1
|
Volarić J, Thallmair S, Feringa BL, Szymanski W. Photoswitchable, Water‐soluble Bis‐azobenzene Cross‐linkers with Enhanced Properties for Biological Applications. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jana Volarić
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Sebastian Thallmair
- Frankfurt Institute for Advanced Studies Frankfurt Institute for Advanced Studies GERMANY
| | - Ben L. Feringa
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Wiktor Szymanski
- University Medical Center Groningen Department of Radiology Hanzeplein 1 9747AG Groningen NETHERLANDS
| |
Collapse
|
2
|
Ji C, Li H, Zhang L, Wang P, Lv Y, Sun Z, Tan J, Yuan Q, Tan W. Ferrocene-Containing Nucleic Acid-Based Energy-Storage Nanoagent for Continuously Photo-Induced Oxidative Stress Amplification. Angew Chem Int Ed Engl 2022; 61:e202200237. [PMID: 35064620 DOI: 10.1002/anie.202200237] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 12/25/2022]
Abstract
Regulation of cellular oxidative stress plays a critical role in revealing the molecular mechanisms of cellular activities and thus is a potential strategy for tumor treatment. Optical methods have been employed for intelligent regulation of oxidative stress in tumor regions. However, long-time continuous irradiation inevitably causes damage to normal tissues. Herein, a ferrocene-containing nucleic acid-based energy-storage nanoagent was designed to achieve the continuous photo-regulation of cellular oxidative stress in the dark. Specifically, the photoenergy stored in the agent could convert effectively and accelerate Fenton-like reaction continuously, augmenting cellular oxidative stress. This nanoagent could also silence oxidative damage repair genes to further amplify oxidative stress. This strategy not only provides oxidative stress regulation for studying the molecular mechanisms of biological activities, but also offers a promising step toward tumor microenvironment modulation.
Collapse
Affiliation(s)
- Cailing Ji
- Molecular Science and Biomedicine Laboratory, Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Hao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lei Zhang
- Molecular Science and Biomedicine Laboratory, Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Ping Wang
- Wuhan National Laboratory for Optoelectronics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yawei Lv
- Molecular Science and Biomedicine Laboratory, Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Zhijun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Tan
- Molecular Science and Biomedicine Laboratory, Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Quan Yuan
- Molecular Science and Biomedicine Laboratory, Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China.,The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST), Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| |
Collapse
|
3
|
Ji C, Li H, Zhang L, Wang P, Lv Y, Sun Z, Tan J, Yuan Q, Tan W. Ferrocene‐Containing Nucleic Acid‐Based Energy‐Storage Nanoagent for Continuously Photo‐Induced Oxidative Stress Amplification. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Cailing Ji
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Hao Li
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Lei Zhang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Ping Wang
- Huazhong University of Science and Technology School of Engineering Sciences CHINA
| | - Yawei Lv
- Hunan University School of Physics and Electronics CHINA
| | - Zhijun Sun
- Wuhan University College of Chemistry and Molecular Sciences CHINA
| | - Jie Tan
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Quan Yuan
- Wuhan Univiversity College of Chemistry and Molecular Sciences Luojiashan Street 430072 Wuhan CHINA
| | - Weihong Tan
- Hunan University College of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
4
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
5
|
Babii O, Afonin S, Diel C, Huhn M, Dommermuth J, Schober T, Koniev S, Hrebonkin A, Nesterov‐Mueller A, Komarov IV, Ulrich AS. Diarylethene-Based Photoswitchable Inhibitors of Serine Proteases. Angew Chem Int Ed Engl 2021; 60:21789-21794. [PMID: 34268844 PMCID: PMC8519022 DOI: 10.1002/anie.202108847] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Indexed: 12/20/2022]
Abstract
A bicyclic peptide scaffold was chemically adapted to generate diarylethene-based photoswitchable inhibitors of serine protease Bos taurus trypsin 1 (T1). Starting from a prototype molecule-sunflower trypsin inhibitor-1 (SFTI-1)-we obtained light-controllable inhibitors of T1 with Ki in the low nanomolar range, whose activity could be modulated over 20-fold by irradiation. The inhibitory potency as well as resistance to proteolytic degradation were systematically studied on a series of 17 SFTI-1 analogues. The hydrogen bond network that stabilizes the structure of inhibitors and possibly the enzyme-inhibitor binding dynamics were affected by isomerization of the photoswitch. The feasibility of manipulating enzyme activity in time and space was demonstrated by controlled digestion of gelatin-based hydrogel and an antimicrobial peptide BP100-RW. Finally, our design principles of diarylethene photoswitches are shown to apply also for the development of other serine protease inhibitors.
