1
|
Hollstein S, Ali LMA, Coste M, Vogel J, Bettache N, Ulrich S, von Delius M. A Triazolium-Anchored Self-Immolative Linker Enables Self-Assembly-Driven siRNA Binding and Esterase-Induced Release. Chemistry 2023; 29:e202203311. [PMID: 36346344 PMCID: PMC10108132 DOI: 10.1002/chem.202203311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022]
Abstract
The increased importance of RNA-based therapeutics comes with a need to develop next-generation stimuli-responsive systems capable of binding, transporting and releasing RNA oligomers. In this work, we describe triazolium-based amphiphiles capable of siRNA binding and enzyme-responsive release of the nucleic acid payload. In aqueous medium, the amphiphile self-assembles into nanocarriers that can disintegrate upon the addition of esterase. Key to the molecular design is a self-immolative linker that is anchored to the triazolium moiety and acts as a positively-charged polar head group. We demonstrate that addition of esterase leads to a degradation cascade of the linker, leaving the neutral triazole compound unable to form complexes and therefore releasing the negatively-charged siRNA. The reported molecular design and overall approach may have broad utility beyond this proof-of-principle study, because the underlying CuAAC "click" chemistry allows bringing together three groups very efficiently as well as cleaving off one of the three groups under the mild action of an esterase enzyme.
Collapse
Affiliation(s)
- Selina Hollstein
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Lamiaa M. A. Ali
- Institut des Biomolécules Max Mousseron (IBMM)CNRSUniversité de Montpellier, ENSCMMontpellierFrance
- Department of BiochemistryMedical Research InstituteUniversity of Alexandria21561AlexandriaEgypt
| | - Maëva Coste
- Institut des Biomolécules Max Mousseron (IBMM)CNRSUniversité de Montpellier, ENSCMMontpellierFrance
| | - Julian Vogel
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Nadir Bettache
- Institut des Biomolécules Max Mousseron (IBMM)CNRSUniversité de Montpellier, ENSCMMontpellierFrance
| | - Sébastien Ulrich
- Institut des Biomolécules Max Mousseron (IBMM)CNRSUniversité de Montpellier, ENSCMMontpellierFrance
| | - Max von Delius
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
2
|
Jacob MM, Santhosh A, Rajeev A, Joy R, John PM, John F, George J. Current Status of Natural Products/siRNA Co‐Delivery for Cancer Therapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202203476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Megha Mariya Jacob
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Amritha Santhosh
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Anjaly Rajeev
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Reshma Joy
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Pooja Mary John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Franklin John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| | - Jinu George
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous) Kochi Kerala India- 682013
| |
Collapse
|
3
|
One Fluorophore‐Two Sensing Films: Hydrogen‐Bond Directed Formation of a Quadruple Perylene Bisimide Stack. Chemistry 2022; 28:e202201974. [DOI: 10.1002/chem.202201974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Indexed: 11/07/2022]
|
4
|
Qualls ML, Lou J, McBee DP, Baccile JA, Best MD. Cyclic Disulfide Liposomes for Membrane Functionalization and Cellular Delivery. Chemistry 2022; 28:e202201164. [DOI: 10.1002/chem.202201164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Megan L. Qualls
- Department of Chemistry University of Tennessee 1420 Circle Drive Knoxville TN, 37996 USA
| | - Jinchao Lou
- Department of Chemistry University of Tennessee 1420 Circle Drive Knoxville TN, 37996 USA
| | - Dillon P. McBee
- Department of Chemistry University of Tennessee 1420 Circle Drive Knoxville TN, 37996 USA
| | - Joshua A. Baccile
- Department of Chemistry University of Tennessee 1420 Circle Drive Knoxville TN, 37996 USA
| | - Michael D. Best
- Department of Chemistry University of Tennessee 1420 Circle Drive Knoxville TN, 37996 USA
| |
Collapse
|
5
|
Ruyonga MR, Mendoza O, Browne M, Samoshin VV. Exploration of
trans
‐2‐(azaarylsulfanyl)‐cyclohexanols as potential pH‐triggered conformational switches. J PHYS ORG CHEM 2020. [DOI: 10.1002/poc.4068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mulinde R. Ruyonga
- Department of Chemistry, College of the Pacific University of the Pacific Stockton CA USA
