, van der Marel GA, van den Elst H, Codée JDC, Aerts JMFG, Overkleeft HS. Comparing CyclophellitolN-Alkyl andN-Acyl Cyclophellitol Aziridines as Activity-Based Glycosidase Probes. Chemistry 2015; 21:10861-9. [DOI: 10.1002/chem.201501313] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Indexed: 11/12/2022]
|
17
|
Willems LI, Jiang J, Li KY, Witte MD, Kallemeijn WW, Beenakker TJN, Schröder SP, Aerts JMFG, van der Marel GA, Codée JDC, Overkleeft HS. From Covalent Glycosidase Inhibitors to Activity-Based Glycosidase Probes. Chemistry 2014; 20:10864-72. [DOI: 10.1002/chem.201404014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Wiedner SD, Anderson LN, Sadler NC, Chrisler WB, Kodali VK, Smith RD, Wright AT. Organelle-Specific Activity-Based Protein Profiling in Living Cells. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Wiedner SD, Anderson LN, Sadler NC, Chrisler WB, Kodali VK, Smith RD, Wright AT. Organelle-specific activity-based protein profiling in living cells. Angew Chem Int Ed Engl 2014; 53:2919-22. [PMID: 24505022 DOI: 10.1002/anie.201309135] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/26/2013] [Indexed: 12/26/2022]
Abstract
A multimodal activity-based probe for targeting acidic organelles was developed to measure subcellular native enzymatic activity in cells by fluorescence microscopy and mass spectrometry. A cathepsin-reactive warhead conjugated to a weakly basic amine and a clickable alkyne, for subsequent appendage of a fluorophore or biotin reporter tag, accumulated in lysosomes as observed by structured illumination microscopy (SIM) in J774 mouse macrophage cells. Analysis of in vivo labeled J774 cells by mass spectrometry showed that the probe was very selective for cathepsins B and Z, two lysosomal cysteine proteases. Analysis of starvation-induced autophagy, a catabolic pathway involving lysosomes, showed a large increase in the number of tagged proteins and an increase in cathepsin activity. The organelle-targeting of activity-based probes holds great promise for the characterization of enzyme activities in the myriad diseases linked to specific subcellular locations, particularly the lysosome.
Collapse
Affiliation(s)
- Susan D Wiedner
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (USA)
| | | | | | | | | | | | | |
Collapse
|
20
|
Zajdlik A, Wang Z, Hickey JL, Aman A, Schimmer AD, Yudin AK. α-Boryl isocyanides enable facile preparation of bioactive boropeptides. Angew Chem Int Ed Engl 2013; 52:8411-5. [PMID: 23818141 DOI: 10.1002/anie.201302818] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/24/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Adam Zajdlik
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St., Toronto, ON M5S3H6, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Zajdlik A, Wang Z, Hickey JL, Aman A, Schimmer AD, Yudin AK. α-Boryl Isocyanides Enable Facile Preparation of Bioactive Boropeptides. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302818] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|