1
|
Höthker S, Goli H, Klare S, Krebs T, Schacht JH, Gansäuer A. Attenuating Nucleophilicity of Titanocene Hydrides Beyond Steric Effects en Route to Fatty Alcohols. Chemistry 2024:e202402694. [PMID: 39109584 DOI: 10.1002/chem.202402694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Indexed: 10/17/2024]
Abstract
Here, we introduce a new class of titanocene catalysts for epoxide hydrosilylation that frustrates their hydridicity and thereby emphasizes their electron transfer reactivity. This unique attenuation of hydridicity is accomplished by introducing Lewis acidic silicon centers to the cyclopentadienyl ligands for an intramolecular coordination of the titanium-bound hydride. The superiority of our rationally designed catalysts over classic titanocenes with alkyl-substituted cyclopentadienyl ligands is demonstrated in the dramatically improved regioselectivity of the hydrosilylation of monosubstituted epoxides to primary alcohols.
Collapse
Affiliation(s)
- Sebastian Höthker
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Harie Goli
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Sven Klare
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Tim Krebs
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jonathan H Schacht
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Andreas Gansäuer
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
2
|
Tang L, Luo Y, Ma X, Wang B, Ding M, Wang R, Wang P, Pei Y, Wang S. Poly-Hydride [Au I 7 (PPh 3 ) 7 H 5 ](SbF 6 ) 2 cluster complex: Structure, Transformation, and Electrocatalytic CO 2 Reduction Properties. Angew Chem Int Ed Engl 2023; 62:e202300553. [PMID: 36655888 DOI: 10.1002/anie.202300553] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/20/2023]
Abstract
Hydride AuI bonds are labile due to the mismatch in electric potential of an oxidizing metal and reducing ligand, and therefore the structure and structure-activity relationships of nanoclusters that contain them are seldom studied. Herein, we report the synthesis and characterization of [Au7 (PPh3 )7 H5 ](SbF6 )2 (abbrev. Au7 H5 2+ ), an Au cluster complex containing five hydride ligands, which decomposed to give [Au8 (PPh3 )7 ]2+ (abbrev. Au8 2+ ) upon exposure to light (300 to 450 nm). The valence state of AuI and H- was verified by density functional theory (DFT) calculations, NMR, UV/Vis and XPS. The two nanoclusters behaved differently in the electrocatalytic CO2 reduction reaction (CO2 RR): Au7 H5 2+ exhibited 98.2 % selectivity for H2 , whereas Au8 2+ was selective for CO (73.5 %). Further DFT calculations showed that the H- ligand inhibited the CO2 RR process compared with the electron-donor H.
Collapse
Affiliation(s)
- Li Tang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yuting Luo
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Xiaoshuang Ma
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Bin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Mei Ding
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Ru Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Pu Wang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
3
|
Du Y, Jiang B, Han G. A Facile Highly Selective Anti‐Markovnikov Hydroamination of Vinyl Pyridines by Free Radical Oxidation. ChemistrySelect 2022. [DOI: 10.1002/slct.202204136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Yue‐Yue Du
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 P. R. of. China
| | - Bo Jiang
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 P. R. of. China
| | - Guo‐Zhi Han
- College of Chemistry and Molecular Engineering Nanjing Tech University Nanjing 211816 P. R. of. China
| |
Collapse
|
4
|
Levi Knippel J, Ni AZ, Schuppe AW, Buchwald SL. A General Strategy for the Asymmetric Preparation of α-Stereogenic Allyl Silanes, Germanes, and Boronate Esters via Dual Copper Hydride- and Palladium-Catalysis. Angew Chem Int Ed Engl 2022; 61:e202212630. [PMID: 36137941 PMCID: PMC9828222 DOI: 10.1002/anie.202212630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Indexed: 01/12/2023]
Abstract
α-Stereogenic allyl metalloids are versatile synthetic intermediates which can undergo various stereocontrolled transformations. Most existing methods to prepare α-stereogenic allyl metalloids involve multi-step sequences that curtail the number of compatible substrates and are limited to the synthesis of boronates. Here, we report a general method for the enantioselective preparation of α-stereogenic allyl metalloids utilizing dual CuH- and Pd-catalysis. This approach leverages a stereoretentive Cu-to-Pd transmetalation of an in situ generated alkyl copper species to allow access to enantioenriched allyl silanes, germanes, and boronate esters with broad functional group compatibility.