| | - Oscar Mendoza
- Department of Chemistry, College of the Pacific University of the Pacific Stockton CA USA
| | - Michael Browne
- Department of Chemistry, College of the Pacific University of the Pacific Stockton CA USA
| | - Vyacheslav V. Samoshin
- Department of Chemistry, College of the Pacific University of the Pacific Stockton CA USA
| |
Collapse
|
6
|
Lou J, Best MD. A General Approach to Enzyme‐Responsive Liposomes. Chemistry 2020; 26:8597-8607. [DOI: 10.1002/chem.202000529] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/14/2020] [Indexed: 01/06/2023]
Affiliation(s)
- Jinchao Lou
- Department of Chemistry University of Tennessee 1420 Circle Drive Knoxville TN 37996 USA
| | - Michael D. Best
- Department of Chemistry University of Tennessee 1420 Circle Drive Knoxville TN 37996 USA
| |
Collapse
|
7
|
Dai W, Zhang Z, Du Y. Modulation of Conformational Preferences of Heteroaromatic Ethers and Amides through Protonation and Ionization: Charge Effect. Chemistry 2019; 8:840-851. [PMID: 31304077 PMCID: PMC6604235 DOI: 10.1002/open.201900103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/06/2019] [Indexed: 12/16/2022]
Abstract
Multiple approaches reveal the strong effects of a positive charge introduced by protonation or ionization on the conformation of o‐heteroaromatic ethers and amides. The ethers and amides containing an ortho‐N heteroatom are syn‐preferring while those containing an ortho‐O or ortho‐S heteroatom are mostly anti‐preferring. However, for all the monocyclic o‐heteroaromatic ethers and amides, the protonated ones are all anti‐preferring while the ionized ones are all syn‐preferring. Interestingly, although both the protonation and ionization introduce a positive charge, they have such different effects on molecular conformation, very informative for understanding the origin of conformational preferences. Detailed analysis shows that the population of the introduced positive charge dictates the conformational preferences via electrostatic and orbital interactions. Compared to ortho‐heteroatoms, meta‐heteroatoms have weaker effect on conformational preference. Achieved by complete inductive method, the regularity of conformational preferences and switching provides easy ways to modulate conformers (by pH or redox), and makes this kind of ether or amide bond a conformational hinge applicable to design of functional molecules (drugs and materials) and modulation of molecular biological processes.
Collapse
Affiliation(s)
- Wenshuai Dai
- Beijing National Laboratory of Molecular Science, State Key laboratory of Molecular Reaction Dynamics Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 Beijing PR China.,School of Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhe Zhang
- Beijing National Laboratory of Molecular Science, State Key laboratory of Molecular Reaction Dynamics Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 Beijing PR China.,School of Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yikui Du
- Beijing National Laboratory of Molecular Science, State Key laboratory of Molecular Reaction Dynamics Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 Beijing PR China
| |
Collapse
|
8
|
Lou J, Zhang X, Best MD. Lipid Switches: Stimuli-Responsive Liposomes through Conformational Isomerism Driven by Molecular Recognition. Chemistry 2018; 25:20-25. [PMID: 30133869 DOI: 10.1002/chem.201803389] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/21/2018] [Indexed: 11/10/2022]
Abstract
Advancements in the field of liposomal drug carriers have culminated in greatly improved delivery properties. An important aspect of this work entails development of designer liposomes for release of contents triggered by environmental changes. The majority of these systems are driven by chemical reactions in the presence of different stimuli. However, a promising new paradigm instead focuses on molecular recognition events as the impetus for content release. In certain cases, these platforms exploit synthetic lipid switches designed to undergo conformational changes upon binding to target ions or molecules that perturb membrane assembly, thereby triggering cargo release. Examples of this approach reported thus far showcase how rational design of lipid switches can result in dramatic changes in lipid assembly properties. These strategies show great promise for opening up new pathophysiological stimuli that can be harnessed for programmed content release in drug delivery applications.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Xiaoyu Zhang