Collapse
Affiliation(s)
- Oleg Babii
- Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT)POB 364076021KarlsruheGermany
- Institute of Microstructure Technology (IMT)KITHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT)POB 364076021KarlsruheGermany
| | - Christian Diel
- Institute of Organic Chemistry (IOC)KITFritz-Haber-Weg 676131KarlsruheGermany
| | - Marcel Huhn
- Institute of Organic Chemistry (IOC)KITFritz-Haber-Weg 676131KarlsruheGermany
| | - Jennifer Dommermuth
- Institute of Organic Chemistry (IOC)KITFritz-Haber-Weg 676131KarlsruheGermany
| | - Tim Schober
- Institute of Organic Chemistry (IOC)KITFritz-Haber-Weg 676131KarlsruheGermany
- Lumobiotics GmbHAuer Straße 276227KarlsruheGermany
| | - Serhii Koniev
- Taras Shevchenko National University of Kyivvul. Volodymyrska 601601KyivUkraine
| | - Andrii Hrebonkin
- Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT)POB 364076021KarlsruheGermany
| | - Alexander Nesterov‐Mueller
- Institute of Microstructure Technology (IMT)KITHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Igor V. Komarov
- Taras Shevchenko National University of Kyivvul. Volodymyrska 601601KyivUkraine
- Lumobiotics GmbHAuer Straße 276227KarlsruheGermany
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT)POB 364076021KarlsruheGermany
- Institute of Organic Chemistry (IOC)KITFritz-Haber-Weg 676131KarlsruheGermany
| |
Collapse
|
6
|
Babii O, Afonin S, Diel C, Huhn M, Dommermuth J, Schober T, Koniev S, Hrebonkin A, Nesterov‐Mueller A, Komarov IV, Ulrich AS. Diarylethen‐basierte lichtschaltbare Inhibitoren von Serinproteasen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Oleg Babii
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Deutschland
- Institute of Microstructure Technology (IMT) KIT Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Deutschland
| | - Christian Diel
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| | - Marcel Huhn
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| | - Jennifer Dommermuth
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| | - Tim Schober
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
- Lumobiotics GmbH Auer Straße 2 76227 Karlsruhe Deutschland
| | - Serhii Koniev
- Taras Shevchenko National University of Kyiv vul. Volodymyrska 60 1601 Kyiv Ukraine
| | - Andrii Hrebonkin
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Deutschland
| | - Alexander Nesterov‐Mueller
- Institute of Microstructure Technology (IMT) KIT Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Igor V. Komarov
- Taras Shevchenko National University of Kyiv vul. Volodymyrska 60 1601 Kyiv Ukraine
- Lumobiotics GmbH Auer Straße 2 76227 Karlsruhe Deutschland
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2) Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Deutschland
- Institute of Organic Chemistry (IOC) KIT Fritz-Haber-Weg 6 76131 Karlsruhe Deutschland
| |
Collapse
|
7
|
Leistner AL, Kirchner S, Karcher J, Bantle T, Schulte ML, Gödtel P, Fengler C, Pianowski ZL. Fluorinated Azobenzenes Switchable with Red Light. Chemistry 2021; 27:8094-8099. [PMID: 33769596 PMCID: PMC8252058 DOI: 10.1002/chem.202005486] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Indexed: 02/06/2023]
Abstract
Molecular photoswitches triggered with red or NIR light are optimal for photomodulation of complex biological systems, including efficient penetration of the human body for therapeutic purposes ("therapeutic window"). Yet, they are rarely reported, and even more rarely functional under aqueous conditions. In this work, fluorinated azobenzenes are shown to exhibit efficient E→Z photoisomerization with red light (PSS660nm >75 % Z) upon conjugation with unsaturated substituents. Initially demonstrated for aldehyde groups, this effect was also observed in a more complex structure by incorporating the chromophore into a cyclic dipeptide with propensity for self-assembly. Under physiological conditions, the latter molecule formed a supramolecular material that reversibly changed its viscosity upon irradiation with red light. Our observation can lead to design of new photopharmacology agents or phototriggered materials for in vivo use.
