1
|
Guan D, Chen F, Shi W, Lan L, Huang W. Single Modification at the N-Terminus of Norvancomycin to Combat Drug-Resistant Gram-Positive Bacteria. ChemMedChem 2023; 18:e202200708. [PMID: 36823383 DOI: 10.1002/cmdc.202200708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
In the arsenal of glycopeptide antibiotics, norvancomycin, which differs from vancomycin by a single methyl group, has received much less attention. Facing the risks of serious antibiotic resistance and even the collapse of last-line defenses, we designed and synthesized 40 novel norvancomycin derivatives to combat the threat. 32 compounds are single N-terminally modified derivatives generated through simple and efficient methods. Diversity at the N-terminus was greatly enriched, mainly by lipophilic attachment and strategies for the introduction of lipo-sulfonium moieties for extensive structure-activity relationship analysis. The first incorporation of a sulfonium moiety into the norvancomycin structure gave rise to compounds that exhibited 4- to 2048-fold higher activity against vancomycin-resistant bacteria VISA and VRE. This N-terminal modification for norvancomycin provides an alternatively useful and promising strategy to restore the antibacterial activity of glycopeptide antibiotics against resistant bacteria, highlighting the same importance of the N-terminal site as well as the vancosamine position, which is worth further study and development.
Collapse
Affiliation(s)
- Dongliang Guan
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P. R. China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yanta, Shandong, 264117, P. R. China
| | - Feifei Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Wei Shi
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P. R. China.,Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| | - Lefu Lan
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China.,University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, P. R. China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P. R. China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.,University of Chinese Academy of Sciences, No.19 A Yuquan Road, Beijing, 100049, P. R. China.,Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P. R. China
| |
Collapse
|
2
|
Umstätter F, Domhan C, Hertlein T, Ohlsen K, Mühlberg E, Kleist C, Zimmermann S, Beijer B, Klika KD, Haberkorn U, Mier W, Uhl P. Vancomycin Resistance Is Overcome by Conjugation of Polycationic Peptides. Angew Chem Int Ed Engl 2020; 59:8823-8827. [PMID: 32190958 PMCID: PMC7323874 DOI: 10.1002/anie.202002727] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Indexed: 01/09/2023]
Abstract
Multidrug-resistant bacteria represent one of the biggest challenges facing modern medicine. The increasing prevalence of glycopeptide resistance compromises the efficacy of vancomycin, for a long time considered as the last resort for the treatment of resistant bacteria. To reestablish its activity, polycationic peptides were conjugated to vancomycin. By site-specific conjugation, derivatives that bear the peptide moiety at four different sites of the antibiotic were synthesized. The most potent compounds exhibited an approximately 1000-fold increased antimicrobial activity and were able to overcome the most important types of vancomycin resistance. Additional blocking experiments using d-Ala-d-Ala revealed a mode of action beyond inhibition of cell-wall formation. The antimicrobial potential of the lead candidate FU002 for bacterial infection treatments could be demonstrated in an in vivo study. Molecular imaging and biodistribution studies revealed that conjugation engenders superior pharmacokinetics.
Collapse
Affiliation(s)
- Florian Umstätter
- Department of Nuclear MedicineHeidelberg University HospitalIm Neuenheimer Feld 40069120HeidelbergGermany
| | - Cornelius Domhan
- Institute of Pharmacy and Molecular BiotechnologyHeidelberg UniversityGermany
| | - Tobias Hertlein
- Institute for Molecular Infection Biology (IMIB)University of WürzburgGermany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology (IMIB)University of WürzburgGermany
| | - Eric Mühlberg
- Department of Nuclear MedicineHeidelberg University HospitalIm Neuenheimer Feld 40069120HeidelbergGermany
| | - Christian Kleist
- Department of Nuclear MedicineHeidelberg University HospitalIm Neuenheimer Feld 40069120HeidelbergGermany
| | - Stefan Zimmermann
- Medical Microbiology and HygieneHeidelberg University HospitalGermany
| | - Barbro Beijer
- Department of Nuclear MedicineHeidelberg University HospitalIm Neuenheimer Feld 40069120HeidelbergGermany
| | - Karel D. Klika
- German Cancer Research Center (DKFZ)NMR Spectroscopy Analysis UnitGermany
| | - Uwe Haberkorn
- Department of Nuclear MedicineHeidelberg University HospitalGermany