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| |
Collapse
|
9
|
Lou J, Carr AJ, Watson AJ, Mattern-Schain SI, Best MD. Calcium-Responsive Liposomes via a Synthetic Lipid Switch. Chemistry 2018; 24:3599-3607. [PMID: 29323763 DOI: 10.1002/chem.201705810] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 12/31/2022]
Abstract
Liposomal drug delivery would benefit from enhanced control over content release. Here, we report a novel avenue for triggering release driven by chemical composition using liposomes sensitized to calcium-a target chosen due to its key roles in biology and disease. To demonstrate this principle, we synthesized calcium-responsive lipid switch 1, designed to undergo conformational changes upon calcium binding. The conformational change perturbs membrane integrity, thereby promoting cargo release. This was shown through fluorescence-based release assays via dose-dependent response depending on the percentage of 1 in liposomes, with minimal background leakage in controls. DLS experiments indicated dramatic changes in particle size upon treatment of liposomes containing 1 with calcium. In a comparison of ten naturally occurring metal cations, calcium provided the greatest release. Finally, STEM images showed significant changes in liposome morphology upon treatment of liposomes containing 1 with calcium. These results showcase lipid switches driven by molecular recognition principles as an exciting avenue for controlling membrane properties.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Adam J Carr
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Alexa J Watson
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Samuel I Mattern-Schain
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| |
Collapse
|
10
|
Zheng Y, Liu X, Samoshina NM, Samoshin VV, Franz AH, Guo X. Fliposomes: trans-2-aminocyclohexanol-based amphiphiles as pH-sensitive conformational switches of liposome membrane - a structure-activity relationship study. Chem Phys Lipids 2017; 210:129-141. [PMID: 29111431 DOI: 10.1016/j.chemphyslip.2017.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 01/20/2023]
Abstract
Recently developed lipids with the trans-2-aminocyclohexanol (TACH) moiety represent unique pH-sensitive conformational switches ("flipids") that can trigger the membrane of liposome-based drug delivery systems at lowered pH as seen in many pathological scenarios. A library of flipids with various TACH-based headgroups and hydrocarbon tails were designed, prepared, and characterized to systematically elucidate the relationship between their chemical structures and their ability to form and to trigger liposomes. Liposomes (fliposomes) consisting of a flipid, POPC and PEG-ceramide were stable at 4°C, pH 7.4 for up to several months and yet released the encapsulated fluorophore in seconds upon acidification. The colloidal properties and encapsulation efficiencies of the fliposomes depended on the structure features of the flipids such as the polarity of the headgroups and the shape and fluidity of the lipid tails. The pH-triggered release also depended on the flipid structure, where shorter linear tails yielded more efficient release. The release of fliposomes was enhanced at different narrow pH ranges, depending on the basicity of the flipid headgroup, which can be estimated either by calculated pKa or by acid/base titration of the flipids while its conformation is monitored by 1H NMR. The structure-activity relationship of the flipids supports "lipid tail conformational shortening" as the mechanism to disrupt lipid membranes and would provide great flexibility in the design of pH-sensitive drug delivery systems.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA; Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA
| | - Xin Liu
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| | - Nataliya M Samoshina
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA; Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA
| | - Vyacheslav V Samoshin
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA.
| | - Andreas H Franz
- Department of Chemistry, College of the Pacific, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA
| | - Xin Guo
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 751 Brookside Road, Stockton, CA 95211, USA.