Collapse
Affiliation(s)
- James Levi Knippel
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AveCambridgeMA 02139USA
| | - Anton Z. Ni
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AveCambridgeMA 02139USA
| | - Alexander W. Schuppe
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AveCambridgeMA 02139USA
| | - Stephen L. Buchwald
- Department of ChemistryMassachusetts Institute of Technology77 Massachusetts AveCambridgeMA 02139USA
| |
Collapse
|
5
|
Li Y, Paola E, Wang Z, Menard G, Zakarian A. Lithium Enolate with a Lithium-Alkyne Interaction in the Enantioselective Construction of Quaternary Carbon Centers: Concise Synthesis of (+)-Goniomitine. Angew Chem Int Ed Engl 2022; 61:e202209987. [PMID: 36251869 PMCID: PMC9798608 DOI: 10.1002/anie.202209987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 11/09/2022]
Abstract
We report a method for direct enantioselective alkylation of 3-alkynoic and 2,3-alkendioic acids that form quaternary stereogenic centers, and application of this method to the total enantioselective synthesis of a complex alkaloid (+)-goniomitine. The methods were effective in the alkylation of both 3-alkynoic acids, 2,3-alkendioic acids substrates with a broad range of heterocyclic and functionalized alkyl group substituents. Accompanying crystallographic studies provide mechanistic insight into the structure of well-defined chiral aggregates, highlighting cation-π interactions between lithium and alkyne groups.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Elena Paola
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Zongheng Wang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Gabriel Menard
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Armen Zakarian
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Center for Integrative Biology, Faculty of Sciences, Geroscience Center for Brain Health and Metabolism, Universidad Mayor, Santiago, Chile
| |
Collapse
|
6
|
Li Y, Paola E, Wang Z, Menard G, Zakarian A. Lithium Enolate with a Lithium‐Alkyne Interaction in the Enantioselective Construction of Quaternary Carbon Centers: Concise Synthesis of (+)‐Goniomitine. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yang Li
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Elena Paola
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Zongheng Wang
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Gabriel Menard
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
| | - Armen Zakarian
- Department of Chemistry and Biochemistry University of California Santa Barbara CA 93106 USA
- Center for Integrative Biology Faculty of Sciences Geroscience Center for Brain Health and Metabolism Universidad Mayor Santiago Chile
| |
Collapse
|
7
|
Schacht JH, Wu S, Klare S, Höthker S, Schmickler N, Gansäuer A. Polymethylhydrosiloxane (PMHS) as sustainable reductant in the titanocene catalyzed epoxide hydrosilylation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Shangze Wu
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Instutu für Organische Chemie GERMANY
| | - Sven Klare
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Institut für Organische Chemie GERMANY
| | - Sebastian Höthker
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Institut für Organische Chemie GERMANY
| | - Niklas Schmickler
- Rheinische Friedrich-Wilhelms-Universitat Bonn Kekulé Institut für Organische Chemie GERMANY
| | - Andreas Gansäuer
- Universität Bonn Kekulé-Institut für Organische Chemie Gerhard Domagk Str. 1 53121 Bonn GERMANY
| |
Collapse
|
8
|
Zhou J, Yang Q, Lee CS, Wang J(J. Enantio‐ and Regioselective Construction of 1,4‐Diamines via Cascade Hydroamination of Methylene Cyclopropanes. Angew Chem Int Ed Engl 2022; 61:e202202160. [DOI: 10.1002/anie.202202160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Jian Zhou
- Department of Chemistry Hong Kong Baptist University Kowloon, Hong Kong China
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong, 518055 China
| | - Qingjing Yang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong, 518055 China
| | - Chi Sing Lee
- Department of Chemistry Hong Kong Baptist University Kowloon, Hong Kong China
| | - Jun (Joelle) Wang
- Department of Chemistry Hong Kong Baptist University Kowloon, Hong Kong China
| |
Collapse
|
9
|
Zhou J, Yang Q, Lee CS, WANG J. Enantio‐ and Regioselective Construction of 1,4‐diamines via Cascade Hydroamination of Methylene Cyclopropanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jian Zhou
- Hong Kong Baptist University Department of Chemistry HONG KONG
| | - Qingjing Yang
- Southern University of Science and Technology Department of Chemistry CHINA
| | - Chi Sing Lee
- Hong Kong Baptist University Department of Chemistry HONG KONG
| | - Jun WANG
- Hong Kong Baptist University Department of Chemistry Ho Sin Hang Campus 000000 Hong Kong HONG KONG
| |
Collapse
|
10
|
Li YB, Tian H, Zhang S, Xiao JZ, Yin L. Copper(I)-Catalyzed Asymmetric Synthesis of P-Chiral Aminophosphinites. Angew Chem Int Ed Engl 2022; 61:e202117760. [PMID: 35076164 DOI: 10.1002/anie.202117760] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Indexed: 01/04/2023]
Abstract
Herein, a copper(I)-catalyzed reaction of diarylphosphines and O-benzoyl hydroxylamines is developed. In the cases of symmetrical diarylphosphines, a series of aminophosphinites is prepared in high yields. In the cases of unsymmetrical diarylphosphines, an array of P-chiral aminophosphinites is synthesized in high yields with high enantioselectivity by using a copper(I)-(R,RP )-Ph-FOXAP complex as a chiral catalyst. Based on several control experiments and 31 P NMR studies, a two-electron redox mechanism involving the dynamic kinetic asymmetric transformation of unsymmetrical diarylphosphines is proposed for the copper(I)-catalyzed asymmetric reaction. Finally, one representative P-chiral phosphoric amide generated through the oxidation with H2 O2 is transformed to a chiral diarylphosphinate in high yield with retained enantioselectivity, which allows further transformations towards various P-chiral tertiary phosphines.
