1
|
Wang L, Xu Z, Zhang Y, Wang R, Wang J, Yang S, Su J, Li Y. Recent insights into function, structure and modification of cytochrome P450 153 a family. Mol Biol Rep 2023; 50:6955-6961. [PMID: 37355495 DOI: 10.1007/s11033-023-08553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/26/2023] [Indexed: 06/26/2023]
Abstract
Cytochrome P450 153 A (CYP153A) is a versatile enzyme that can catalyze a wide range of oxidation reactions on various substrates. This review provides a comprehensive overview of the current state of knowledge on CYP153A, including its classification, structure, function, and potential applications in biotechnology and pharmaceuticals. The CYP153A family encompasses many enzymes with different functions on a variety of substrates. We also discuss the structural features that are responsible for the different substrate specificities. Additionally, the enzyme has been engineered to increase its catalytic activity and modifications have been made to enhance its properties further. Despite its potential, challenges and limitations associated with studying and exploiting CYP153A remain, such as low expression levels and substrate inhibition. Nonetheless, ongoing research is exploring new ways to harness the enzyme's capabilities, particularly in synthetic biology, biocatalysis, and drug discovery, making it an exciting target for future research.
Collapse
Affiliation(s)
- Leilei Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, 250353, China
| | - Ziqi Xu
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, 250353, China
| | - Yisang Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, 250353, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, 250353, China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, 250353, China
| | - Suzhen Yang
- Shandong Freda Biotech Co., Ltd, Jinan, 250101, Shandong, China
| | - Jing Su
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, 250353, China.
| | - Yan Li
- Shandong Freda Biotech Co., Ltd, Jinan, 250101, Shandong, China.
| |
Collapse
|
2
|
Chen J, Dong S, Fang W, Jiang Y, Chen Z, Qin X, Wang C, Zhou H, Jin L, Feng Y, Wang B, Cong Z. Regiodivergent and Enantioselective Hydroxylation of C-H bonds by Synergistic Use of Protein Engineering and Exogenous Dual-Functional Small Molecules. Angew Chem Int Ed Engl 2023; 62:e202215088. [PMID: 36417593 DOI: 10.1002/anie.202215088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
It is a great challenge to optionally access diverse hydroxylation products from a given substrate bearing multiple reaction sites of sp3 and sp2 C-H bonds. Herein, we report the highly selective divergent hydroxylation of alkylbenzenes by an engineered P450 peroxygenase driven by a dual-functional small molecule (DFSM). Using combinations of various P450BM3 variants with DFSMs enabled access to more than half of all possible hydroxylated products from each substrate with excellent regioselectivity (up to >99 %), enantioselectivity (up to >99 % ee), and high total turnover numbers (up to 80963). Crystal structure analysis, molecular dynamic simulations, and theoretical calculations revealed that synergistic effects between exogenous DFSMs and the protein environment controlled regio- and enantioselectivity. This work has implications for exogenous-molecule-modulated enzymatic regiodivergent and enantioselective hydroxylation with potential applications in synthetic chemistry.
Collapse
Affiliation(s)
- Jie Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Wenhan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yiping Jiang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Zhifeng Chen
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, China
| | - Xiangquan Qin
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,Department of Chemistry, Yanbian University, 133002, Yanji, China
| | - Cong Wang
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China
| | - Haifeng Zhou
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast, China National Light Industry, College of Biological and Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, China
| | - Longyi Jin
- Department of Chemistry, Yanbian University, 133002, Yanji, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Shandong Energy Institute, 266101, Qingdao, China
| |
Collapse
|
3
|
Dong YL, Chong GG, Li CX, Chen Q, Pan J, Li AT, Xu JH. Carving the Active Site of CYP153A7 Monooxygenase for Improving Terminal Hydroxylation of Medium-Chain Fatty Acids. Chembiochem 2022; 23:e202200063. [PMID: 35257464 DOI: 10.1002/cbic.202200063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Indexed: 11/10/2022]
Abstract
The P450-mediated terminal hydroxylation of non-activated C-H bonds is a chemically challenging reaction. CYP153A7 monooxygenase discovered in Sphingomonas sp. HXN200 belongs to the CYP153A subfamily and shows a pronounced terminal selectivity. Herein, we report the significantly improved terminal hydroxylation activity of CYP153A7 by redesign of the substrate binding pocket based on molecular docking of CYP153A7-C 8:0 and sequence alignments. Some of the resultant single mutants were advantageous over the wild-type enzyme with higher reaction rates, achieving a complete conversion of n- octanoic acid (C 8:0. 1 mM) in a shorter period. Especially, a single-mutation variant, D258E, showed 3.8-fold higher catalytic efficiency than the wild type toward the terminal hydroxylation of medium-chain fatty acid C 8:0 into the high value-added product 8-hydroxyoctanoic acid.
