1
|
Nascimento NS, Torres-Obreque KM, Oliveira CA, Rabelo J, Baby AR, Long PF, Young AR, Rangel-Yagui CDO. Enzymes for dermatological use. Exp Dermatol 2024; 33:e15008. [PMID: 38284197 DOI: 10.1111/exd.15008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Skin is the ultimate barrier between body and environment and prevents water loss and penetration of pathogens and toxins. Internal and external stressors, such as ultraviolet radiation (UVR), can damage skin integrity and lead to disorders. Therefore, skin health and skin ageing are important concerns and increased research from cosmetic and pharmaceutical sectors aims to improve skin conditions and provide new anti-ageing treatments. Biomolecules, compared to low molecular weight drugs and cosmetic ingredients, can offer high levels of specificity. Topically applied enzymes have been investigated to treat the adverse effects of sunlight, pollution and other external agents. Enzymes, with a diverse range of targets, present potential for dermatological use such as antioxidant enzymes, proteases and repairing enzymes. In this review, we discuss enzymes for dermatological applications and the challenges associated in this growing field.
Collapse
Affiliation(s)
- Natália Santos Nascimento
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Karin Mariana Torres-Obreque
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Camila Areias Oliveira
- Laboratory of Analytical Validation and Development, Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Jheniffer Rabelo
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - André Rolim Baby
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Paul F Long
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Antony R Young
- St John's Institute of Dermatology, King's College London, London, UK
| | - Carlota de Oliveira Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
- Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
2
|
Chanquia SN, Benfeldt FV, Petrovai N, Santner P, Hollmann F, Eser BE, Kara S. Immobilization and Application of Fatty Acid Photodecarboxylase in Deep Eutectic Solvents. Chembiochem 2022; 23:e202200482. [PMID: 36222011 PMCID: PMC10099500 DOI: 10.1002/cbic.202200482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Indexed: 01/25/2023]
Abstract
Since its discovery in 2017, the fatty acid decarboxylase (FAP) photoenzyme has been the focus of extensive research, given its ability to convert fatty acids into alka(e)nes using merely visible blue light. Unfortunately, there are still some drawbacks that limit the applicability of this biocatalyst, such as poor solubility of the substrates in aqueous media, poor photostability, and the impossibility of reusing the catalyst for several cycles. In this work, we demonstrate the use of FAP in non-conventional media as a free enzyme and an immobilized preparation. Namely, its applicability in deep eutectic solvents (DESs) and a proof-of-concept immobilization using a commercial His-tag selective carrier, a thorough study of reaction and immobilization conditions in each case, as well as reusability studies are shown. We observed an almost complete selectivity of the enzyme towards C18 decarboxylation over C16 when used in a DES, with a product analytical yield up to 81 % when using whole cells. Furthermore, when applying the immobilized enzyme in DES, we obtained yields >10-fold higher than the ones obtained in aqueous media.
Collapse
Affiliation(s)
- Santiago Nahuel Chanquia
- Biocatalysis and Bioprocessing Group Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Frederik Vig Benfeldt
- Biocatalysis and Bioprocessing Group Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Noémi Petrovai
- Biocatalysis and Bioprocessing Group Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Paul Santner
- Enzyme Engineering Group Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, 2629HZ, Delft, The Netherlands
| | - Bekir Engin Eser
- Enzyme Engineering Group Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Selin Kara
- Biocatalysis and Bioprocessing Group Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark.,Institute of Technical Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
| |
Collapse
|
3
|
Winkler CK, Simić S, Jurkaš V, Bierbaumer S, Schmermund L, Poschenrieder S, Berger SA, Kulterer E, Kourist R, Kroutil W. Accelerated Reaction Engineering of Photo(bio)catalytic Reactions through Parallelization with an Open‐Source Photoreactor. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Christoph K. Winkler
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Stefan Simić
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Valentina Jurkaš
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Sarah Bierbaumer
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Luca Schmermund
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Silvan Poschenrieder
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Sarah A. Berger
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Elisa Kulterer
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
| | - Robert Kourist
- Institute of Molecular Biotechnology NAWI Graz Graz University of Technology Petersgasse 14 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry NAWI Graz University of Graz Heinrichstraße 28 8010 Graz Austria
- BioTechMed Graz 8010 Graz Austria
- Field of Excellence BioHealth University of Graz 8010 Graz Austria
| |
Collapse
|
4
|
Hartman T, Reisnerová M, Chudoba J, Svobodová E, Archipowa N, Kutta RJ, Cibulka R. Photocatalytic Oxidative [2+2] Cycloelimination Reactions with Flavinium Salts: Mechanistic Study and Influence of the Catalyst Structure. Chempluschem 2021; 86:373-386. [DOI: 10.1002/cplu.202000767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Tomáš Hartman
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Martina Reisnerová
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Josef Chudoba