Collapse
Affiliation(s)
- Yan-Bo Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hu Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Shuai Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jun-Zhao Xiao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
11
|
Li Y, Tian H, Zhang S, Xiao J, Yin L. Copper(I)‐Catalyzed Asymmetric Synthesis of
P
‐Chiral Aminophosphinites. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yan‐Bo Li
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Hu Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Shuai Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jun‐Zhao Xiao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Liang Yin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
12
|
Chang S, Liu H, Shi G, Xia XF, Wang D, Duan ZC. Copper–cobalt coordination polymers and catalytic applications on borrowing hydrogen reactions. NEW J CHEM 2022. [DOI: 10.1039/d2nj01763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A porous copper–cobalt polymer was synthesized and achieved applications for the N-alkylation of sulfonamides with alcohols, and carboxamides with alcohols.
Collapse
Affiliation(s)
- Shaoze Chang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hongqiang Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- China Synchem Technology Co., Ltd., Bengbu, Anhui, 233000, China
| | - Gang Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Zheng-Chao Duan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- School of Chemical and Environmental Engineering, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
13
|
Abstract
Classical amination methods involve the reaction of a nitrogen nucleophile with an electrophilic carbon center; however, in recent years, umpoled strategies have gained traction where the nitrogen source acts as an electrophile. A wide range of electrophilic aminating agents are now available, and these underpin a range of powerful C-N bond-forming processes. In this Review, we highlight the strategic use of electrophilic aminating agents in total synthesis.
Collapse
Affiliation(s)
- Lauren G. O'Neil
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - John F. Bower
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
14
|
Qin T, Lv G, Meng Q, Zhang G, Xiong T, Zhang Q. Cobalt-Catalyzed Radical Hydroamination of Alkenes with N-Fluorobenzenesulfonimides. Angew Chem Int Ed Engl 2021; 60:25949-25957. [PMID: 34562047 DOI: 10.1002/anie.202110178] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/11/2021] [Indexed: 11/10/2022]
Abstract
An efficient and general radical hydroamination of alkenes using Co(salen) as catalyst, N-fluorobenzenesulfonimide (NFSI) and its analogues as both nitrogen source and oxidant was successfully disclosed. A variety of alkenes, including aliphatic alkenes, styrenes, α, β-unsaturated esters, amides, acids, as well as enones, were all compatible to provide desired amination products. Mechanistic experiments suggest that the reaction underwent a metal-hydride-mediated hydrogen atom transfer (HAT) with alkene, followed by a pivotal catalyst controlled SN 2-like pathway between in situ generated organocobalt(IV) species and nitrogen-based nucleophiles. Moreover, by virtue of modified chiral cobalt(II)-salen catalyst, an unprecedented asymmetric version was also achieved with good to excellent level of enantiocontrol. This novel asymmetric radical C-N bond construction opens a new door for the challenging asymmetric radical hydrofunctionalization.
Collapse
Affiliation(s)
- Tao Qin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Guowei Lv
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qi Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Ge Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
15
|
Qin T, Lv G, Meng Q, Zhang G, Xiong T, Zhang Q. Cobalt‐Catalyzed Radical Hydroamination of Alkenes with
N
‐Fluorobenzenesulfonimides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tao Qin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Guowei Lv
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Qi Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Ge Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis Department of Chemistry Northeast Normal University Changchun 130024 China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
16
|
Affiliation(s)
- Lauren G. O'Neil
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - John F. Bower
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
17
|
Meng L, Yang J, Duan M, Wang Y, Zhu S. Facile Synthesis of Chiral Arylamines, Alkylamines and Amides by Enantioselective NiH-Catalyzed Hydroamination. Angew Chem Int Ed Engl 2021; 60:23584-23589. [PMID: 34449971 DOI: 10.1002/anie.202109881] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Indexed: 12/15/2022]
Abstract
Regio- and enantioselective hydroarylamination, hydroalkylamination and hydroamidation of styrenes have been developed by NiH catalysis with a simple bioxazoline ligand under mild conditions. A wide range of enantioenriched benzylic arylamines, alkylamines and amides can be easily accessed by nitroarenes, hydroxylamines and dioxazolones, respectively as amination reagents. The chiral induction in these reactions is proposed to proceed through an enantiodifferentiating syn-hydronickellation step.