Collapse
Affiliation(s)
- Ya-Li Dong
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, CHINA
| | - Gang-Gang Chong
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, 130 Meilong Road, Shanghai 200237, China, 200237, Shanghai, CHINA
| | - Chun-Xiu Li
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, CHINA
| | - Qi Chen
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, CHINA
| | - Jiang Pan
- East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, CHINA
| | - Ai-Tao Li
- Hubei University, College of Life Science, CHINA
| | - Jian-He Xu
- East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, CHINA
| |
Collapse
|
4
|
Tian K, Li Z. A Simple Biosystem for the High‐Yielding Cascade Conversion of Racemic Alcohols to Enantiopure Amines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202009733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kaiyuan Tian
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
5
|
Tian K, Li Z. A Simple Biosystem for the High-Yielding Cascade Conversion of Racemic Alcohols to Enantiopure Amines. Angew Chem Int Ed Engl 2020; 59:21745-21751. [PMID: 32776678 DOI: 10.1002/anie.202009733] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 12/19/2022]
Abstract
The amination of racemic alcohols to produce enantiopure amines is an important green chemistry reaction for pharmaceutical manufacturing, requiring simple and efficient solutions. Herein, we report the development of a cascade biotransformation to aminate racemic alcohols. This cascade utilizes an ambidextrous alcohol dehydrogenase (ADH) to oxidize a racemic alcohol, an enantioselective transaminase (TA) to convert the ketone intermediate to chiral amine, and isopropylamine to recycle PMP and NAD+ cofactors via the reversed cascade reactions. The concept was proven by using an ambidextrous CpSADH-W286A engineered from (S)-enantioselective CpSADH as the first example of evolving ambidextrous ADHs, an enantioselective BmTA, and isopropylamine. A biosystem containing isopropylamine and E. coli (CpSADH-W286A/BmTA) expressing the two enzymes was developed for the amination of racemic alcohols to produce eight useful and high-value (S)-amines in 72-99 % yield and 98-99 % ee, providing with a simple and practical solution to this type of reaction.
Collapse
Affiliation(s)
- Kaiyuan Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
6
|
Maseme MJ, Pennec A, Marwijk J, Opperman DJ, Smit MS. CYP505E3: A Novel Self‐Sufficient ω‐7 In‐Chain Hydroxylase. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mpeyake Jacob Maseme
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| | - Alizé Pennec
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| | - Jacqueline Marwijk
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| | - Diederik Johannes Opperman
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| | - Martha Sophia Smit
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| |
Collapse
|
7
|
Maseme MJ, Pennec A, Marwijk J, Opperman DJ, Smit MS. CYP505E3: A Novel Self‐Sufficient ω‐7 In‐Chain Hydroxylase. Angew Chem Int Ed Engl 2020; 59:10359-10362. [DOI: 10.1002/anie.202001055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/26/2020] [Indexed: 01/30/2023]
Affiliation(s)
- Mpeyake Jacob Maseme
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| | - Alizé Pennec
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| | - Jacqueline Marwijk
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| | - Diederik Johannes Opperman
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| | - Martha Sophia Smit
- Department of Microbial, Biochemical and Food Biotechnology University of the Free State P.O. Box 339 Bloemfontein 9300 South Africa
- South African DST-NRF Centre of Excellence in Catalysis, c*change University of Cape Town South Africa
| |
Collapse
|
8
|
Sterckx H, Morel B, Maes BUW. Catalytic Aerobic Oxidation of C(sp 3 )-H Bonds. Angew Chem Int Ed Engl 2019; 58:7946-7970. [PMID: 30052305 DOI: 10.1002/anie.201804946] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Indexed: 01/04/2023]
Abstract
Oxidation reactions are a key technology to transform hydrocarbons from petroleum feedstock into chemicals of a higher oxidation state, allowing further chemical transformations. These bulk-scale oxidation processes usually employ molecular oxygen as the terminal oxidant as at this scale it is typically the only economically viable oxidant. The produced commodity chemicals possess limited functionality and usually show a high degree of symmetry thereby avoiding selectivity issues. In sharp contrast, in the production of fine chemicals preference is still given to classical oxidants. Considering the strive for greener production processes, the use of O2 , the most abundant and greenest oxidant, is a logical choice. Given the rich functionality and complexity of fine chemicals, achieving regio/chemoselectivity is a major challenge. This review presents an overview of the most important catalytic systems recently described for aerobic oxidation, and the current insight in their reaction mechanism.
