1
|
Lyu K, Chen SB, Chow EYC, Zhao H, Yuan JH, Cai M, Shi J, Chan TF, Tan JH, Kwok CK. An RNA G-Quadruplex Structure within the ADAR 5'UTR Interacts with DHX36 Helicase to Regulate Translation. Angew Chem Int Ed Engl 2022; 61:e202203553. [PMID: 36300875 DOI: 10.1002/anie.202203553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Indexed: 11/25/2022]
Abstract
RNA G-quadruplex (rG4) structures in the 5' untranslated region (5'UTR) play crucial roles in fundamental cellular processes. ADAR is an important enzyme that binds to double-strand RNA and accounts for the conversion of Adenosine to Inosine in RNA editing. However, so far there is no report on the formation and regulatory role of rG4 on ADAR expression. Here, we identify and characterize a thermostable rG4 structure within the 5'UTR of the ADAR1 mRNA and demonstrate its formation and inhibitory role on translation in reporter gene and native gene constructs. We reveal rG4-specific helicase DHX36 interacts with this rG4 in vitro and in cells under knockdown and knockout conditions by GTFH (G-quadruplex-triggered fluorogenic hybridization) probes and modulates translation in an rG4-dependent manner. Our results further substantiate the rG4 structure-DHX36 protein interaction in cells and highlight rG4 to be a key player in controlling ADAR1 translation.
Collapse
Affiliation(s)
- Kaixin Lyu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Eugene Yui-Ching Chow
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haizhou Zhao
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China
| | - Jia-Hao Yuan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Meng Cai
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong SAR, China
| | - Jiahai Shi
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.,Department of Biomedical Sciences, College of Veterinary Medicine and Life Sciences, Tung Biomedical Sciences Center, City University of Hong Kong, Hong Kong SAR, China.,Department of Biochemistry, Synthetic Biology Translational Research Programmes, Yong Loo Lin School of Medicine, National University of, Singapore, Singapore
| | - Ting-Fung Chan
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
2
|
Melidis L, Hill HJ, Coltman NJ, Davies SP, Winczura K, Chauhan T, Craig JS, Garai A, Hooper CAJ, Egan RT, McKeating JA, Hodges NJ, Stamataki Z, Grzechnik P, Hannon MJ. Supramolecular Cylinders Target Bulge Structures in the 5' UTR of the RNA Genome of SARS-CoV-2 and Inhibit Viral Replication. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 133:18292-18299. [PMID: 38505190 PMCID: PMC10947172 DOI: 10.1002/ange.202104179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 01/09/2023]
Abstract
The untranslated regions (UTRs) of viral genomes contain a variety of conserved yet dynamic structures crucial for viral replication, providing drug targets for the development of broad spectrum anti-virals. We combine in vitro RNA analysis with molecular dynamics simulations to build the first 3D models of the structure and dynamics of key regions of the 5' UTR of the SARS-CoV-2 genome. Furthermore, we determine the binding of metallo-supramolecular helicates (cylinders) to this RNA structure. These nano-size agents are uniquely able to thread through RNA junctions and we identify their binding to a 3-base bulge and the central cross 4-way junction located in stem loop 5. Finally, we show these RNA-binding cylinders suppress SARS-CoV-2 replication, highlighting their potential as novel anti-viral agents.