Collapse
Affiliation(s)
- Lingpu Meng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jingjie Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Mei Duan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - You Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
18
|
Meng L, Yang J, Duan M, Wang Y, Zhu S. Facile Synthesis of Chiral Arylamines, Alkylamines and Amides by Enantioselective NiH‐Catalyzed Hydroamination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lingpu Meng
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Jingjie Yang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Mei Duan
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - You Wang
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry Jiangsu Key Laboratory of Advanced Organic Materials Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China
| |
Collapse
|
19
|
Jeon J, Lee C, Park I, Hong S. Regio- and Stereoselective Functionalization Enabled by Bidentate Directing Groups. CHEM REC 2021; 21:3613-3627. [PMID: 34086390 DOI: 10.1002/tcr.202100117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022]
Abstract
Chelation-assisted C-H bond and alkene functionalization using bidentate directing groups offers an elegant and versatile approach to overcome regiocontrol issues by allowing the catalyst to come into close proximity with the targeted sites. In this personal account, we highlight our recent works in developing regio- and stereocontrolled functionalizations through transition-metal catalysis enabled by bidentate directing groups. We classify our results into two categories: (1) regioselective alkene functionalization using bidentate directing groups, and (2) asymmetric C-H functionalization using chiral bidentate directing groups. Furthermore, density functional theory studies to elucidate the origin of the regio- and stereoselectivity exerted by bidentate directing groups are discussed.
Collapse
Affiliation(s)
- Jinwon Jeon
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changseok Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Inyoung Park
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
20
|
Koperniku A, Schafer LL. Zirconium Catalyzed Hydroaminoalkylation for the Synthesis of α‐Arylated Amines and N‐Heterocycles. Chemistry 2021; 27:6334-6339. [DOI: 10.1002/chem.202100014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Ana Koperniku
- Faculty of Pharmaceutical Sciences The University of British Columbia 2405 Wesbrook Mall Vancouver BC V6T 1Z3 Canada
- Current address: Stanford University School of Medicine Medicine 269 Campus Drive, CCSR 3140 94305-5174 Palo Alto USA
| | - Laurel L. Schafer
- Department of Chemistry The University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
21
|
Jang WJ, Woo J, Yun J. Asymmetric Conjugate Addition of Chiral Secondary Borylalkyl Copper Species. Angew Chem Int Ed Engl 2021; 60:4614-4618. [PMID: 33225611 DOI: 10.1002/anie.202014425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Indexed: 12/23/2022]
Abstract
We report the diastereo- and enantioselective conjugate addition of chiral secondary borylalkyl copper species derived from borylalkenes in situ to α,β-unsaturated diesters. In the presence of a chiral bisphosphine-ligated CuH catalyst, the conjugate addition provides a direct access to enantioenriched alkylboron compounds containing two contiguous carbon stereogenic centers in good yield with high diastereo- and enantioselectivity (up to >98:2 dr, >99:1 er) by assembling readily available starting alkenyl reagents in a single operation without using preformed organometallic reagents or chiral auxiliaries. The resulting products were used in various organic transformations. The utility of the synthetic approach was highlighted by the synthesis of (-)-phaseolinic acid.
Collapse
Affiliation(s)
- Won Jun Jang
- Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Jeongkyu Woo
- Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon, 16419, Korea
| | - Jaesook Yun
- Department of Chemistry and Institute of Basic Science, Sungkyunkwan University, Suwon, 16419, Korea
| |
Collapse
|
22
|
Jang WJ, Woo J, Yun J. Asymmetric Conjugate Addition of Chiral Secondary Borylalkyl Copper Species. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Won Jun Jang
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| | - Jeongkyu Woo
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| | - Jaesook Yun
- Department of Chemistry and Institute of Basic Science Sungkyunkwan University Suwon 16419 Korea
| |
Collapse
|
23
|
Guo S, Zhu J, Buchwald SL. Enantioselective Synthesis of β-Amino Acid Derivatives Enabled by Ligand-Controlled Reversal of Hydrocupration Regiochemistry. Angew Chem Int Ed Engl 2020; 59:20841-20845. [PMID: 32598506 DOI: 10.1002/anie.202007005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/04/2020] [Indexed: 11/08/2022]
Abstract
A Cu-catalyzed enantioselective hydroamination of α,β-unsaturated carbonyl compounds for the synthesis of β-amino acid derivatives was achieved through ligand-controlled reversal of the hydrocupration regioselectivity. While the hydrocupration of α,β-unsaturated carbonyl compounds to form α-cuprated species has been extensively investigated, we report herein that, in the presence of an appropriate ancillary chiral ligand, the opposite regiochemistry can be observed for cinnamic acid derivatives, leading to the delivery of the copper to the β-position. This copper can react with an electrophilic aminating reagent, 1,2-benzisoxazole, to provide enantioenriched β-amino acid derivatives, which are important building blocks for the synthesis of natural products and bioactive small molecules.
Collapse
Affiliation(s)
- Sheng Guo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jiaqi Zhu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
24
|
Guo S, Zhu J, Buchwald SL. Enantioselective Synthesis of β‐Amino Acid Derivatives Enabled by Ligand‐Controlled Reversal of Hydrocupration Regiochemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sheng Guo
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Jiaqi Zhu
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Stephen L. Buchwald
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
25
|
Yuan Y, Wu FP, Schünemann C, Holz J, Kamer PCJ, Wu XF. Copper-Catalyzed Carbonylative Hydroamidation of Styrenes to Branched Amides. Angew Chem Int Ed Engl 2020; 59:22441-22445. [PMID: 32964582 DOI: 10.1002/anie.202010509] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 11/11/2022]
Abstract
Amides are one of the most ubiquitous functional groups in synthetic and medicinal chemistry. Novel and rapid synthesis of amides remains in high demand. In this communication, a general and efficient procedure for branch-selective hydroamidation of vinylarenes with hydroxyamine derivatives enabled by copper catalysis has been developed for the first time. The reaction proceeds under mild conditions and tolerates a broad range of functional groups. Applying a chiral phosphine ligand, an enantioselective variant of this transformation was achieved, affording a variety of chiral α-amides with excellent enantioselectivities (up to 99 % ee) and high yields.