Collapse
Affiliation(s)
- Hans Sterckx
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Bénédicte Morel
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| | - Bert U W Maes
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| |
Collapse
|
9
|
Sterckx H, Morel B, Maes BUW. Katalytische, aerobe Oxidation von C(sp
3
)‐H‐Bindungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201804946] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Hans Sterckx
- Department of Chemistry University of Antwerp Groenenborgerlaan 171 B-2020 Antwerpen Belgien
| | - Bénédicte Morel
- Department of Chemistry University of Antwerp Groenenborgerlaan 171 B-2020 Antwerpen Belgien
| | - Bert U. W. Maes
- Department of Chemistry University of Antwerp Groenenborgerlaan 171 B-2020 Antwerpen Belgien
| |
Collapse
|
10
|
Sarkar MR, Hall EA, Dasgupta S, Bell SG. The Use of Directing Groups Enables the Selective and Efficient Biocatalytic Oxidation of Unactivated Adamantyl C-H Bonds. ChemistrySelect 2016. [DOI: 10.1002/slct.201601615] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Md. Raihan Sarkar
- Department of Chemistry; University Adelaide; Adelaide, SA 5005 Australia
| | - Emma A. Hall
- Department of Chemistry; University Adelaide; Adelaide, SA 5005 Australia
| | - Samrat Dasgupta
- Department of Chemistry; University Adelaide; Adelaide, SA 5005 Australia
| | - Stephen G. Bell
- Department of Chemistry; University Adelaide; Adelaide, SA 5005 Australia
| |
Collapse
|
11
|
Hoffmann SM, Danesh-Azari HR, Spandolf C, Weissenborn MJ, Grogan G, Hauer B. Structure-Guided Redesign of CYP153AM.aqfor the Improved Terminal Hydroxylation of Fatty Acids. ChemCatChem 2016. [DOI: 10.1002/cctc.201600680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sara M. Hoffmann
- Institute of Technical Biochemistry; Universität Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Hamid-Reza Danesh-Azari
- York Structural Biology Laboratory; Department of Chemistry; University of York; YO10 5DD York United Kingdom
| | - Claudia Spandolf
- York Structural Biology Laboratory; Department of Chemistry; University of York; YO10 5DD York United Kingdom
| | - Martin J. Weissenborn
- Institute of Technical Biochemistry; Universität Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Gideon Grogan
- York Structural Biology Laboratory; Department of Chemistry; University of York; YO10 5DD York United Kingdom
| | - Bernhard Hauer
- Institute of Technical Biochemistry; Universität Stuttgart; Allmandring 31 70569 Stuttgart Germany
| |
Collapse
|
12
|
Du D, Jiang Y, Xu Q, Li X, Shi M. Enantioselective Synthesis of Spirooxindole Enols: Regioselective and Asymmetric [3+2] Cyclization of 3-Isothiocyanato Oxindoles with Dibenzylidene Ketones. ChemistryOpen 2016; 5:311-4. [PMID: 27547639 PMCID: PMC4981050 DOI: 10.1002/open.201600034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Indexed: 12/02/2022] Open
Abstract
A novel cinchona-alkaloid-derived organocatalyst has been developed to catalyze the asymmetric regioselective [3+2] cycloaddition of 3-isothiocyanato oxindoles with dibenzylidene ketones. A series of spirooxindole enols could be obtained in high yields with good-to-excellent diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Dan Du
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences345 Lingling RoadShanghai200032P. R. China
| | - Yu Jiang
- Key Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science and TechnologyMeilong Road No. 130Shanghai200237P. R. China
| | - Qin Xu
- Key Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science and TechnologyMeilong Road No. 130Shanghai200237P. R. China
| | - Xiao‐Ge Li
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences345 Lingling RoadShanghai200032P. R. China
| | - Min Shi
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of Sciences345 Lingling RoadShanghai200032P. R. China
- Key Laboratory for Advanced Materials and Institute of Fine ChemicalsEast China University of Science and TechnologyMeilong Road No. 130Shanghai200237P. R. China
| |
Collapse
|
13
|
Notonier S, Gricman Ł, Pleiss J, Hauer B. Semirational Protein Engineering of CYP153AM.aq. -CPRBM3 for Efficient Terminal Hydroxylation of Short- to Long-Chain Fatty Acids. Chembiochem 2016; 17:1550-7. [PMID: 27251775 DOI: 10.1002/cbic.201600207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Indexed: 11/07/2022]
Abstract
The regioselective terminal hydroxylation of alkanes and fatty acids is of great interest in a variety of industrial applications, such as in cosmetics, in fine chemicals, and in the fragrance industry. The chemically challenging activation and oxidation of non-activated C-H bonds can be achieved with cytochrome P450 enzymes. CYP153AM.aq. -CPRBM3 is an artificial fusion construct consisting of the heme domain from Marinobacter aquaeolei and the reductase domain of CYP102A1 from Bacillus megaterium. It has the ability to hydroxylate medium- and long-chain fatty acids selectively at their terminal positions. However, the activity of this interesting P450 construct needs to be improved for applications in industrial processes. For this purpose, the design of mutant libraries including two consecutive steps of mutagenesis is demonstrated. Targeted positions and residues chosen for substitution were based on semi-rational protein design after creation of a homology model of the heme domain of CYP153AM.aq. , sequence alignments, and docking studies. Site-directed mutagenesis was the preferred method employed to address positions within the binding pocket, whereas diversity was created with the aid of a degenerate codon for amino acids located at the substrate entrance channel. Combining the successful variants led to the identification of a double variant-G307A/S233G-that showed alterations of one position within the binding pocket and one position located in the substrate access channel. This double variant showed twofold increased activity relative to the wild type for the terminal hydroxylation of medium-chain-length fatty acids. This variant furthermore showed improved activity towards short- and long-chain fatty acids and enhanced stability in the presence of higher concentrations of fatty acids.