Collapse
Affiliation(s)
- Anna-Lena Leistner
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Susanne Kirchner
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Johannes Karcher
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Tobias Bantle
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Mariam L Schulte
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Peter Gödtel
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Christian Fengler
- Institut für Technische Chemie und Polymerchemie, Karlsruher Institut für Technologie (KIT), Engesserstraße 18, 76128, Karlsruhe, Germany
| | - Zbigniew L Pianowski
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
- Institute of Biological and Chemical Systems - FMS, Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
8
|
Hu C, Wen Q, Huang S, Xie S, Fang Y, Jin Y, Campagne R, Alezra V, Miclet E, Zhu J, Wan Y. Gramicidin-S-Inspired Cyclopeptidomimetics as Potent Membrane-Active Bactericidal Agents with Therapeutic Potential. ChemMedChem 2020; 16:368-376. [PMID: 33026182 DOI: 10.1002/cmdc.202000568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/22/2020] [Indexed: 12/27/2022]
Abstract
Antimicrobial peptides (AMPs) are promising antibacterial agents often hindered by their undesired hemolytic activity. Inspired by gramicidin S (GS), a well-known cyclodecapeptide, we synthesized a panel of antibacterial cyclopeptidomimetics using β,γ-diamino acids (β,γ-DiAAs). We observed that peptidomimetic CP-2 displays a bactericidal activity similar to that of GS while possessing lower side-effects. Moreover, extensive studies revealed that CP-2 likely kills bacteria through membrane disruption. Altogether, CP-2 is a promising membrane-active antibiotic with therapeutic potential.
Collapse
Affiliation(s)
- Chengfei Hu
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, WanLi, Nanchang 330004, China
| | - Quan Wen
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, WanLi, Nanchang 330004, China
| | - Shuhui Huang
- Jiangxi Maternal and Child Hospital, 318 Bayi Avenue, Nanchang, 330006, China
| | - Saisai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, WanLi, Nanchang 330004, China
| | - Yuanying Fang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, WanLi, Nanchang 330004, China
| | - Yi Jin
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, WanLi, Nanchang 330004, China
| | - Rémy Campagne
- Laboratoire de Méthodologie, Synthèse et Molécules Thérapeutiques (ICMMO), Université Paris-Sud, UMR 8182, CNRS, Université Paris-Saclay, Bât 410, Facultédes Sciences d'Orsay, Orsay, 291405, France
| | - Valérie Alezra
- Laboratoire de Méthodologie, Synthèse et Molécules Thérapeutiques (ICMMO), Université Paris-Sud, UMR 8182, CNRS, Université Paris-Saclay, Bât 410, Facultédes Sciences d'Orsay, Orsay, 291405, France
| | - Emeric Miclet
- Laboratoire des Biomolécules, Sorbonne Université, PSL University, CNRS, 4 Place Jussieu, Paris, 75005, France
| | - Jinhua Zhu
- Institute of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, WanLi, Nanchang 330004, China
| | - Yang Wan
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, 1688 Meiling Avenue, WanLi, Nanchang 330004, China.,Laboratoire de Méthodologie, Synthèse et Molécules Thérapeutiques (ICMMO), Université Paris-Sud, UMR 8182, CNRS, Université Paris-Saclay, Bât 410, Facultédes Sciences d'Orsay, Orsay, 291405, France
| |
Collapse
|
9
|
Abstract
AbstractThis article introduces the general characteristics of the diarylethene class of photochromic dye and the structural features that make photochromism possible. It touches on the methodologies employed to synthesize these compounds as well as the influences that typical substitution patterns exert on photocoloration. A demonstration is then given of the great diversity pertaining to the potential applications in which researchers are seeking to exploit them as functional colorants.