Collapse
Affiliation(s)
- Yang Yuan
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Fu-Peng Wu
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Claas Schünemann
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Jens Holz
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Paul C J Kamer
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Straße 29a, 18059, Rostock, Germany.,Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| |
Collapse
|
26
|
Yuan Y, Wu F, Schünemann C, Holz J, Kamer PCJ, Wu X. Copper‐Catalyzed Carbonylative Hydroamidation of Styrenes to Branched Amides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yang Yuan
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Fu‐Peng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Claas Schünemann
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Jens Holz
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Paul C. J. Kamer
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao‐Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian Liaoning China
| |
Collapse
|
27
|
Falk E, Makai S, Delcaillau T, Gürtler L, Morandi B. Design and Scalable Synthesis of
N
‐Alkylhydroxylamine Reagents for the Direct Iron‐Catalyzed Installation of Medicinally Relevant Amines**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eric Falk
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Szabolcs Makai
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Tristan Delcaillau
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Laura Gürtler
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| |
Collapse
|
28
|
Falk E, Makai S, Delcaillau T, Gürtler L, Morandi B. Design and Scalable Synthesis of
N
‐Alkylhydroxylamine Reagents for the Direct Iron‐Catalyzed Installation of Medicinally Relevant Amines**. Angew Chem Int Ed Engl 2020; 59:21064-21071. [DOI: 10.1002/anie.202008247] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Eric Falk
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Szabolcs Makai
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Tristan Delcaillau
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Laura Gürtler
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| | - Bill Morandi
- Laboratorium für Organische Chemie ETH Zürich Vladimir-Prelog-Weg 3, HCI 8093 Zürich Switzerland
| |
Collapse
|
29
|
Hoveyda AH, Zhou Y, Shi Y, Brown MK, Wu H, Torker S. Sulfonate N‐Heterocyclic Carbene–Copper Complexes: Uniquely Effective Catalysts for Enantioselective Synthesis of C−C, C−B, C−H, and C−Si Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Amir H. Hoveyda
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| | - Yuebiao Zhou
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Ying Shi
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - M. Kevin Brown
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Hao Wu
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
| | - Sebastian Torker
- Department of Chemistry Merkert Chemistry Center Boston College Chestnut Hill MA 02467 USA
- Supramolecular Science and Engineering Institute University of Strasbourg CNRS 67000 Strasbourg France
| |
Collapse
|
30
|
Hoveyda AH, Zhou Y, Shi Y, Brown MK, Wu H, Torker S. Sulfonate N-Heterocyclic Carbene-Copper Complexes: Uniquely Effective Catalysts for Enantioselective Synthesis of C-C, C-B, C-H, and C-Si Bonds. Angew Chem Int Ed Engl 2020; 59:21304-21359. [PMID: 32364640 DOI: 10.1002/anie.202003755] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Indexed: 12/21/2022]
Abstract
A copper-based complex that contains a sulfonate N-heterocyclic carbene ligand was first reported 15 years ago. Since then, these organometallic entities have proven to be uniquely effective in catalyzing an assortment of enantioselective transformations, including allylic substitutions, conjugate additions, proto-boryl additions to alkenes, boryl and silyl substitutions, hydride-allyl additions to alkenyl boronates, and additions of boron-containing allyl moieties to N-H ketimines. In this review article, we detail the shortcomings in the state-of-the-art that fueled the development of this air stable ligand class, members of which can be prepared on multigram scale. For each reaction type, when relevant, the prior art at the time of the advance involving sulfonate NHC-Cu catalysts and/or subsequent key developments are briefly analyzed, and the relevance of the advance to efficient and enantioselective total or formal synthesis of biologically active molecules is underscored. Mechanistic analysis of the structural attributes of sulfonate NHC-Cu catalysts that are responsible for their ability to facilitate transformations with high efficiency as well as regio- and enantioselectivity are detailed. This review contains several formerly undisclosed methodological advances and mechanistic analyses, the latter of which constitute a revision of previously reported proposals.