Collapse
Affiliation(s)
- Sandra Notonier
- Institute of Technical Biochemistry, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Łukasz Gricman
- Institute of Technical Biochemistry, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Technical Biochemistry, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Bernhard Hauer
- Institute of Technical Biochemistry, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
14
|
Holec C, Neufeld K, Pietruszka J. P450 BM3 Monooxygenase as an Efficient NAD(P)H-Oxidase for Regeneration of Nicotinamide Cofactors in ADH-Catalysed Preparative Scale Biotransformations. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600241] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Tieves F, Erenburg IN, Mahmoud O, Urlacher VB. Synthesis of chiral 2-alkanols fromn-alkanes by aP. putidawhole-cell biocatalyst. Biotechnol Bioeng 2016; 113:1845-52. [DOI: 10.1002/bit.25953] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/08/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Florian Tieves
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; 40225 Düsseldorf Germany
| | - Isabelle N. Erenburg
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; 40225 Düsseldorf Germany
| | - Osama Mahmoud
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; 40225 Düsseldorf Germany
| | - Vlada B. Urlacher
- Institute of Biochemistry; Heinrich-Heine University Düsseldorf; 40225 Düsseldorf Germany
| |
Collapse
|
16
|
Du D, Xu Q, Li XG, Shi M. Construction of Spirocyclic Oxindoles through Regio- and Stereoselective [3+2] or [3+2]/[4+2] Cascade Reaction of α,β-Unsaturated Imines with 3-Isothiocyanato Oxindole. Chemistry 2016; 22:4733-7. [DOI: 10.1002/chem.201600497] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Du
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; East China University of Science and Technology; Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Qin Xu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; East China University of Science and Technology; Meilong Road No. 130 Shanghai 200237 P. R. China
| | - Xiao-Ge Li
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P. R. China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals; East China University of Science and Technology; Meilong Road No. 130 Shanghai 200237 P. R. China
- State Key Laboratory of Organometallic Chemistry; Shanghai Institute of Organic Chemistry; Chinese Academy of Sciences; 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
17
|
Eichler A, Gricman Ł, Herter S, Kelly PP, Turner NJ, Pleiss J, Flitsch SL. Enantioselective Benzylic Hydroxylation Catalysed by P450 Monooxygenases: Characterisation of a P450cam Mutant Library and Molecular Modelling. Chembiochem 2016; 17:426-32. [DOI: 10.1002/cbic.201500536] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Anja Eichler
- School of Chemistry; Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Łukasz Gricman
- Institute for Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Susanne Herter
- School of Chemistry; Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Paul P. Kelly
- School of Chemistry; Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Nicholas J. Turner
- School of Chemistry; Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Jürgen Pleiss
- Institute for Technical Biochemistry; University of Stuttgart; Allmandring 31 70569 Stuttgart Germany
| | - Sabine L. Flitsch
- School of Chemistry; Manchester Institute of Biotechnology; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
18
|
Neufeld K, Henßen B, Pietruszka J. Enantioselective Allylic Hydroxylation of ω-Alkenoic Acids and Esters by P450 BM3 Monooxygenase. Angew Chem Int Ed Engl 2014; 53:13253-7. [DOI: 10.1002/anie.201403537] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/23/2014] [Indexed: 01/26/2023]
|
19
|
Neufeld K, Henßen B, Pietruszka J. Enantioselektive allylische Hydroxylierung von ω-Alkensäuren und -estern mittels der P450-BM3-Monooxygenase. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|