Collapse
Affiliation(s)
- Andrew Towns
- Technical, Lambson Ltd, Clifford House, York Road, Wetherby, West Yorkshire, LS22 7NSUnited Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
10
|
Peddie V, Abell AD. Photocontrol of peptide secondary structure through non-azobenzene photoswitches. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Albert L, Vázquez O. Photoswitchable peptides for spatiotemporal control of biological functions. Chem Commun (Camb) 2019; 55:10192-10213. [PMID: 31411602 DOI: 10.1039/c9cc03346g] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Light is unsurpassed in its ability to modulate biological interactions. Since their discovery, chemists have been fascinated by photosensitive molecules capable of switching between isomeric forms, known as photoswitches. Photoswitchable peptides have been recognized for many years; however, their functional implementation in biological systems has only recently been achieved. Peptides are now acknowledged as excellent protein-protein interaction modulators and have been important in the emergence of photopharmacology. In this review, we briefly explain the different classes of photoswitches and summarize structural studies when they are incorporated into peptides. Importantly, we provide a detailed overview of the rapidly increasing number of examples, where biological modulation is driven by the structural changes. Furthermore, we discuss some of the remaining challenges faced in this field. These exciting proof-of-principle studies highlight the tremendous potential of photocontrollable peptides as optochemical tools for chemical biology and biomedicine.
Collapse
Affiliation(s)
- Lea Albert
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany.
| | | |
Collapse
|
12
|
Schober T, Wehl I, Afonin S, Babii O, Iampolska A, Schepers U, Komarov IV, Ulrich AS. Controlling the Uptake of Diarylethene‐Based Cell‐Penetrating Peptides into Cells Using Light. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Tim Schober
- Karlsruhe Institute of Technology (KIT)Institute of Organic Chemistry (IOC) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Ilona Wehl
- KIT, Institute of Functional Interfaces (IFG) POB 3640 76021 Karlsruhe Germany
| | - Sergii Afonin
- KIT, Institute of Biological Interfaces (IBG-2) POB 3640 76021 Karlsruhe Germany
| | - Oleg Babii
- KIT, Institute of Biological Interfaces (IBG-2) POB 3640 76021 Karlsruhe Germany
| | - Anna Iampolska
- Taras Shevchenko National University of Kyiv Vul. Volodymyrska 60 01601 Kyiv Ukraine
- Enamine Ltd. Vul. Chervonotkatska 78 02094 Kyiv Ukraine
| | - Ute Schepers
- KIT, Institute of Functional Interfaces (IFG) POB 3640 76021 Karlsruhe Germany
| | - Igor V. Komarov
- Taras Shevchenko National University of Kyiv Vul. Volodymyrska 60 01601 Kyiv Ukraine
- Lumobiotics GmbH Auerstraße 2 76227 Karlsruhe Germany
| | - Anne S. Ulrich
- Karlsruhe Institute of Technology (KIT)Institute of Organic Chemistry (IOC) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
- KIT, Institute of Biological Interfaces (IBG-2) POB 3640 76021 Karlsruhe Germany
| |
Collapse
|
13
|
Schweigert C, Babii O, Afonin S, Schober T, Leier J, Michenfelder NC, Komarov IV, Ulrich AS, Unterreiner AN. Real‐Time Observation of Diarylethene‐Based Photoswitches in a Cyclic Peptide Environment. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Caroline Schweigert
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe (Germany
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Germany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Germany
| | - Tim Schober
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Julia Leier
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe (Germany
| | - Nadine C. Michenfelder
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe (Germany
| | - Igor V. Komarov
- Taras Shevchenko National University of Kyiv vul. Volodymyrska 60 01601 Kyiv Ukraine