- Clinical Cooperation Unit Nuclear MedicineGerman Cancer Research Center (DKFZ)Germany
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)Germany
| | - Walter Mier
- Department of Nuclear MedicineHeidelberg University HospitalIm Neuenheimer Feld 40069120HeidelbergGermany
| | - Philipp Uhl
- Department of Nuclear MedicineHeidelberg University HospitalIm Neuenheimer Feld 40069120HeidelbergGermany
| |
Collapse
|
3
|
Umstätter F, Domhan C, Hertlein T, Ohlsen K, Mühlberg E, Kleist C, Zimmermann S, Beijer B, Klika KD, Haberkorn U, Mier W, Uhl P. Überwindung von Vancomycinresistenzen durch Modifikation mit polykationischen Peptiden. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Florian Umstätter
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Im Neuenheimer Feld 400 69120 Heidelberg Deutschland
| | - Cornelius Domhan
- Institut für Pharmazie und Molekulare Biotechnologie Universität Heidelberg Deutschland
| | - Tobias Hertlein
- Institut für Molekulare Infektionsbiologie Universität Würzburg Deutschland
| | - Knut Ohlsen
- Institut für Molekulare Infektionsbiologie Universität Würzburg Deutschland
| | - Eric Mühlberg
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Im Neuenheimer Feld 400 69120 Heidelberg Deutschland
| | - Christian Kleist
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Im Neuenheimer Feld 400 69120 Heidelberg Deutschland
| | - Stefan Zimmermann
- Zentrum für Infektiologie Universitätsklinikum Heidelberg Deutschland
| | - Barbro Beijer
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Im Neuenheimer Feld 400 69120 Heidelberg Deutschland
| | - Karel D. Klika
- Deutsches Krebsforschungszentrum (DKFZ) NMR-Analytik Deutschland
| | - Uwe Haberkorn
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Deutschland
- Klinische Kooperationseinheit Nuklearmedizin Deutsches Krebsforschungszentrum Deutschland
- Translational Lung Research Center Heidelberg (TLRC) Deutsches Zentrum für Lungenforschung (DZL) Deutschland
| | - Walter Mier
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Im Neuenheimer Feld 400 69120 Heidelberg Deutschland
| | - Philipp Uhl
- Abteilung Nuklearmedizin Universitätsklinikum Heidelberg Im Neuenheimer Feld 400 69120 Heidelberg Deutschland
| |
Collapse
|
4
|
Zhou M, Xiao X, Cong Z, Wu Y, Zhang W, Ma P, Chen S, Zhang H, Zhang D, Zhang D, Luan X, Mai Y, Liu R. Water‐Insensitive Synthesis of Poly‐β‐Peptides with Defined Architecture. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Min Zhou
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ximian Xiao
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zihao Cong
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yueming Wu
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Wenjing Zhang
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Pengcheng Ma
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Sheng Chen
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Haodong Zhang
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Danfeng Zhang
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Donghui Zhang
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xiangfeng Luan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University Shanghai 200240 China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University Shanghai 200240 China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
5
|
Zhou M, Xiao X, Cong Z, Wu Y, Zhang W, Ma P, Chen S, Zhang H, Zhang D, Zhang D, Luan X, Mai Y, Liu R. Water‐Insensitive Synthesis of Poly‐β‐Peptides with Defined Architecture. Angew Chem Int Ed Engl 2020; 59:7240-7244. [DOI: 10.1002/anie.202001697] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Min Zhou
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Ximian Xiao
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zihao Cong
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yueming Wu
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Wenjing Zhang
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Pengcheng Ma
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Sheng Chen
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Haodong Zhang
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Danfeng Zhang
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Donghui Zhang
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xiangfeng Luan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University Shanghai 200240 China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shanghai Jiao Tong University Shanghai 200240 China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering Key Laboratory for Ultrafine Materials of Ministry of Education Research Center for Biomedical Materials of Ministry of Education School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
6
|