Collapse
Affiliation(s)
- Lazaros Melidis
- Physical Sciences for Health CentreUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Harriet J. Hill
- Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | | | - Scott P. Davies
- Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Kinga Winczura
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Tasha Chauhan
- Physical Sciences for Health CentreUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - James S. Craig
- Physical Sciences for Health CentreUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Aditya Garai
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | | | - Ross T. Egan
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Jane A. McKeating
- Nuffield Department of Medicine & Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI)Oxford UniversityOxfordOX3 7BNUK
| | - Nikolas J. Hodges
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Zania Stamataki
- Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Pawel Grzechnik
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Michael J. Hannon
- Physical Sciences for Health CentreUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| |
Collapse
|
3
|
Melidis L, Hill HJ, Coltman NJ, Davies SP, Winczura K, Chauhan T, Craig JS, Garai A, Hooper CAJ, Egan RT, McKeating JA, Hodges NJ, Stamataki Z, Grzechnik P, Hannon MJ. Supramolecular Cylinders Target Bulge Structures in the 5' UTR of the RNA Genome of SARS-CoV-2 and Inhibit Viral Replication*. Angew Chem Int Ed Engl 2021; 60:18144-18151. [PMID: 33915014 PMCID: PMC8222931 DOI: 10.1002/anie.202104179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 12/13/2022]
Abstract
The untranslated regions (UTRs) of viral genomes contain a variety of conserved yet dynamic structures crucial for viral replication, providing drug targets for the development of broad spectrum anti-virals. We combine in vitro RNA analysis with molecular dynamics simulations to build the first 3D models of the structure and dynamics of key regions of the 5' UTR of the SARS-CoV-2 genome. Furthermore, we determine the binding of metallo-supramolecular helicates (cylinders) to this RNA structure. These nano-size agents are uniquely able to thread through RNA junctions and we identify their binding to a 3-base bulge and the central cross 4-way junction located in stem loop 5. Finally, we show these RNA-binding cylinders suppress SARS-CoV-2 replication, highlighting their potential as novel anti-viral agents.
Collapse
Affiliation(s)
- Lazaros Melidis
- Physical Sciences for Health CentreUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Harriet J. Hill
- Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | | | - Scott P. Davies
- Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Kinga Winczura
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Tasha Chauhan
- Physical Sciences for Health CentreUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - James S. Craig
- Physical Sciences for Health CentreUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Aditya Garai
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | | | - Ross T. Egan
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Jane A. McKeating
- Nuffield Department of Medicine & Chinese Academy of Medical Sciences (CAMS) Oxford Institute (COI)Oxford UniversityOxfordOX3 7BNUK
| | - Nikolas J. Hodges
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Zania Stamataki
- Institute of Immunology and ImmunotherapyUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Pawel Grzechnik
- School of BiosciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| | - Michael J. Hannon
- Physical Sciences for Health CentreUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
- School of ChemistryUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
| |
Collapse
|
4
|
Chen XC, Chen SB, Dai J, Yuan JH, Ou TM, Huang ZS, Tan JH. Tracking the Dynamic Folding and Unfolding of RNA G-Quadruplexes in Live Cells. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801999] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xiu-Cai Chen
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 China
| | - Jing Dai
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 China
| | - Jia-Hao Yuan
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 China
| |
Collapse
|
5
|
Chen XC, Chen SB, Dai J, Yuan JH, Ou TM, Huang ZS, Tan JH. Tracking the Dynamic Folding and Unfolding of RNA G-Quadruplexes in Live Cells. Angew Chem Int Ed Engl 2018; 57:4702-4706. [DOI: 10.1002/anie.201801999] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Xiu-Cai Chen
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 China
| | - Jing Dai
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 China
| | - Jia-Hao Yuan
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences; Sun Yat-sen University; Guangzhou 510006 China
| |
Collapse
|
6
|
Reddy GNM, Huqi A, Iuga D, Sakurai S, Marsh A, Davis JT, Masiero S, Brown SP. Co-existence of Distinct Supramolecular Assemblies in Solution and in the Solid State. Chemistry 2016; 23:2315-2322. [PMID: 27897351 PMCID: PMC5396329 DOI: 10.1002/chem.201604832] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Indexed: 11/24/2022]
Abstract
The formation of distinct supramolecular assemblies, including a metastable species, is revealed for a lipophilic guanosine (G) derivative in solution and in the solid state. Structurally different G‐quartet‐based assemblies are formed in chloroform depending on the nature of the cation, anion and the salt concentration, as characterized by circular dichroism and time course diffusion‐ordered NMR spectroscopy data. Intriguingly, even the presence of potassium ions that stabilize G‐quartets in chloroform was insufficient to exclusively retain such assemblies in the solid state, leading to the formation of mixed quartet and ribbon‐like assemblies as revealed by fast magic‐angle spinning (MAS) NMR spectroscopy. Distinct N−H⋅⋅⋅N and N−H⋅⋅⋅O intermolecular hydrogen bonding interactions drive quartet and ribbon‐like self‐assembly resulting in markedly different 2D 1H solid‐state NMR spectra, thus facilitating a direct identification of mixed assemblies. A dissolution NMR experiment confirmed that the quartet and ribbon interconversion is reversible–further demonstrating the changes that occur in the self‐assembly process of a lipophilic nucleoside upon a solid‐state to solution‐state transition and vice versa. A systematic study for complexation with different cations (K+, Sr2+) and anions (picrate, ethanoate and iodide) emphasizes that the existence of a stable solution or solid‐state structure may not reflect the stability of the same supramolecular entity in another phase.