- Lumobiotics GmbH Auer Str. 2 76227 Karlsruhe Germany
| | - Anne S. Ulrich
- Institute of Biological Interfaces (IBG-2)Karlsruhe Institute of Technology (KIT) POB 3640 76021 Karlsruhe Germany
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76131 Karlsruhe Germany
| | - Andreas Neil Unterreiner
- Institute of Physical ChemistryKarlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 2 76131 Karlsruhe (Germany
| |
Collapse
|
14
|
Pianowski ZL. Recent Implementations of Molecular Photoswitches into Smart Materials and Biological Systems. Chemistry 2019; 25:5128-5144. [PMID: 30614091 DOI: 10.1002/chem.201805814] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/30/2018] [Indexed: 12/11/2022]
Abstract
Light is a nearly ideal stimulus for molecular systems. It delivers information encoded in the form of wavelengths and their intensities with high precision in space and time. Light is a mild trigger that does not permanently contaminate targeted samples. Its energy can be reversibly transformed into molecular motion, polarity, or flexibility changes. This leads to sophisticated functions at the supramolecular and macroscopic levels, from light-triggered nanomaterials to photocontrol over biological systems. New methods and molecular adapters of light are reported almost daily. Recently reported applications of photoresponsive systems, particularly azobenzenes, spiropyrans, diarylethenes, and indigoids, for smart materials and photocontrol of biological setups are described herein with the aim to demonstrate that the 21st century has become the Age of Enlightenment-"Le siècle des Lumières"-in molecular sciences.
Collapse
Affiliation(s)
- Zbigniew L Pianowski
- Institut für Organische Chemie, Karlsruher Institut für Technologie, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany.,Institut für Toxikologie und Genetik, Karlsruher Institut für Technologie, Campus Nord, Hermann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
15
|
Lin C, Maisonneuve S, Theulier C, Xie J. Synthesis and Photochromic Properties of Azobenzene-Derived Glycomacrolactones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801832] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Chaoqi Lin
- PPSM, ENS Paris-Saclay, CNRS; Université Paris-Saclay; 94235 Cachan France
| | | | - Cyril Theulier
- PPSM, ENS Paris-Saclay, CNRS; Université Paris-Saclay; 94235 Cachan France
| | - Juan Xie
- PPSM, ENS Paris-Saclay, CNRS; Université Paris-Saclay; 94235 Cachan France
| |
Collapse
|
16
|
Nevola L, Varese M, Martín-Quirós A, Mari G, Eckelt K, Gorostiza P, Giralt E. Targeted Nanoswitchable Inhibitors of Protein-Protein Interactions Involved in Apoptosis. ChemMedChem 2018; 14:100-106. [PMID: 30380184 DOI: 10.1002/cmdc.201800647] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Indexed: 12/20/2022]
Abstract
Progress in drug delivery is hampered by a lack of efficient strategies to target drugs with high specificity and precise spatiotemporal regulation. The remote control of nanoparticles and drugs with light allows regulation of their action site and dosage. Peptide-based drugs are highly specific, non-immunogenic, and can be designed to cross the plasma membrane. In order to combine target specificity and remote control of drug action, here we describe a versatile strategy based on a generalized template to design nanoswitchable peptides that modulate protein-protein interactions upon light activation. This approach is demonstrated to promote photomodulation of two important targets involved in apoptosis (the interactions Bcl-xL-Bak and MDM2-p53), but can be also applied to a large pool of therapeutically relevant protein-protein interactions mediated by α-helical motifs. The template can be adjusted using readily available information about hot spots (residues contributing most to the binding energy) at the protein-protein interface of interest.