- Central Laboratories University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Eva Svobodová
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| | - Nataliya Archipowa
- Manchester Institute of Biotechnology and School of Chemistry The University of Manchester Manchester M1 7DN United Kingdom
| | - Roger Jan Kutta
- Institute of Physical and Theoretical Chemistry University of Regensburg 93040 Regensburg Germany
| | - Radek Cibulka
- Department of Organic Chemistry University of Chemistry and Technology, Prague Technická 5 166 28 Prague 6 Czech Republic
| |
Collapse
|
5
|
Schmermund L, Bierbaumer S, Schein VK, Winkler CK, Kara S, Kroutil W. Extending the Library of Light‐Dependent Protochlorophyllide Oxidoreductases and their Solvent Tolerance, Stability in Light and Cofactor Flexibility. ChemCatChem 2020. [DOI: 10.1002/cctc.202000561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Luca Schmermund
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Sarah Bierbaumer
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Viktor K. Schein
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Christoph K. Winkler
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| | - Selin Kara
- Department of Engineering Biological and Chemical Engineering Biocatalysis and Bioprocessing Group Aarhus University Gustav Wieds Vej 10 8000 Aarhus Denmark
| | - Wolfgang Kroutil
- Institute of Chemistry University of Graz – Field of Excellence BioHealth NAWI Graz BioTechMed Graz Heinrichstrasse 28 8010 Graz Austria
| |
Collapse
|
6
|
Xu J, Hu Y, Fan J, Arkin M, Li D, Peng Y, Xu W, Lin X, Wu Q. Light‐Driven Kinetic Resolution of α‐Functionalized Carboxylic Acids Enabled by an Engineered Fatty Acid Photodecarboxylase. Angew Chem Int Ed Engl 2019; 58:8474-8478. [DOI: 10.1002/anie.201903165] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/10/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Jian Xu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Yujing Hu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Jiajie Fan
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Mamatjan Arkin
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Danyang Li
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Yongzhen Peng
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Weihua Xu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Xianfu Lin
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Qi Wu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| |
Collapse
|
7
|
Xu J, Hu Y, Fan J, Arkin M, Li D, Peng Y, Xu W, Lin X, Wu Q. Light‐Driven Kinetic Resolution of α‐Functionalized Carboxylic Acids Enabled by an Engineered Fatty Acid Photodecarboxylase. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jian Xu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Yujing Hu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Jiajie Fan
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Mamatjan Arkin
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Danyang Li
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Yongzhen Peng
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Weihua Xu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Xianfu Lin
- Department of ChemistryZhejiang University Hangzhou 310027 China
| | - Qi Wu
- Department of ChemistryZhejiang University Hangzhou 310027 China
| |
Collapse
|
8
|
Wang Z, Xu Z, Zhu G. A Platinum(IV) Anticancer Prodrug Targeting Nucleotide Excision Repair To Overcome Cisplatin Resistance. Angew Chem Int Ed Engl 2016; 55:15564-15568. [PMID: 27736029 DOI: 10.1002/anie.201608936] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Indexed: 11/11/2022]
Abstract
DNA damage response plays a key role not only in maintaining genome integrity but also in mediating the antitumor efficacy of DNA-damaging antineoplastic drugs. Herein, we report the rational design and evaluation of a PtIV anticancer prodrug inhibiting nucleotide excision repair (NER), one of the most pivotal processes after the formation of cisplatin-induced DNA damage that deactivates the drug and leads to drug resistance in the clinic. This dual-action prodrug enters cells efficiently and causes DNA damage while simultaneously inhibiting NER to promote apoptotic response. The prodrug is strongly active against the proliferation of cisplatin-resistant human cancer cells with an up to 88-fold increase in growth inhibition compared with cisplatin, and the prodrug is much more active than a mixture of cisplatin and an NER inhibitor. Our study highlights the importance of targeting downstream pathways after the formation of Pt-induced DNA damage as a novel strategy to conquer cisplatin resistance.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen, P.R. China
| | - Zoufeng Xu
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen, P.R. China
| | - Guangyu Zhu
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong SAR, P.R. China.,City University of Hong Kong, Shenzhen Research Institute, Shenzhen, P.R. China
| |
Collapse
|
9
|
Wang Z, Xu Z, Zhu G. A Platinum(IV) Anticancer Prodrug Targeting Nucleotide Excision Repair To Overcome Cisplatin Resistance. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608936] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhigang Wang
- Department of Biology and Chemistry; City University of Hong Kong; 83 Tat Chee Ave Kowloon Tong Hong Kong SAR P.R. China
- City University of Hong Kong, Shenzhen Research Institute; Shenzhen P.R. China
| | - Zoufeng Xu
- Department of Biology and Chemistry; City University of Hong Kong; 83 Tat Chee Ave Kowloon Tong Hong Kong SAR P.R. China
- City University of Hong Kong, Shenzhen Research Institute; Shenzhen P.R. China
| | - Guangyu Zhu
- Department of Biology and Chemistry; City University of Hong Kong; 83 Tat Chee Ave Kowloon Tong Hong Kong SAR P.R. China
- City University of Hong Kong, Shenzhen Research Institute; Shenzhen P.R. China
| |
Collapse
|