Guan D, Chen F, Qiu Y, Jiang B, Gong L, Lan L, Huang W. Sulfonium, an Underestimated Moiety for Structural Modification, Alters the Antibacterial Profile of Vancomycin Against Multidrug‐Resistant Bacteria. Angew Chem Int Ed Engl 2019; 58:6678-6682. [DOI: 10.1002/anie.201902210] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Dongliang Guan
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Feifei Chen
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences. 555 Zuchongzhi Road, Pudong Shanghai 201203 China
| | - Yunguang Qiu
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Bofeng Jiang
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Likun Gong
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences. 555 Zuchongzhi Road, Pudong Shanghai 201203 China
| | - Lefu Lan
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences. 555 Zuchongzhi Road, Pudong Shanghai 201203 China
| | - Wei Huang
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| |
Collapse
|
7
|
Guan D, Chen F, Qiu Y, Jiang B, Gong L, Lan L, Huang W. Sulfonium, an Underestimated Moiety for Structural Modification, Alters the Antibacterial Profile of Vancomycin Against Multidrug‐Resistant Bacteria. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dongliang Guan
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Feifei Chen
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Yunguang Qiu
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Bofeng Jiang
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Likun Gong
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Lefu Lan
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
- State Key Laboratory of Drug ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences. 555 Zuchongzhi Road Pudong Shanghai 201203 China
| | - Wei Huang
- CAS Key Laboratory of Receptor ResearchCAS Center for Excellence in Molecular Cell ScienceCenter for Biotherapeutics Discovery ResearchShanghai Institute of Materia MedicaChinese Academy of Sciences 555 Zuchongzhi Road Pudong Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| |
Collapse
|
8
|
Azuma Y, Imai H, Kawaguchi Y, Nakase I, Kimura H, Futaki S. Modular Redesign of a Cationic Lytic Peptide To Promote the Endosomal Escape of Biomacromolecules. Angew Chem Int Ed Engl 2018; 57:12771-12774. [DOI: 10.1002/anie.201807534] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Yusuke Azuma
- Institute for Chemical Research; Kyoto University; Uji Kyoto 611-0011 Japan
| | - Haruka Imai
- Institute for Chemical Research; Kyoto University; Uji Kyoto 611-0011 Japan
| | | | - Ikuhiko Nakase
- Institute for Chemical Research; Kyoto University; Uji Kyoto 611-0011 Japan
| | - Hiroshi Kimura
- Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Shiroh Futaki
- Institute for Chemical Research; Kyoto University; Uji Kyoto 611-0011 Japan
| |
Collapse
|
9
|
Azuma Y, Imai H, Kawaguchi Y, Nakase I, Kimura H, Futaki S. Modular Redesign of a Cationic Lytic Peptide To Promote the Endosomal Escape of Biomacromolecules. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yusuke Azuma
- Institute for Chemical Research; Kyoto University; Uji Kyoto 611-0011 Japan
| | - Haruka Imai
- Institute for Chemical Research; Kyoto University; Uji Kyoto 611-0011 Japan
| | | | - Ikuhiko Nakase
- Institute for Chemical Research; Kyoto University; Uji Kyoto 611-0011 Japan
| | - Hiroshi Kimura
- Institute of Innovative Research; Tokyo Institute of Technology; 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Shiroh Futaki
- Institute for Chemical Research; Kyoto University; Uji Kyoto 611-0011 Japan
| |
Collapse
|
10
|
Abdalla MA, McGaw LJ. Natural Cyclic Peptides as an Attractive Modality for Therapeutics: A Mini Review. Molecules 2018; 23:molecules23082080. [PMID: 30127265 PMCID: PMC6222632 DOI: 10.3390/molecules23082080] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/14/2018] [Accepted: 08/19/2018] [Indexed: 01/04/2023] Open
Abstract
Peptides are important biomolecules which facilitate the understanding of complex biological processes, which in turn could be serendipitous biological targets for future drugs. They are classified as a unique therapeutic niche and will play an important role as fascinating agents in the pharmaceutical landscape. Until now, more than 40 cyclic peptide drugs are currently in the market, and approximately one new cyclopeptide drug enters the market annually on average. Interestingly, the majority of clinically approved cyclic peptides are derived from natural sources, such as peptide antibiotics and human peptide hormones. In this report, the importance of cyclic peptides is discussed, and their role in drug discovery as interesting therapeutic biomolecules will be highlighted. Recently isolated naturally occurring cyclic peptides from microorganisms, sponges, and other sources with a wide range of pharmacological properties are reviewed herein.