Collapse
Affiliation(s)
- Amir H Hoveyda
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA.,Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| | - Yuebiao Zhou
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Ying Shi
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - M Kevin Brown
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Hao Wu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA
| | - Sebastian Torker
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, 02467, USA.,Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000, Strasbourg, France
| |
Collapse
|
31
|
Nishino S, Hirano K, Miura M. Cu‐Catalyzed Reductive
gem
‐Difunctionalization of Terminal Alkynes via Hydrosilylation/Hydroamination Cascade: Concise Synthesis of α‐Aminosilanes. Chemistry 2020; 26:8725-8728. [DOI: 10.1002/chem.202001799] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Soshi Nishino
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Koji Hirano
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| | - Masahiro Miura
- Department of Applied ChemistryGraduate School of EngineeringOsaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
32
|
Katahara S, Takahashi T, Nomura K, Uchiyama M, Sato T, Chida N. Copper-Catalyzed Electrophilic Etherification of Arylboronic Esters with Isoxazolidines. Chem Asian J 2020; 15:1869-1872. [PMID: 32352205 DOI: 10.1002/asia.202000270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/29/2020] [Indexed: 11/10/2022]
Abstract
A copper-catalyzed electrophilic etherification of arylboronic esters is reported. Isoxazolidines are utilized as easily available and stable [RO]+ surrogates to give 1,3-amino aryl ethers. The O-selective arylation of isoxazolidines takes place without causing competitive N-arylation. In contrast to previously reported anionic conditions, our copper-catalyzed conditions are mild enough to achieve high functional group tolerance. Preliminary mechanistic studies and DFT calculations support that the reaction proceeds via a transmetalation/oxidative addition pathway, followed by a Lewis acid-promoted reductive elimination to induce the crucial O-selectivity.
Collapse
Affiliation(s)
- Seiya Katahara
- Department of Applied Chemistry Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Tenga Takahashi
- Department of Applied Chemistry Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Kengo Nomura
- Department of Applied Chemistry Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Cluster of Pioneering Research (CPR), Advanced Elements Chemistry LaboratoryRIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan.,Research Initiative for Supra-Materials (RISM), Shinshu University, Ueda, 386-8567, Japan
| | - Takaaki Sato
- Department of Applied Chemistry Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Noritaka Chida
- Department of Applied Chemistry Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
33
|
Yang Q, Li S, Wang J(J. Asymmetric Synthesis of Chiral Chromanes by Copper‐Catalyzed Hydroamination of 2
H
‐Chromenes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000601] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qingjing Yang
- School of Chemistry and Chemical EngineeringHarbin Institute of Technology Harbin 150080 P. R. China
- Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Sifeng Li
- Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Jun (Joelle) Wang
- Department of ChemistrySouthern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
34
|
Colonna P, Bezzenine S, Gil R, Hannedouche J. Alkene Hydroamination
via
Earth‐Abundant Transition Metal (Iron, Cobalt, Copper and Zinc) Catalysis: A Mechanistic Overview. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901157] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Pierre Colonna
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO)CNRS UMR 8182Université Paris-Sud Université Paris-Saclay 91405 Orsay cedex France
| | - Sophie Bezzenine
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO)CNRS UMR 8182Université Paris-Sud Université Paris-Saclay 91405 Orsay cedex France
| | - Richard Gil
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO)CNRS UMR 8182Université Paris-Sud Université Paris-Saclay 91405 Orsay cedex France
| | - Jérôme Hannedouche
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO)CNRS UMR 8182Université Paris-Sud Université Paris-Saclay 91405 Orsay cedex France
| |
Collapse
|
35
|
He J, Xue Y, Han B, Zhang C, Wang Y, Zhu S. Nickel-Catalyzed Asymmetric Reductive 1,2-Carboamination of Unactivated Alkenes. Angew Chem Int Ed Engl 2019; 59:2328-2332. [PMID: 31755199 DOI: 10.1002/anie.201913743] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/20/2019] [Indexed: 12/14/2022]
Abstract
Starting from diverse alkene-tethered aryl iodides and O-benzoyl-hydroxylamines, the enantioselective reductive cross-electrophilic 1,2-carboamination of unactivated alkenes was achieved using a chiral pyrox/nickel complex as the catalyst. This mild, modular, and practical protocol provides rapid access to a variety of β-chiral amines with an enantioenriched aryl-substituted quaternary carbon center in good yields and with excellent enantioselectivities. This process reveals a complementary regioselectivity when compared to Pd and Cu catalysis.