Collapse
Affiliation(s)
- Laura Nevola
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain
| | - Monica Varese
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain
| | | | - Giacomo Mari
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain.,University of Bologna, Bologna, 40126, Italy
| | - Kay Eckelt
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain.,Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Pau Gorostiza
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain.,Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain.,Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010, Spain
| | - Ernest Giralt
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Baldiri Reixac 10, 08028, Barcelona, Spain.,University of Barcelona (UB), Barcelona, 080280, Spain
| |
Collapse
|
17
|
Matera C, Gomila AMJ, Camarero N, Libergoli M, Soler C, Gorostiza P. Photoswitchable Antimetabolite for Targeted Photoactivated Chemotherapy. J Am Chem Soc 2018; 140:15764-15773. [DOI: 10.1021/jacs.8b08249] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Alexandre M. J. Gomila
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Núria Camarero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Michela Libergoli
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| | - Concepció Soler
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L’Hospitalet de Llobregat 08908, Barcelona, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
18
|
Merz T, Bierhance G, Flach EC, Kats D, Usvyat D, Schütz M. Description of excited states in photochemistry with theoretical methods. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Abstract
The theoretical treatment of molecules in electronically excited states is much more complicated than in the ground state (GS) and remains a challenge. In contrast to the GS, electronically excited states can hardly be treated by a single determinant or configuration state function, not even near equilibrium geometry. This calls for multireference methods, or, alternatively, for time-dependent response methods, such as time-dependent density functional theory, or time-dependent coupled cluster response theory. In this contribution, we provide an overview on the latter techniques and illustrate on several examples how these methods can be used to theoretically investigate photoreactions.
Collapse
Affiliation(s)
- Thomas Merz
- Universität Regensburg Fakultät für Chemie und Pharmazie , Regensburg , Germany
| | - Genaro Bierhance
- Humboldt-Universität zu Berlin Mathematisch Naturwissenschaftliche Fakultät , Institut für Chemie, Abt. Theoretische Chemie , Berlin , Germany
| | - Ernst-Christian Flach
- Humboldt-Universität zu Berlin Mathematisch Naturwissenschaftliche Fakultät , Institut für Chemie, Abt. Theoretische Chemie , Berlin , Germany
| | - Daniel Kats
- Max-Planck-Institut für Festkörperforschung , Stuttgart , Germany
| | - Denis Usvyat
- Humboldt-Universität zu Berlin Mathematisch Naturwissenschaftliche Fakultät , Institut für Chemie, Abt. Theoretische Chemie , Berlin , Germany
| | - Martin Schütz
- Humboldt-Universität zu Berlin Mathematisch Naturwissenschaftliche Fakultät , Institut für Chemie, Abt. Theoretische Chemie , Berlin , Germany
| |
Collapse
|
19
|
Affiliation(s)
- Katharina Hüll
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| | - Johannes Morstein
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| | - Dirk Trauner
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| |
Collapse
|
20
|
Komarov IV, Afonin S, Babii O, Schober T, Ulrich AS. Efficiently Photocontrollable or Not? Biological Activity of Photoisomerizable Diarylethenes. Chemistry 2018; 24:11245-11254. [PMID: 29633378 DOI: 10.1002/chem.201801205] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 12/14/2022]
Abstract
Diarylethene derivatives, the biological activity of which can be reversibly changed by irradiation with light of different wavelengths, have shown promise as scientific tools and as candidates for photocontrollable drugs. However, examples demonstrating efficient photocontrol of their biological activity are still relatively rare. This concept article discusses the possible reasons for this situation and presents a critical analysis of existing data and hypotheses in this field, in order to extract the design principles enabling the construction of efficient photocontrollable diarylethene-based molecules. Papers addressing biologically relevant interactions between diarylethenes and biomolecules are analyzed; however, in most published cases, the efficiency of photocontrol in living systems remains to be demonstrated. We hope that this article will encourage further discussion of design principles, primarily among pharmacologists, synthetic and medicinal chemists.