Collapse
Affiliation(s)
- G N Manjunatha Reddy
- Department of Physics and Department of Chemistry, University of, Warwick, Coventry, CV4 7AL, UK
| | - Aida Huqi
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, 40126, Bologna, Italy
| | - Dinu Iuga
- Department of Physics and Department of Chemistry, University of, Warwick, Coventry, CV4 7AL, UK
| | - Satoshi Sakurai
- JEOL (UK), Silver Court, Watchmead, Welwyn Garden City, AL7 1LT, UK
| | - Andrew Marsh
- Department of Physics and Department of Chemistry, University of, Warwick, Coventry, CV4 7AL, UK
| | - Jeffery T Davis
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20742, USA
| | - Stefano Masiero
- Dipartimento di Chimica "Giacomo Ciamician", Alma Mater Studiorum, Università di Bologna, 40126, Bologna, Italy
| | - Steven P Brown
- Department of Physics and Department of Chemistry, University of, Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
7
|
Kwok CK, Sahakyan AB, Balasubramanian S. Structural Analysis using SHALiPE to Reveal RNA G-Quadruplex Formation in Human Precursor MicroRNA. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Chun Kit Kwok
- The University of Cambridge; Department of Chemistry; Lensfield Road Cambridge CB2 1EW UK
| | - Aleksandr B. Sahakyan
- The University of Cambridge; Department of Chemistry; Lensfield Road Cambridge CB2 1EW UK
| | | |
Collapse
|
8
|
Kwok CK, Sahakyan AB, Balasubramanian S. Structural Analysis using SHALiPE to Reveal RNA G-Quadruplex Formation in Human Precursor MicroRNA. Angew Chem Int Ed Engl 2016; 55:8958-61. [PMID: 27355429 PMCID: PMC6680278 DOI: 10.1002/anie.201603562] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 01/01/2023]
Abstract
RNA G‐quadruplex (rG4) structures are of fundamental importance to biology. A novel approach is introduced to detect and structurally map rG4s at single‐nucleotide resolution in RNAs. The approach, denoted SHALiPE, couples selective 2′‐hydroxyl acylation with lithium ion‐based primer extension, and identifies characteristic structural fingerprints for rG4 mapping. We apply SHALiPE to interrogate the human precursor microRNA 149, and reveal the formation of an rG4 structure in this non‐coding RNA. Additional analyses support the SHALiPE results and uncover that this rG4 has a parallel topology, is thermally stable, and is conserved in mammals. An in vitro Dicer assay shows that this rG4 inhibits Dicer processing, supporting the potential role of rG4 structures in microRNA maturation and post‐transcriptional regulation of mRNAs.
Collapse
Affiliation(s)
- Chun Kit Kwok
- The University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Aleksandr B Sahakyan
- The University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Shankar Balasubramanian
- The University of Cambridge, Department of Chemistry, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|