| |
Collapse
|
11
|
Samoshin VV, Zheng Y, Liu X. Trans
-2-Aminocyclohexanol derivatives as pH-triggered conformational switches. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vyacheslav V. Samoshin
- Department of Chemistry, College of the Pacific; University of the Pacific; Stockton CA 95211 USA
| | - Yu Zheng
- Department of Chemistry, College of the Pacific; University of the Pacific; Stockton CA 95211 USA
| | - Xin Liu
- Department of Chemistry, College of the Pacific; University of the Pacific; Stockton CA 95211 USA
| |
Collapse
|
12
|
Chuard N, Gasparini G, Moreau D, Lörcher S, Palivan C, Meier W, Sakai N, Matile S. Strain-Promoted Thiol-Mediated Cellular Uptake of Giant Substrates: Liposomes and Polymersomes. Angew Chem Int Ed Engl 2017; 56:2947-2950. [DOI: 10.1002/anie.201611772] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Nicolas Chuard
- School of Chemistry and Biochemistry; University of Geneva; Geneva Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering; Switzerland
| | - Giulio Gasparini
- School of Chemistry and Biochemistry; University of Geneva; Geneva Switzerland
- Current address: Firmenich SA, Division of Research and Development; Geneva Switzerland
| | - Dimitri Moreau
- School of Chemistry and Biochemistry; University of Geneva; Geneva Switzerland
| | - Samuel Lörcher
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering; Switzerland
- Department of Chemistry; University of Basel; Basel Switzerland
| | - Cornelia Palivan
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering; Switzerland
- Department of Chemistry; University of Basel; Basel Switzerland
| | - Wolfgang Meier
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering; Switzerland
- Department of Chemistry; University of Basel; Basel Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry; University of Geneva; Geneva Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering; Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry; University of Geneva; Geneva Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering; Switzerland
| |
Collapse
|
13
|
Chuard N, Gasparini G, Moreau D, Lörcher S, Palivan C, Meier W, Sakai N, Matile S. Strain-Promoted Thiol-Mediated Cellular Uptake of Giant Substrates: Liposomes and Polymersomes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201611772] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nicolas Chuard
- School of Chemistry and Biochemistry; University of Geneva; Geneva Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering; Switzerland
| | - Giulio Gasparini
- School of Chemistry and Biochemistry; University of Geneva; Geneva Switzerland
- Current address: Firmenich SA, Division of Research and Development; Geneva Switzerland
| | - Dimitri Moreau
- School of Chemistry and Biochemistry; University of Geneva; Geneva Switzerland
| | - Samuel Lörcher
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering; Switzerland
- Department of Chemistry; University of Basel; Basel Switzerland
| | - Cornelia Palivan
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering; Switzerland
- Department of Chemistry; University of Basel; Basel Switzerland
| | - Wolfgang Meier
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering; Switzerland
- Department of Chemistry; University of Basel; Basel Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry; University of Geneva; Geneva Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering; Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry; University of Geneva; Geneva Switzerland
- National Centre of Competence in Research (NCCR) Molecular Systems Engineering; Switzerland
| |
Collapse
|
14
|
Huang H, Lovell JF. Advanced Functional Nanomaterials for Theranostics. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1603524. [PMID: 28824357 PMCID: PMC5560626 DOI: 10.1002/adfm.201603524] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nanoscale materials have been explored extensively as agents for therapeutic and diagnostic (i.e. theranostic) applications. Research efforts have shifted from exploring new materials in vitro to designing materials that function in more relevant animal disease models, thereby increasing potential for clinical translation. Current interests include non-invasive imaging of diseases, biomarkers and targeted delivery of therapeutic drugs. Here, we discuss some general design considerations of advanced theranostic materials and challenges of their use, from both diagnostic and therapeutic perspectives. Common classes of nanoscale biomaterials, including magnetic nanoparticles, quantum dots, upconversion nanoparticles, mesoporous silica nanoparticles, carbon-based nanoparticles and organic dye-based nanoparticles, have demonstrated potential for both diagnosis and therapy. Variations such as size control and surface modifications can modulate biocompatibility and interactions with target tissues. The needs for improved disease detection and enhanced chemotherapeutic treatments, together with realistic considerations for clinically translatable nanomaterials will be key driving factors for theranostic agent research in the near future.
Collapse
Affiliation(s)
- Haoyuan Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States
| |
Collapse
|