Collapse
Affiliation(s)
- Muna Ali Abdalla
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
- Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, Khartoum North 13314, Sudan.
| | - Lyndy J McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa.
| |
Collapse
|
11
|
Guan D, Chen F, Liu J, Li J, Lan L, Huang W. Design and Synthesis of Pyrophosphate-Targeting Vancomycin Derivatives for Combating Vancomycin-Resistant Enterococci. ChemMedChem 2018; 13:1644-1657. [PMID: 29920964 DOI: 10.1002/cmdc.201800252] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/13/2018] [Indexed: 12/12/2022]
Abstract
As the last resort for intractable Gram-positive bacterial infections, vancomycin is losing efficacy with the emergence of vancomycin-resistant bacteria, especially vancomycin-resistant Enterococci (VRE). To combat this threat, we rationally designed and synthesized 39 novel vancomycin derivatives by respective or combined modifications using metal-chelating, lipophilic, and galactose-attachment strategies for extensive structure-activity relationship (SAR) analysis. In a proposed mechanism, the conjugation of dipicolylamine on the seventh amino acid resorcinol position or C-terminus endowed the vancomycin backbone with binding capacity for the pyrophosphate moiety in lipid II while maintaining the intrinsic binding affinity for the dipeptide terminus of the bacterial cell wall peptidoglycan precursor. The in vitro antibacterial activities were evaluated, and the optimal compounds indicated 16- to 1024-fold higher activity against VRE than that of vancomycin. Compound 11 b (3',5'-bis(dipicolylaminomethyl)tyrosine [1,2,3]triazolylmethoxylethyoxyl ethylaminomethyl-N-decylvancomycin) was found to have particularly potent activity against VRE through synergistic effects brought about by combining two peripheral modifications.
Collapse
Affiliation(s)
- Dongliang Guan
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P.R. China
| | - Feifei Chen
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
| | - Junjie Liu
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
- Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, P.R. China
| | - Jian Li
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P.R. China
| | - Lefu Lan
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P.R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P.R. China
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Pudong, Shanghai, 201203, P.R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, P.R. China
- Center for Biotherapeutics Discovery Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, P.R. China
| |
Collapse
|
12
|
Amato DV, Amato DN, Blancett LT, Mavrodi OV, Martin WB, Swilley SN, Sandoz MJ, Shearer G, Mavrodi DV, Patton DL. A bio-based pro-antimicrobial polymer network via degradable acetal linkages. Acta Biomater 2018; 67:196-205. [PMID: 29269331 PMCID: PMC6064185 DOI: 10.1016/j.actbio.2017.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 11/19/2022]
Abstract
The synthesis of a fully degradable, bio-based, sustained release, pro-antimicrobial polymer network comprised of degradable acetals (PANDA) is reported. The active antimicrobial agent - p-anisaldehyde (pA) (an extract from star anise) - was converted into a UV curable acetal containing pro-antimicrobial monomer and subsequently photopolymerized into a homogenous thiol-ene network. Under neutral to acidic conditions (pH < 8), the PANDAs undergo surface erosion and exhibit sustained release of pA over 38 days. The release of pA from PANDAs was shown to be effective against both bacterial and fungal pathogens. From a combination of confocal microscopy and transmission electron microscopy, we observed that the released pA disrupts the cell membrane. Additionally, we demonstrated that PANDAs have minimal cytotoxicity towards both epithelial cells and macrophages. Although a model platform, these results point to promising pathways for the design of fully degradable sustained-release antimicrobial systems with potential applications in agriculture, pharmaceuticals, cosmetics, household/personal care, and food industries. STATEMENT OF SIGNIFICANCE With the increasing number of patients prescribed immunosuppressants coupled with the rise in antibiotic resistance - life-threatening microbial infections are a looming global threat. With limited success within the antibiotic pipeline, nature-based essential oils (EOs) are being investigated for their multimodal effectiveness against microbes. Despite the promising potential of EOs, difficulties in their encapsulation, limited water solubility, and high volatility limit their use. Various studies have shown that covalent attachment of these EO derivatives to polymers can mitigate these limitations. The current study presents the synthesis of a fully-degradable, sustained release, cytocompatible, pro-antimicrobial acetal network derived from p-anisaldehyde. This polymer network design provides a pathway toward application-specific EO releasing materials with quantitative encapsulation efficiencies, sustained release, and broad-spectrum antimicrobial activity.
Collapse
Affiliation(s)
- Douglas V Amato
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS 39406, United States
| | - Dahlia N Amato
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS 39406, United States
| | - Logan T Blancett
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, United States
| | - Olga V Mavrodi
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, United States
| | - William B Martin
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS 39406, United States
| | - Sarah N Swilley
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS 39406, United States
| | - Michael J Sandoz
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS 39406, United States
| | - Glenmore Shearer
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, United States
| | - Dmitri V Mavrodi
- Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, United States
| | - Derek L Patton
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS 39406, United States.
| |
Collapse
|