Collapse
Affiliation(s)
- Jun He
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yuhang Xue
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Bo Han
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Chunzhu Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - You Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
36
|
Nickel‐Catalyzed Asymmetric Reductive 1,2‐Carboamination of Unactivated Alkenes. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201913743] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Zelenay B, Munton P, Tian X, Díez-González S. A Commercially Available and User-Friendly Catalyst for Hydroamination Reactions under Technical Conditions. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Benjamin Zelenay
- Department of Chemistry; Imperial College London; MSRH; 80 Wood Lane W120BZ London UK
| | - Peter Munton
- Department of Chemistry; Imperial College London; MSRH; 80 Wood Lane W120BZ London UK
| | - Xiaojie Tian
- Department of Chemistry; Imperial College London; MSRH; 80 Wood Lane W120BZ London UK
| | - Silvia Díez-González
- Department of Chemistry; Imperial College London; MSRH; 80 Wood Lane W120BZ London UK
| |
Collapse
|
38
|
Banjo S, Nakasuji E, Meguro T, Sato T, Chida N. Copper‐Catalyzed Electrophilic Amidation of Organotrifluoroborates with Use of
N
‐Methoxyamides. Chemistry 2019; 25:7941-7947. [DOI: 10.1002/chem.201901145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Shona Banjo
- Department of Applied Chemistry, Faculty of Science and TechnologyKeio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Eiko Nakasuji
- Department of Applied Chemistry, Faculty of Science and TechnologyKeio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Tatsuhiko Meguro
- Department of Applied Chemistry, Faculty of Science and TechnologyKeio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Takaaki Sato
- Department of Applied Chemistry, Faculty of Science and TechnologyKeio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Noritaka Chida
- Department of Applied Chemistry, Faculty of Science and TechnologyKeio University 3-14-1 Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
39
|
Yu L, Somfai P. Regio‐ and Enantioselective Formal Hydroamination of Enamines for the Synthesis of 1,2‐Diamines. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lu Yu
- Centre for Analysis and SynthesisDepartment of ChemistryLund University 22100 Lund Sweden
| | - Peter Somfai
- Centre for Analysis and SynthesisDepartment of ChemistryLund University 22100 Lund Sweden
| |
Collapse
|
40
|
Yu L, Somfai P. Regio- and Enantioselective Formal Hydroamination of Enamines for the Synthesis of 1,2-Diamines. Angew Chem Int Ed Engl 2019; 58:8551-8555. [PMID: 30990943 DOI: 10.1002/anie.201902642] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/16/2019] [Indexed: 01/02/2023]
Abstract
The asymmetric formal hydroamination of enamines using a CuH catalyst is reported. The method provides a straightforward and efficient approach to the synthesis of chiral 1,2-dialkyl amines in good yields with high levels of enantioselectivities for a broad range of substrates, and should have significant value for the preparation of molecules bearing a 1,2-diamine motif.
Collapse
Affiliation(s)
- Lu Yu
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Peter Somfai
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, 22100, Lund, Sweden
| |
Collapse
|
41
|
Dai XJ, Engl OD, León T, Buchwald SL. Catalytic Asymmetric Synthesis of α-Arylpyrrolidines and Benzo-fused Nitrogen Heterocycles. Angew Chem Int Ed Engl 2019; 58:3407-3411. [PMID: 30659729 PMCID: PMC6553474 DOI: 10.1002/anie.201814331] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Indexed: 11/11/2022]
Abstract
Herein, we report a practical two-step synthetic route to α-arylpyrrolidines through Suzuki-Miyaura cross-coupling and enantioselective copper-catalyzed intramolecular hydroamination reactions. The excellent stereoselectivity and broad scope for the transformation of substrates with pharmaceutically relevant heteroarenes render this method a practical and versatile approach for pyrrolidine synthesis. Additionally, this intramolecular hydroamination strategy facilitates the asymmetric synthesis of tetrahydroisoquinolines and medium-ring dibenzo-fused nitrogen heterocycles.
Collapse
Affiliation(s)
- Xi-Jie Dai
- Department of Chemistry, Room 18–490 Massachusetts Institute
ofTechnology, Cambridge, MA 02139 (USA)
| | - Oliver D. Engl
- Department of Chemistry, Room 18–490 Massachusetts Institute
ofTechnology, Cambridge, MA 02139 (USA)
| | - Thierry León
- Department of Chemistry, Room 18–490 Massachusetts Institute
ofTechnology, Cambridge, MA 02139 (USA)
| | - Stephen L. Buchwald
- Department of Chemistry, Room 18–490 Massachusetts Institute
ofTechnology, Cambridge, MA 02139 (USA)
| |
Collapse
|
42
|
Catalytic Asymmetric Synthesis of α-Arylpyrrolidines and Benzo-fused Nitrogen Heterocycles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
43
|
Pape F, Brechmann LT, Teichert JF. Catalytic Generation and Chemoselective Transfer of Nucleophilic Hydrides from Dihydrogen. Chemistry 2019; 25:985-988. [PMID: 30407666 DOI: 10.1002/chem.201805530] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Indexed: 11/06/2022]
Abstract
Copper(I)-N-heterocyclic-carbene (NHC) complexes enabled the catalytic generation of nucleophilic hydrides from dihydrogen (H2 ) and their subsequent transfer to allylic chlorides. The highly chemoselective catalyst displayed no concomitant hydrogenation reactivity; in fact, the terminal double bond formed in the hydride transfer remained intact. Switching to deuterium gas (D2 ) allowed for regioselective monodeuteration with excellent isotope incorporation.