Collapse
Affiliation(s)
- Igor V Komarov
- Taras Shevchenko National University of Kyiv, vul. Volodymyrska 60, 01601, Kyiv, Ukraine.,Lumobiotics GmbH, Auer Str. 2, 76227, Karlsruhe, Germany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, 76021, Karlsruhe, Germany
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, 76021, Karlsruhe, Germany
| | - Tim Schober
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, 76021, Karlsruhe, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| |
Collapse
|
21
|
Wiedbrauk S, Bartelmann T, Thumser S, Mayer P, Dube H. Simultaneous complementary photoswitching of hemithioindigo tweezers for dynamic guest relocalization. Nat Commun 2018; 9:1456. [PMID: 29654233 PMCID: PMC5899155 DOI: 10.1038/s41467-018-03912-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 03/21/2018] [Indexed: 11/18/2022] Open
Abstract
Remote control of complex molecular behavior and function is one key problem in modern chemistry. Using light signaling for this purpose has many advantages, however the integration of different photo processes into a wholesome yet complex system is highly challenging. Here we report an alternative approach to increase complexity of light control-simultaneous complementary photoswitching-in which spectral overlap is used as an advantage to drastically reduce the signaling needed for controlling multipart supramolecular assemblies. Two photoswitchable molecular tweezers respond to the same light signals with opposite changes in their binding affinities. In this way the configuration of two host tweezers and ultimately the dynamic relocation of a guest molecule can be trigged by only one signal reversibly in the same solution. This approach should provide a powerful tool for the construction of sophisticated, integrated, and multi-responsive smart molecular systems in any application driven field of chemistry. Controlling complex photoresponsive systems while minimizing light input is highly challenging. Here, the authors report two photoswitchable molecular tweezers responding to the same light signals with opposite changes in their binding affinities towards a guest molecule allowing for its “light-economic” relocation.
Collapse
Affiliation(s)
- Sandra Wiedbrauk
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, München, 81377, Germany
| | - Thomas Bartelmann
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, München, 81377, Germany
| | - Stefan Thumser
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, München, 81377, Germany
| | - Peter Mayer
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, München, 81377, Germany
| | - Henry Dube
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, München, 81377, Germany.
| |
Collapse
|
22
|
Herder M, Eisenreich F, Bonasera A, Grafl A, Grubert L, Pätzel M, Schwarz J, Hecht S. Light-Controlled Reversible Modulation of Frontier Molecular Orbital Energy Levels in Trifluoromethylated Diarylethenes. Chemistry 2017; 23:3743-3754. [PMID: 28093831 DOI: 10.1002/chem.201605511] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Indexed: 01/12/2023]
Abstract
Among bistable photochromic molecules, diarylethenes (DAEs) possess the distinct feature that upon photoisomerization they undergo a large modulation of their π-electronic system, accompanied by a marked shift of the HOMO/LUMO energies and hence oxidation/reduction potentials. The electronic modulation can be utilized to remote-control charge- as well as energy-transfer processes and it can be transduced to functional entities adjacent to the DAE core, thereby regulating their properties. In order to exploit such photoswitchable systems it is important to precisely adjust the absolute position of their HOMO and LUMO levels and to maximize the extent of the photoinduced shifts of these energy levels. Here, we present a comprehensive study detailing how variation of the substitution pattern of DAE compounds, in particular using strongly electron-accepting and chemically stable trifluoromethyl groups either in the periphery or at the reactive carbon atoms, allows for the precise tuning of frontier molecular orbital levels over a broad energy range and the generation of photoinduced shifts of more than 1 eV. Furthermore, the effect of different DAE architectures on the transduction of these shifts to an adjacent functional group is discussed. Whereas substitution in the periphery of the DAE motif has only minor implications on the photochemistry, trifluoromethylation at the reactive carbon atoms strongly disturbs the isomerization efficiency. However, this can be overcome by using a nonsymmetrical substitution pattern or by combination with donor groups, rendering the resulting photoswitches attractive candidates for the construction of remote-controlled functional systems.