Collapse
Affiliation(s)
- Felix Pape
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Lea T Brechmann
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Johannes F Teichert
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| |
Collapse
|
44
|
Lepori C, Bernoud E, Guillot R, Tobisch S, Hannedouche J. Experimental and Computational Mechanistic Studies of the β‐Diketiminatoiron(II)‐Catalysed Hydroamination of Primary Aminoalkenes. Chemistry 2019; 25:835-844. [DOI: 10.1002/chem.201804681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Clément Lepori
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182Université Paris-Sud, Université Paris-Saclay Rue du doyen Georges Poitou Orsay 91405 France
| | - Elise Bernoud
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182Université Paris-Sud, Université Paris-Saclay Rue du doyen Georges Poitou Orsay 91405 France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182Université Paris-Sud, Université Paris-Saclay Rue du doyen Georges Poitou Orsay 91405 France
- CNRS Orsay 91405 France
| | - Sven Tobisch
- School of ChemistryUniversity of St Andrews Purdie Building North Haugh St Andrews KY16 9ST UK
| | - Jérôme Hannedouche
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182Université Paris-Sud, Université Paris-Saclay Rue du doyen Georges Poitou Orsay 91405 France
- CNRS Orsay 91405 France
| |
Collapse
|
45
|
Lepori C, Guillot R, Hannedouche J. C1
-symmetric β-Diketiminatoiron(II) Complexes for Hydroamination of Primary Alkenylamines. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Clément Lepori
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182; Université Paris-Sud, Université Paris-Saclay; rue du doyen Georges Poitou Orsay F-91405 France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182; Université Paris-Sud, Université Paris-Saclay; rue du doyen Georges Poitou Orsay F-91405 France
| | - Jérôme Hannedouche
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, UMR 8182; Université Paris-Sud, Université Paris-Saclay; rue du doyen Georges Poitou Orsay F-91405 France
- CNRS; Orsay F-91405 France
| |
Collapse
|
46
|
Xu‐Xu Q, Liu Q, Zhang X, You S. Copper‐Catalyzed Ring Opening of Benzofurans and an Enantioselective Hydroamination Cascade. Angew Chem Int Ed Engl 2018; 57:15204-15208. [DOI: 10.1002/anie.201809003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/06/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Qing‐Feng Xu‐Xu
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qiang‐Qiang Liu
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiao Zhang
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Collaborative Innovation Center of, Chemical Science and Engineering Tianjin 300072 China
| |
Collapse
|
47
|
Xu‐Xu Q, Liu Q, Zhang X, You S. Copper‐Catalyzed Ring Opening of Benzofurans and an Enantioselective Hydroamination Cascade. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Qing‐Feng Xu‐Xu
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Qiang‐Qiang Liu
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Xiao Zhang
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Shu‐Li You
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryUniversity of Chinese Academy of SciencesChinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
- Collaborative Innovation Center of, Chemical Science and Engineering Tianjin 300072 China
| |
Collapse
|
48
|
Ichikawa S, Zhu S, Buchwald SL. A Modified System for the Synthesis of Enantioenriched N-Arylamines through Copper-Catalyzed Hydroamination. Angew Chem Int Ed Engl 2018; 57:8714-8718. [PMID: 29847002 PMCID: PMC6033674 DOI: 10.1002/anie.201803026] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/27/2018] [Indexed: 02/03/2023]
Abstract
Despite significant recent progress in copper-catalyzed enantioselective hydroamination chemistry, the synthesis of chiral N-arylamines, which are frequently found in natural products and pharmaceuticals, has not been realized. Initial experiments with N-arylhydroxylamine ester electrophiles were unsuccessful and, instead, their reduction in the presence of copper hydride (CuH) catalysts was observed. Herein, we report key modifications to our previously reported hydroamination methods that lead to broadly applicable conditions for the enantioselective net addition of secondary anilines across the double bond of styrenes, 1,1-disubstituted olefins, and terminal alkenes. NMR studies suggest that suppression of the undesired reduction pathway is the basis for the dramatic improvements in yield under the reported method.
Collapse
Affiliation(s)
- Saki Ichikawa
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shaolin Zhu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
49
|
Takata T, Nishikawa D, Hirano K, Miura M. Synthesis of α-Aminophosphines by Copper-Catalyzed Regioselective Hydroamination of Vinylphosphines. Chemistry 2018; 24:10975-10978. [PMID: 29917266 DOI: 10.1002/chem.201802491] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Indexed: 02/03/2023]
Abstract
A copper-catalyzed net hydroamination of vinylphosphine boranes with hydrosilanes and O-benzoylhydroxylamines has been developed. The reaction proceeds regioselectively to form the corresponding α-aminophosphine boranes of potent interest in medicinal and pharmaceutical chemistry. This copper catalysis is based on an umpolung, electrophilic amination strategy and provides a new electrophilic amination approach to α-aminophosphine derivatives. Additionally, although still preliminary, asymmetric synthesis has also been achieved by judicious choice of a chiral bisphosphine-ligated copper complex.
Collapse
Affiliation(s)
- Tatsuaki Takata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Daiki Nishikawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masahiro Miura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
50
|
Ichikawa S, Zhu S, Buchwald SL. A Modified System for the Synthesis of Enantioenriched
N
‐Arylamines through Copper‐Catalyzed Hydroamination. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Saki Ichikawa
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Shaolin Zhu
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Stephen L. Buchwald
- Department of Chemistry Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|