Collapse
Affiliation(s)
- Martin Herder
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Fabian Eisenreich
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Aurelio Bonasera
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Anna Grafl
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Lutz Grubert
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Michael Pätzel
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Jutta Schwarz
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Stefan Hecht
- Department of Chemistry and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
23
|
Weston CE, Krämer A, Colin F, Yildiz Ö, Baud MGJ, Meyer-Almes FJ, Fuchter MJ. Toward Photopharmacological Antimicrobial Chemotherapy Using Photoswitchable Amidohydrolase Inhibitors. ACS Infect Dis 2017; 3:152-161. [PMID: 27756124 DOI: 10.1021/acsinfecdis.6b00148] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photopharmacological agents exhibit light-dependent biological activity and may have potential in the development of new antimicrobial agents/modalities. Amidohydrolase enzymes homologous to the well-known human histone deacetylases (HDACs) are present in bacteria, including resistant organisms responsible for a significant number of hospital-acquired infections and deaths. We report photopharmacological inhibitors of these enzymes, using two classes of photoswitches embedded in the inhibitor pharmacophore: azobenzenes and arylazopyrazoles. Although both classes of inhibitor show excellent inhibitory activity (nM IC50 values) of the target enzymes and promising differential activity of the switchable E- and Z-isomeric forms, the arylazopyrazoles exhibit better intrinsic photoswitch performance (more complete switching, longer thermal lifetime of the Z-isomer). We also report protein-ligand crystal structures of the E-isomers of both an azobenzene and an arylazopyrazole inhibitor, bound to bacterial histone deacetylase-like amidohydrolases (HDAHs). These structures not only uncover interactions important for inhibitor binding but also reveal conformational differences between the two photoswitch inhibitor classes. As such, our data may pave the way for the design of improved photopharmacological agents targeting the HDAC superfamily.
Collapse
Affiliation(s)
- Claire E. Weston
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andreas Krämer
- Department of Chemical Engineering and
Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| | - Felix Colin
- Department of Chemical Engineering and
Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| | - Özkan Yildiz
- Department
of Structural Biology, Max-Planck-Institute of Biophysics, Max von
Laue Strasse 3, 60438 Frankfurt am Main, Germany
| | - Matthias G. J. Baud
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and
Biotechnology, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany
| | - Matthew J. Fuchter
- Department of Chemistry, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
24
|
Abdurahman R, Yang CX, Yan XP. Conjugation of a photosensitizer to near infrared light renewable persistent luminescence nanoparticles for photodynamic therapy. Chem Commun (Camb) 2016; 52:13303-13306. [DOI: 10.1039/c6cc07616e] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photosensitizer is conjugated to near infrared light renewable persistent luminescence nanoparticles for photodynamic therapy without continuous external irradiation.
Collapse
Affiliation(s)
- Renagul Abdurahman
- College of Chemistry
- Research Center for Analytical Sciences
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Molecular Recognition and Biosensing
- Nankai University
| | - Cheng-Xiong Yang
- College of Chemistry
- Research Center for Analytical Sciences
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Molecular Recognition and Biosensing
- Nankai University
| | - Xiu-Ping Yan
- College of Chemistry
- Research Center for Analytical Sciences
- State Key Laboratory of Medicinal Chemical Biology
- Tianjin Key Laboratory of Molecular Recognition and Biosensing
- Nankai University
| |
Collapse
|